JPH0131292B2 - - Google Patents

Info

Publication number
JPH0131292B2
JPH0131292B2 JP55148585A JP14858580A JPH0131292B2 JP H0131292 B2 JPH0131292 B2 JP H0131292B2 JP 55148585 A JP55148585 A JP 55148585A JP 14858580 A JP14858580 A JP 14858580A JP H0131292 B2 JPH0131292 B2 JP H0131292B2
Authority
JP
Japan
Prior art keywords
substrate
processed
plasma
plasma etching
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55148585A
Other languages
Japanese (ja)
Other versions
JPS5772330A (en
Inventor
Hisao Haruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14858580A priority Critical patent/JPS5772330A/en
Publication of JPS5772330A publication Critical patent/JPS5772330A/en
Publication of JPH0131292B2 publication Critical patent/JPH0131292B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はプラズマ・エツチング方法に係り、特
に容量型のプラズマ・エツチング装置を用い、被
処理基板をプラズマにさらしてエツチングを行う
方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma etching method, and more particularly to an improvement in a method of etching a substrate to be processed by exposing it to plasma using a capacitive plasma etching apparatus.

電子ビーム露光、X線露光、遠紫外露光或るい
は紫外線露光に於て、ネガ・レジストを感光膜と
して使用した場合、露光を行つて後、該ネガ・レ
ジスト層の溶液現像を行つてネガ・レジスト・パ
ターンを形成せしめた際に、該現像によりネガ・
レジストが完全に除去されているべき基板面に、
スカムと称する極めて薄いネガ・レジスト層が残
留する現象がある。このため後工程に於て、上記
ネガ・レジスト・パターンをマスクとして基板面
のウエツト・エツチングを行う際に、前記スカム
によりエツチングが阻害されるという問題があ
る。そこでネガ・レジストを用いてマスク・パタ
ーンを形成する際には、通常溶液現像によりパタ
ーン形成後、デイ・スカム処理と称して、基板面
を空気或るいは酸素のプラズマ中に於てアツシン
グすることにより基板上のスカムのみを除去する
作業が追加される。
When a negative resist is used as a photosensitive film in electron beam exposure, X-ray exposure, deep ultraviolet exposure, or ultraviolet exposure, after exposure, the negative resist layer is developed in a solution to form a negative. When the resist pattern is formed, the negative and
On the substrate surface from which the resist should be completely removed,
There is a phenomenon in which an extremely thin negative resist layer remains, called scum. Therefore, when wet etching is performed on the substrate surface using the negative resist pattern as a mask in a subsequent step, there is a problem that the etching is inhibited by the scum. Therefore, when forming a mask pattern using a negative resist, the pattern is usually formed by solution development, and then the substrate surface is ashed in air or oxygen plasma, which is called a de-scum treatment. This adds the work of removing only the scum on the board.

そして従来のデイ・スカム処理は第1図に示す
断面図のように、容量型の円筒形プラズマ・エツ
チング容器1内に、所望の基板保持治具2に、例
えばガラス基板の主面に形成されたクロム等の遮
光膜上に前述の露光現像法によりネガ・レジス
ト・パターンが形成された被処理基板3を立て並
べて挿入し、該プラズマ・エツチング容器内に例
えば1〔Torr〕程度の圧力を有する加湿空気を流
し、上部の給電側電極4に高周波電源5からコン
デンサ6を介して例えば13.56〔MHz〕100〜150
〔W〕程度の高周波電力を供給し、下部の接地側
電極7を接地8せしめてプラズマ・エツチング容
器1内にプラズマを発生させる。そして被処理基
板3を前記プラズマ中にさらして、該基板3上の
ネガ・レジスト層をアツシングし、被処理基板3
のガラス面に附着しているネガ・レジストのスカ
ムを完全に除去する方法であつた。(図に於て9
は絶縁台、10はガス導入口、11は真空排気口
を示す。) 然し上記従来のデイ・スカム処理方法に於て
は、被処理基板3の主面に遮光膜として導電性を
有するクロム層が被着されているために、該被処
理基板3の上部の給電側電極4に近い端面に電界
が集中し、該端面近傍にプラズマ集中が起り、該
放電領域12に接する被処理基板面の温度が上昇
する。そのために該領域に於けるプラズマによる
ネガ・レジストのアツシング・レートが大幅に増
大し、該被処理基板3上のスカムが総て除去せれ
た時点に於て、前記放電領域12に接するネガ・
レジスト・パターンが他の領域に比べ著しく縮小
せしめられる。
In the conventional day scum treatment, as shown in the cross-sectional view of FIG. The substrates 3 to be processed, on which a negative resist pattern has been formed by the above-mentioned exposure and development method on a light-shielding film made of chromium or the like, are inserted side by side, and a pressure of, for example, about 1 Torr is applied in the plasma etching container. Humidified air is supplied to the upper power supply side electrode 4 from a high frequency power source 5 via a capacitor 6 at a frequency of, for example, 13.56 [MHz] 100 to 150.
A high frequency power of about [W] is supplied, the lower ground side electrode 7 is grounded 8, and plasma is generated in the plasma etching container 1. Then, the substrate 3 to be processed is exposed to the plasma, the negative resist layer on the substrate 3 is ashed, and the substrate 3 to be processed is
This method completely removed the negative resist scum adhering to the glass surface. (9 in the figure)
10 indicates an insulating stand, 10 indicates a gas inlet, and 11 indicates a vacuum exhaust port. ) However, in the conventional day scum processing method described above, since a conductive chromium layer is deposited as a light shielding film on the main surface of the substrate 3 to be processed, the power supply to the upper part of the substrate 3 to be processed is The electric field concentrates on the end face near the side electrode 4, plasma concentration occurs near the end face, and the temperature of the surface of the substrate to be processed in contact with the discharge region 12 rises. Therefore, the ashing rate of the negative resist by the plasma in this region increases significantly, and at the time when all the scum on the substrate 3 to be processed is removed, the negative resist in contact with the discharge region 12 increases.
The resist pattern is significantly reduced compared to other areas.

上記のように従来のデイ・スカム処理方法に於
ては、ネガ・レジスト・パターンの寸法にばらつ
きを生ずるために、クロム・マスク等のハード・
マスクの製造歩留まりが低下するという問題があ
つた。
As mentioned above, in the conventional day scum processing method, hard materials such as chrome masks are used to cause variations in the dimensions of the negative resist pattern.
There was a problem that the manufacturing yield of the mask decreased.

本発明は上記問題点を除去する目的で、容量型
の円筒形プラズマ・エツチング装置を用い、プラ
ズマ中に被処理基板を立置してエツチングを行う
プラズマ・エツチング方法に於て、被処理基板に
接してプラズマ集中が発生することを防止し、エ
ツチングの均一化を図るプラズマ・エツチング方
法を提供する。
In order to eliminate the above-mentioned problems, the present invention provides a plasma etching method in which a capacitive cylindrical plasma etching apparatus is used, and a substrate to be processed is placed vertically in plasma for etching. To provide a plasma etching method that prevents plasma concentration from occurring in contact with the etching material and achieves uniform etching.

即ち本発明は上部に給電側電極、下部に接地側
電極を持つ容量型の円筒形プラズマ・エツチング
装置を用い、主面に導電膜の被着されている被処
理基板をプラズマ中に立置してエツチングを行う
プラズマ・エツチング方法に於て、絶縁板に導電
膜が被着された複合板を該被処理基板の背面側に
並立せしめ、且つ該複合板の導電膜の上端を該被
処理基板の上端より該給電側電極に近くなるよう
に配置してエツチングを行うことを特徴とする。
That is, the present invention uses a capacitive cylindrical plasma etching apparatus having a power supply side electrode on the top and a ground side electrode on the bottom, and a substrate to be processed whose main surface is coated with a conductive film is placed vertically in the plasma. In the plasma etching method, a composite plate in which a conductive film is adhered to an insulating plate is placed side by side on the back side of the substrate to be processed, and the upper end of the conductive film of the composite plate is attached to the substrate to be processed. The etching is performed by arranging the electrode closer to the power supply side electrode than the upper end of the electrode.

以下本発明を、ガラス基板上にクロムからなる
遮光膜を有し、該遮光膜上に被着したネガ・レジ
スト層に電子ビーム等の露光を行い、溶液現象を
行つて後、更にポスト・ベーキングをほどこし
て、クロム膜上にネガ・レジスト・パターンが形
成せしめられた状態のクロム・マスク基板からな
る被処理基板上のスカムを除去する際のアツジン
グ方法について、第2図に示す一実施例の正面図
a及びA−A′矢視正面図b、第3図に示す他の
一実施例の縦断面図、及び第4図に示す更に他の
一実施例の縦断面図を用いて詳細に説明する。
Hereinafter, the present invention will be described in which a light-shielding film made of chromium is provided on a glass substrate, a negative resist layer coated on the light-shielding film is exposed to light such as an electron beam, a solution phenomenon is performed, and then post-baking is performed. An example method shown in FIG. 2 is used to remove scum from a substrate to be processed, which is a chrome mask substrate with a negative resist pattern formed on the chrome film. The details will be explained using a front view a, a front view b taken along arrow A-A′, a longitudinal sectional view of another embodiment shown in FIG. 3, and a longitudinal sectional view of still another embodiment shown in FIG. explain.

即ち本発明の一実施例に於ては第2図a及びb
に示すように、背面全面に、例えば1000〜2000
〔Å〕程度の厚さのスパツタ或るいは蒸着等の方
法により形成せしめた金等からなる、耐食性を有
する金属膜13を有する2〔枚〕の石英板14を、
被処理基板15の上端が、図中lで示したように
石英板14の上端よりも少くとも20〔mm〕以上低
くなるように、石英板14主面に形成せしめた基
板搭載溝16に於て被処理基板14の保持が可能
な程度の角度に背面側に傾けて連結せしめてなる
基板保持治具17を用いる。そして該基板保持治
具17の基板搭載溝16に前記被処理基板15を
搭載し、該基板保持治具17を前述の構造を有す
るプラズマ・エツチング容器内に挿入し、被処理
基板15をプラズマ中に直接さらした状態でネ
ガ・レジストのアツシングを行う。
That is, in one embodiment of the present invention, FIGS.
For example, 1000 to 2000 on the entire back surface as shown in
Two quartz plates 14 having a corrosion-resistant metal film 13 made of gold or the like formed by a method such as sputtering or vapor deposition with a thickness of about [Å],
The substrate mounting groove 16 formed on the main surface of the quartz plate 14 is placed so that the upper end of the substrate 15 to be processed is at least 20 mm lower than the upper end of the quartz plate 14, as indicated by l in the figure. A substrate holding jig 17 is used, which is connected by being inclined toward the back side at an angle that allows holding the substrate 14 to be processed. Then, the substrate to be processed 15 is mounted in the substrate mounting groove 16 of the substrate holding jig 17, the substrate holding jig 17 is inserted into a plasma etching container having the above-described structure, and the substrate to be processed 15 is placed in the plasma. Atching the negative resist while directly exposing it to.

本発明の他の一実施例に於ては、その一部分の
断面を表わす第3図に示すように、強度を保てる
範囲で出来る限り薄いガラス或るいはプラスチツ
クス等からなる絶縁板18の少くとも片面全面に
耐食性を有する1000〜2000〔Å〕程度の厚さの金
属膜13が被着された、例えば被処理基板15と
ほぼ同じ幅を有し、図中lで示したように上部端
面位置が被処理基板15の該金属膜の上端が被処
理基板15の上端より少くとも20〔mm〕以上高く
なるような大きさの複合板19を用いる。そして
該複合板を被処理基板15の背面側に重ね合わせ
た状態で、石英等からなる基板保持治具20の基
板挿入溝21及び21′に挿入し、該基板保持治
具20をプラズマ・エツチング容器内に配置して
エツチングを行う。
In another embodiment of the present invention, as shown in FIG. 3 showing a cross section of a portion thereof, at least an insulating plate 18 made of glass, plastic, or the like is made as thin as possible while maintaining strength. A metal film 13 with a thickness of about 1000 to 2000 [Å] with corrosion resistance is deposited on the entire surface of one side, and has approximately the same width as the substrate 15 to be processed, for example, and has an upper end surface position as indicated by l in the figure. The composite plate 19 is sized so that the upper end of the metal film on the substrate 15 to be processed is at least 20 mm higher than the upper end of the substrate 15 to be processed. Then, with the composite plate stacked on the back side of the substrate 15 to be processed, it is inserted into the substrate insertion grooves 21 and 21' of the substrate holding jig 20 made of quartz or the like, and the substrate holding jig 20 is subjected to plasma etching. Place it in a container and perform etching.

更に又本発明の別の一実施例に於ては、第4図
にその部分断面図を示すように、少くとも片面全
面に耐食性を有する金属膜13が形成されてお
り、被処理基板15とほぼ等しい幅を有し、下端
が楔状に形成された絶縁板18からなる複合板1
9′を用い、被処理基板15の挿入された基板保
持治具20に於ける上部の基板挿入溝21に、上
記複合板19′をその楔状部を用いて、被処理基
板15の背面側に密着するように差し込んだ状態
でプラズマ・エツチングを行う。そして該複合板
19′は上記のように被処理基板15背面側に差
し込まれた状態でその上端が、図中lで示したよ
うに、被処理基板15の上端より少なくとも20
〔mm〕以上高くなるような大きさに形成される。
Furthermore, in another embodiment of the present invention, as shown in a partial cross-sectional view in FIG. A composite plate 1 consisting of an insulating plate 18 having approximately the same width and having a wedge-shaped lower end.
9', and insert the composite plate 19' into the upper substrate insertion groove 21 of the substrate holding jig 20 into which the substrate 15 to be processed is inserted, using its wedge-shaped part to the back side of the substrate 15 to be processed. Plasma etching is performed with the device inserted tightly. When the composite plate 19' is inserted into the back side of the substrate 15 to be processed as described above, its upper end is at least 20 mm from the upper end of the substrate 15 to be processed, as shown by l in the figure.
It is formed to a size that is more than [mm] high.

上記三つの実施例に示したような方法で、前述
のようにクロム等の導電膜からなる遮光膜を有す
る被処理マスク基板を、前述の円筒形プラズマ・
エツチング容器内に配置し、前述のような条件で
プラズマ・アツシングを行つた際に、プラズマ・
エツチング装置の上部の給電側電極に最も近い複
合板の金属膜の上端に電界が集中するのでその近
傍にプラズマ集中が発生し、被処理基板に接する
領域には発生しない。そして該複合板は熱抵抗の
大きいガラス或るいはプラスチクス等の絶縁板が
基体となつているので、上記放電に接する部分の
温度上昇が被処理基板面の温度分布に影響を及ぼ
すことがないので被処理基板の主面全域にわたつ
て温度が一様になり均等なアツシングがなされ
る。そして例えば10〔吋〕程度の内径を有するプ
ラズマ・エツチング容器内に於て、本発明の方法
により主面全面に同一寸法を有する複数個のネ
ガ・レジスト・パターンが形成されている4〔吋〕
マスク基板のデイ・スカム処理を行つた後の、パ
ターン幅の偏差は0.05〜0.15〔μm〕程度で、従
来方法による偏差0.2〜0.4〔μm〕に比べて大幅
に改善される。
By the method shown in the above three embodiments, the mask substrate to be processed, which has a light-shielding film made of a conductive film such as chromium, is subjected to the above-mentioned cylindrical plasma treatment.
When placed in an etching container and subjected to plasma ashing under the conditions described above, the plasma
Since the electric field is concentrated at the upper end of the metal film of the composite plate closest to the power supply side electrode at the upper part of the etching apparatus, plasma concentration occurs in the vicinity and does not occur in the region in contact with the substrate to be processed. Since the base of the composite plate is an insulating plate made of glass or plastic with high thermal resistance, the temperature rise in the area in contact with the discharge does not affect the temperature distribution on the surface of the substrate to be processed. The temperature becomes uniform over the entire main surface of the substrate to be processed, and uniform ashing is achieved. For example, in a plasma etching chamber having an inner diameter of about 10 [inches], a plurality of negative resist patterns having the same dimensions are formed on the entire main surface by the method of the present invention.
After the day scum treatment of the mask substrate is performed, the pattern width deviation is approximately 0.05 to 0.15 [μm], which is significantly improved compared to the deviation of 0.2 to 0.4 [μm] obtained by the conventional method.

上記実施例に於ては本発明を、クロム・マスク
基板を被処理基板とする場合について説明したが
本発明の方法は他の導電性膜を遮光膜とするマス
ク基板或るいは半導体基板を被処理基板とする場
合にも有効である。
In the above embodiments, the present invention was explained in the case where a chrome mask substrate was used as the substrate to be processed, but the method of the present invention can also be applied to a mask substrate using another conductive film as a light-shielding film or a semiconductor substrate. It is also effective when used as a processed substrate.

又上記実施例に於ては本発明をプラズマ・アツ
シングに適用する例について説明したが、本発明
の方法はプラズマ・エツチングに於ても勿論有効
である。
Further, in the above embodiment, an example in which the present invention is applied to plasma etching has been described, but the method of the present invention is of course effective in plasma etching as well.

以上説明したように、本発明によれば容量型の
円筒形プラズマ・エツチング装置内に被処理基板
を並立せしめ、直かにプラズマにさらした状態で
被処理基板の主面全域にわたつて均等なエツチン
グがなされるので、フオト・マスク或るいは半導
体装置を製造する際の、プラズマエツチングの効
率及び歩留まりを向上せしめることができる。
As explained above, according to the present invention, the substrates to be processed are placed side by side in a capacitive cylindrical plasma etching apparatus, and the substrates to be processed are etched uniformly over the entire main surface of the substrates while being directly exposed to plasma. Since etching is performed, the efficiency and yield of plasma etching can be improved when manufacturing photo masks or semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラズマ・アツシング方法の断
面図、第2図は本発明のプラズマ・アツシング方
法の一実施例に於ける正面図a及びA−A′矢視
断面図b、第3図は本発明のプラズマ・アツシン
グ方法の他の一実施例に於ける縦断面図、第4図
は本発明のプラズマ・アツシング方法の更に他の
一実施例に於ける縦断面図である。 図に於て、1はプラズマ・エツチング容器、2
及び17及び20は基板保持治具、3及び15は
被処理基板、4は給電側電極、5は高周波電源、
6はコンデンサ、7は接地側電極、8は接地、9
は絶縁台、10はガス導入口、11は真空排気
口、12はプラズマ集中領域、13は金属膜、1
4は石英板、16は基板搭載溝、18は絶縁板、
19及び19′は複合板、21及び21′は基板挿
入溝、lは被処理基板上端から複合板上端までの
高さを示す。
Fig. 1 is a sectional view of a conventional plasma ashing method, Fig. 2 is a front view a and a sectional view b taken along the line A-A' in an embodiment of the plasma ashing method of the present invention, and Fig. 3 is a sectional view of an embodiment of the plasma ashing method of the present invention. FIG. 4 is a longitudinal cross-sectional view of still another embodiment of the plasma ashing method of the present invention. In the figure, 1 is a plasma etching container, 2
17 and 20 are substrate holding jigs, 3 and 15 are substrates to be processed, 4 is a power supply side electrode, 5 is a high frequency power source,
6 is a capacitor, 7 is a grounding side electrode, 8 is grounding, 9
10 is an insulating stand, 10 is a gas inlet, 11 is a vacuum exhaust port, 12 is a plasma concentration area, 13 is a metal film, 1
4 is a quartz plate, 16 is a board mounting groove, 18 is an insulating plate,
19 and 19' are composite plates, 21 and 21' are substrate insertion grooves, and l is the height from the upper end of the substrate to be processed to the upper end of the composite plate.

Claims (1)

【特許請求の範囲】[Claims] 1 上部に給電側電極、下部に接地側電極を持つ
容量型の円筒形プラズマ・エツチング装置を用
い、主面に導電膜の被着されている被処理基板を
プラズマ中に立置してエツチングを行うプラズ
マ・エツチング方法に於て、絶縁板に導電膜が被
着された複合板を該被処理基板の背面側に並立せ
しめ、且つ該複合板の導電膜の上端を該被処理基
板の上端より該給電側電極に近くなるように配置
してエツチングを行うことを特徴とするプラズ
マ・エツチング方法。
1 Using a capacitive cylindrical plasma etching device with a power supply side electrode on the top and a ground side electrode on the bottom, the substrate to be processed, which has a conductive film deposited on its main surface, is placed upright in the plasma and etched. In the plasma etching method, a composite plate in which a conductive film is adhered to an insulating plate is placed side by side on the back side of the substrate to be processed, and the upper end of the conductive film of the composite plate is placed above the upper end of the substrate to be processed. A plasma etching method characterized in that etching is performed by arranging the electrode close to the power supply side electrode.
JP14858580A 1980-10-23 1980-10-23 Plasma etching Granted JPS5772330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14858580A JPS5772330A (en) 1980-10-23 1980-10-23 Plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14858580A JPS5772330A (en) 1980-10-23 1980-10-23 Plasma etching

Publications (2)

Publication Number Publication Date
JPS5772330A JPS5772330A (en) 1982-05-06
JPH0131292B2 true JPH0131292B2 (en) 1989-06-26

Family

ID=15456029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14858580A Granted JPS5772330A (en) 1980-10-23 1980-10-23 Plasma etching

Country Status (1)

Country Link
JP (1) JPS5772330A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694779A (en) * 1984-10-19 1987-09-22 Tetron, Inc. Reactor apparatus for semiconductor wafer processing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021218A (en) * 1973-06-29 1975-03-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021218A (en) * 1973-06-29 1975-03-06

Also Published As

Publication number Publication date
JPS5772330A (en) 1982-05-06

Similar Documents

Publication Publication Date Title
US5213650A (en) Apparatus for removing deposits from backside and end edge of semiconductor wafer while preventing removal of materials from front surface of wafer
JPS59126778A (en) Method and device for plasma etching
JPH0670273B2 (en) Method and apparatus for removing deposits from the backside and edges of semiconductor wafers
CN1078770C (en) Process for forming electrodes of electronic components and apparatus for use in process
JP3205878B2 (en) Dry etching equipment
EP1005065A2 (en) Method of forming wiring pattern
JPH0131292B2 (en)
JP2863131B2 (en) Method of manufacturing photomask blanks
US5496438A (en) Method of removing photo resist
JP2506389B2 (en) Dry etching method for mask substrate
JPS6248759B2 (en)
JPS58107483A (en) Vapor deposition apparatus
JPH0822976A (en) Manufacture of mask for forming fine pattern
JP2548164B2 (en) Dry etching method
JPS59172236A (en) Reactive ion etching device
KR100205245B1 (en) Wafer clamp of semiconductor manufacture apparatus
JPS6230327A (en) Dry etching device
KR0121217Y1 (en) Chamber structure of batch type asher
US6800404B2 (en) Method for producing a self-supporting electron-optical transparent structure, and structure produced in accordance with the method
JPH02184029A (en) Dry etching device
JPH0637064A (en) Dry etching method
JPH0590229A (en) Plasma processor
CA1312304C (en) Method and apparatus for removing coating from substrate
JPS6165437A (en) Dry etching method
JPS612328A (en) Plasma processor