JPS59126778A - Method and device for plasma etching - Google Patents

Method and device for plasma etching

Info

Publication number
JPS59126778A
JPS59126778A JP179283A JP179283A JPS59126778A JP S59126778 A JPS59126778 A JP S59126778A JP 179283 A JP179283 A JP 179283A JP 179283 A JP179283 A JP 179283A JP S59126778 A JPS59126778 A JP S59126778A
Authority
JP
Japan
Prior art keywords
electrode
flat plate
etching
plasma etching
upper electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP179283A
Other languages
Japanese (ja)
Other versions
JPH0250197B2 (en
Inventor
Isamu Hijikata
土方 勇
Akira Uehara
植原 晃
Hisashi Nakane
中根 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO DENSHI KAGAKU KABUSHIKI
Tokyo Denshi Kagaku KK
Original Assignee
TOKYO DENSHI KAGAKU KABUSHIKI
Tokyo Denshi Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO DENSHI KAGAKU KABUSHIKI, Tokyo Denshi Kagaku KK filed Critical TOKYO DENSHI KAGAKU KABUSHIKI
Priority to JP179283A priority Critical patent/JPS59126778A/en
Publication of JPS59126778A publication Critical patent/JPS59126778A/en
Publication of JPH0250197B2 publication Critical patent/JPH0250197B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means

Abstract

PURPOSE:To enable precision plasma etching with good efficiency and high uniformity by interposing an insulating flat plate having many fine holes between a lower electrode to be placed thereon with an object to be treated and an upper electrode disposed oppositely thereto. CONSTITUTION:An electronic part forming material having a resist pattern is placed on a lower electrode 4 and an insulating flat plate 5 consisting of a ceramic, etc. having many fine holes is interposed, via supports 8 and 8' between an upper electrode 3 and the electrode 4, then a high frequency voltage is impressed on the electrode 3 and the plasma etching of the above-mentioned material is performed, in a plasma etching device consisting of a bell-shaped cover part 1, a bottom plate 2 attached with the electrode 4 and disposed with the electrode 3 oppositely to the electrode 4. The active seed of the above-mentioned material arriving at the object to be treated is adequately suppressed by the above-mentioned constitution, whereby precision etching having high uniformity is obtd., the damage of the resist, etc. is prevented, hence treating electric power is increased and high speed etching is made possible.

Description

【発明の詳細な説明】 本発明は、改良されたプラズマエツチング方法及びその
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved plasma etching method and apparatus.

近年、半導体素子の製造に際し、ガスプラズマエツチン
グを利用することが一般的に行われるようになってきた
。このガスプラズマエツチングを行うだめの電極構造と
しては、これまで円筒同軸型、円筒誘導方式型、平行平
板型などが知られているが、この中で平行平板型電極は
、他の形式の電極に比べ、サイドエツチングが少なく超
微細パターンに忠実な精度の高いエツチングが得られる
という長所があるだめ、特に注目されている。
In recent years, gas plasma etching has become commonly used in the manufacture of semiconductor devices. The electrode structures used to perform this gas plasma etching include the cylindrical coaxial type, the cylindrical induction type, and the parallel plate type. In comparison, it is attracting particular attention because it has the advantage of less side etching and highly accurate etching that is faithful to ultra-fine patterns.

しかし、この平行平板型電極は、(1)エツチング速度
が遅く、生産性が低い、(2)レジストマスクや被処理
試料がプラズマイオンの衝撃によシ損傷されやすいため
、処理電力の出力を低くおさえなければならない、(3
)エツチング処理後にプラズマイオンによる損傷を回復
するだめの後処理を必要とする、(4)半導体素子の絶
縁ゲート膜や保護膜として重要な窒化ケイ素(Si3N
)膜をエツチングする場合、そのマスクとして用いられ
ているホトレジストの膜ベシが大きく、さらにその下地
として多く用いられている二酸化ケイ素(si02)膜
に対する選択性が低い等の実用上の問題点を有する。
However, this parallel plate type electrode requires a low processing power output because (1) the etching speed is slow and productivity is low, and (2) the resist mask and sample to be processed are easily damaged by plasma ion bombardment. Must be held down (3
) Requires post-treatment to recover from damage caused by plasma ions after etching. (4) Silicon nitride (Si3N), which is important as an insulating gate film and protective film for semiconductor devices.
) When etching a film, there are practical problems such as the film thickness of the photoresist used as a mask is large and the selectivity for the silicon dioxide (si02) film, which is often used as a base, is low. .

これらの問題点を解決するものとして、平行平板電極の
中間に多孔板より成る電極板を一方の電極と接続させて
挿入し中間電極として作用させる装置が開発された(%
開明56−76242号公報)。
In order to solve these problems, a device was developed in which an electrode plate made of a porous plate was inserted between parallel plate electrodes and connected to one electrode to act as an intermediate electrode (%
(Kaimei No. 56-76242).

この装置は、プラズマ放電で生じる活性種を均一かつ高
密度とし、均一性の高い精密なエツチングを可能にする
とともに、試料をプラズマイオンの衝撃から保護し、し
かもエツチング速度を従来の5〜10倍に向上させ得る
利点を有するが、この中間N極を用いる装置には、次の
ような問題点が生ずることが明らかになった。すなわち
、中間電極としてアルミニウム多孔板を用いた場合、ア
ルミニウムがスパッターされて被エツチング材料を汚染
し、その電気特性を悪くするという新だな問題が発生す
ることがわかった。
This device makes the active species generated by plasma discharge uniform and highly dense, enabling highly uniform and precise etching, protects the sample from plasma ion bombardment, and increases the etching speed by 5 to 10 times compared to conventional etching. However, it has become clear that the following problems occur in a device using this intermediate N pole. That is, it has been found that when an aluminum porous plate is used as an intermediate electrode, a new problem arises in that aluminum is sputtered and contaminates the material to be etched, impairing its electrical properties.

本発明者らは、このような実情に鑑み、従来の平行平板
電極型を用いるプラズマエツチング方法の欠点を克服し
、窒化ケイ素とホトレジスト膜及び二酸化ケイ素膜に対
する選択性を高め、かつ被エツチング材料を汚染するこ
とを防止する平行平板電極型装置によるプラズマエツチ
ング方法について鋭意研究を重ねた結果、電極間に絶縁
板を介在させることによりその目的を達成し2うるこり
査見出し、本発明をなすに至った。
In view of these circumstances, the present inventors have overcome the shortcomings of the conventional plasma etching method using parallel plate electrodes, improved the selectivity for silicon nitride, photoresist films, and silicon dioxide films, and improved the etching target material. As a result of intensive research into a plasma etching method using a parallel plate electrode type device that prevents contamination, the inventors have found that the objective can be achieved by interposing an insulating plate between the electrodes, and the present invention has been made. Ta.

すなわち、本発明は、レジストパターンを有する電子部
品形成材料をプラズマエツチングするに当シ、下部電極
上に、前記被処理物を載置し、それに対向して上部電極
を配置し、かつ両電極間に多数の細孔を有する絶縁性平
板を介在させて上部電極に高周波電圧を印加することを
特徴とするプラズマエツチング方法及びその実施に好適
な多数の細孔を有する絶縁性平板を備えた装置を提供す
るものである。
That is, in plasma etching an electronic component forming material having a resist pattern, the present invention places the object to be processed on a lower electrode, arranges an upper electrode facing it, and places a gap between the two electrodes. A plasma etching method characterized by applying a high frequency voltage to an upper electrode through an insulating flat plate having a large number of pores, and an apparatus equipped with an insulating flat plate having a large number of pores suitable for carrying out the method. This is what we provide.

次に、添付図面により本発明をさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to the accompanying drawings.

第1図は、本発明の装置の構造の要部を説明するための
断面図であって、ベル型蓋部1と底板2から成る密閉容
器内に、平板状の上部電極3と下部電極4が平行に配設
され、それらの中間に多孔を有する絶縁性の平板5が挿
入されている。上部電極3は、その支持柱6をベル型蓋
部1の頂部に設けられた孔7に嵌合、固定することによ
って懸吊され、下部電極4は底板2の中央部に嵌合され
るかあるいは底板2と一体的に構成され、その上面はレ
ジストパターンを有する電子部品形成材料被処理物の載
置台を兼ねている。そして、上記上部電極3は支持柱6
を介して高周波電源に接続し、下部電極4はアースされ
ている。
FIG. 1 is a sectional view for explaining the main part of the structure of the device of the present invention, in which a flat upper electrode 3 and a lower electrode 4 are placed in a closed container consisting of a bell-shaped lid 1 and a bottom plate 2. are arranged in parallel, and an insulating flat plate 5 having porous holes is inserted between them. The upper electrode 3 is suspended by fitting and fixing its support column 6 into a hole 7 provided at the top of the bell-shaped lid 1, and the lower electrode 4 is fitted into the center of the bottom plate 2. Alternatively, it is constructed integrally with the bottom plate 2, and its upper surface also serves as a mounting table for an electronic component forming material to be processed having a resist pattern. The upper electrode 3 is connected to the support column 6
The lower electrode 4 is connected to a high frequency power source through the ground.

上部電極3と下部電極4の中間に配設される多数の孔を
有する絶縁性の平板5は、適邑な支持体88#によシ支
持されるが、その支持手段は知られたどんな方法を用い
てもよい。この平板5の支持位置は、例えば、上下両電
極板の距離が50TMlの場合、上部電極3から下方に
30胴以上で、かつ被処理物が載置される下部電極4か
ら上方10mm以上の位置であることが好ましく、特に
下部電極4から上方15〜20瓢の範囲内に配置するこ
とが好適である。またこの平板5の形状は、通常プラズ
マエツチング装置に適合する形状が好ましく採用され、
例えば第1図のベル型には円板状のものが好適である。
The insulating flat plate 5 having a large number of holes disposed between the upper electrode 3 and the lower electrode 4 is supported by a suitable support 88#, and the supporting means may be any known method. may also be used. For example, when the distance between the upper and lower electrode plates is 50TMl, the supporting position of the flat plate 5 is at least 30 mm below the upper electrode 3 and at least 10 mm above the lower electrode 4 on which the object to be processed is placed. It is particularly preferable that the electrode be disposed within a range of 15 to 20 gourds above the lower electrode 4. Further, the shape of the flat plate 5 is preferably a shape that is compatible with a normal plasma etching device.
For example, a disk-shaped one is suitable for the bell-shaped one shown in FIG.

しかし、本発明の目的が阻害されない限り、その形状は
特に制限されるものではなく、丑だその平板5の面の大
きさは、本発明の効果が効果的に達成される限り特に制
限はないが、通常下部電極4及びその上面に置かれる被
処理物、すなわち、レノストパターンを有する電子部品
形成材料を十分カバーするように選択することが好まし
い。
However, the shape is not particularly limited as long as the purpose of the present invention is not hindered, and the size of the surface of the oxtail flat plate 5 is not particularly limited as long as the effects of the present invention are effectively achieved. However, it is preferable to select it so as to sufficiently cover the lower electrode 4 and the object to be processed placed on the upper surface thereof, that is, the electronic component forming material having the Rennost pattern.

本発明の方法及び装置に用いられるこの絶縁性の多数の
細孔を有する平板5は、絶縁性材料でつくられ、かつ板
全体にわたって多数の小さな貫通孔9.・が形成された
板状体であって、板全体に均一に細孔を分布させたもの
が好ましい。絶縁性材料としては、例えばセラミックス
、ガラス等が用いられるが、特にセラミックスが好まし
い。
This insulating multi-pored flat plate 5 used in the method and apparatus of the invention is made of an insulating material and has a large number of small through holes 9 throughout the plate. It is preferable to use a plate-shaped body in which pores are uniformly distributed throughout the plate. As the insulating material, for example, ceramics, glass, etc. are used, and ceramics are particularly preferred.

第2図は、本発明に用いられる平板5の好ましい1例を
示す平面図で、まだ第3図は平板の他の例を示す平面図
である。第2図においては、円形の平板5に円板全体に
わたって多数の細孔9.・ が実質的均一に分布形成さ
れているが、第3図に示すように、目的によっては円板
の中央部に比較的大きな孔9′を形成させドーナツ状と
した平板を有利に用いることもできる。
FIG. 2 is a plan view showing a preferred example of the flat plate 5 used in the present invention, and FIG. 3 is a plan view showing another example of the flat plate. In FIG. 2, a circular flat plate 5 has many pores 9 throughout the disk.・Although, as shown in FIG. 3, depending on the purpose, it may be advantageous to use a donut-shaped flat plate with a relatively large hole 9' formed in the center of the disk. can.

絶縁性の平板に多数形成させる細孔は、正方形、長方形
、円形、三角形など任意の形状とすることができるが、
平板全体に均一に分布させることが望ましい。また、と
の細孔の大きさは、孔径10て未満、好ましくは5〜8
端の範囲でろって、Icd当たり1〜511i!it程
度の割合に穿設するのが適当である。
A large number of pores formed in an insulating flat plate can have any shape such as square, rectangle, circle, or triangle.
It is desirable to distribute it uniformly over the entire plate. In addition, the size of the pores is less than 10 mm, preferably 5 to 8 mm.
In the extreme range, 1 to 511i per Icd! It is appropriate to drill the holes at a ratio of approximately 1.

このような本発明の装置を用い、プラズマガスの雰囲気
下に上部電極に高周波電圧を印加してプラズマエツチン
グを行うときは、上部電極と両電極間に配設された多数
の細孔を有する絶縁性の平板との間でプラズマ放電が行
われ、発生した活性種が絶縁性の平板の細孔を通り抜け
、下部電極の上面に載置された被処理物、例えはウェハ
ーに達し、効果的にエツチングが行われる。本発明の装
置を用いるときは、被処理物が直接プラズマ放電領域に
さらされず、しかも中間に介在する平板が絶縁性材料で
構成されているので、導電性平板の場合と異なシ、被処
理物に達する活性種は適度に抑制されて減少し、緩和さ
れた作用力で被処理物をエツチングする。このため均一
性の高い精密なエツチングが得られ、さらにレジストや
各種被処理物のプラズマイオンの衝撃による損傷が効果
的に防止できるので、ホトレジストや下地への選択性が
題著に向上する。このような効果は平板に導電性材料を
用いた場合には被処理物が汚染されるので実用的でない
。また、本発明の装置を用いてプラズマエツチングを行
うときは、処理電力の出力を高めてエツチング速度をは
やめ、しかもプラズマイオンの衝撃による悪影響も抑制
できるので生産性を向上させることができる。
When performing plasma etching by applying a high frequency voltage to the upper electrode in an atmosphere of plasma gas using the apparatus of the present invention, it is necessary to perform plasma etching by applying a high frequency voltage to the upper electrode in an atmosphere of plasma gas. Plasma discharge is generated between the insulating flat plate, and the generated active species pass through the pores of the insulating flat plate, reach the workpiece placed on the upper surface of the lower electrode, for example a wafer, and effectively Etching is performed. When using the apparatus of the present invention, the object to be treated is not directly exposed to the plasma discharge region, and the intermediate plate is made of an insulating material. The active species that reach this amount are moderately suppressed and reduced, and the workpiece is etched with a moderate force. As a result, highly uniform and precise etching can be obtained, and furthermore, damage to resists and various objects to be processed due to plasma ion bombardment can be effectively prevented, thereby significantly improving selectivity to photoresists and substrates. Such an effect is not practical if a conductive material is used for the flat plate because the object to be processed will be contaminated. Furthermore, when plasma etching is performed using the apparatus of the present invention, the processing power output is increased to reduce the etching rate, and the adverse effects of plasma ion bombardment can also be suppressed, thereby improving productivity.

本発明によれば、従来問題があった窒化ケイ素膜のドラ
イエツチングも容易に行うことができ、中間電極を用い
ることに起因する被処理物の特性の悪化、その他の不利
益が好都合に克服できる。
According to the present invention, it is possible to easily perform dry etching of silicon nitride films, which has been a problem in the past, and it is possible to conveniently overcome the deterioration of the characteristics of the processed material and other disadvantages caused by the use of an intermediate electrode. .

本発明の装置を陰極結合型の平行平板型装置として用い
、上部電極をアースし、被処理物を載置した下部電極に
高周波電圧を印加した場合には、中間に支持された絶縁
性の多数の細孔を有する平板と下部電極との間でプラズ
マが発生して作用するので、レジストや被処理物は直接
プラズマイオンの衝撃を受けて損傷しi下地層の選択性
の向上は望めない。したがって、本発明の装置において
は上部電極に高周波電圧を印加することが重要である。
When the apparatus of the present invention is used as a cathode-coupled parallel plate apparatus, and the upper electrode is grounded and a high-frequency voltage is applied to the lower electrode on which the object to be processed is placed, the Since plasma is generated and acts between the flat plate having pores and the lower electrode, the resist and the object to be processed are directly bombarded with plasma ions and are damaged, making it impossible to expect an improvement in the selectivity of the i-underlayer. Therefore, in the device of the present invention, it is important to apply a high frequency voltage to the upper electrode.

以上の説明においては、上部及び下部電極を水平に置い
た平行平板電極型について述べたが、本発明においては
特に水平にする必要はなく、垂直であっても何ら支障は
ない。
In the above description, a parallel plate electrode type in which the upper and lower electrodes are placed horizontally has been described, but in the present invention, it is not particularly necessary to make them horizontal, and there is no problem even if they are placed vertically.

次に、実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 直径140tTanの上部電極、直径140mmの被処
理物載置台兼用の下部電極を!5omm間隔に平行に配
置した枚葉自動処理型プラズマエツチング装置OAPM
−301B (東京応化工業社製)に、直径160+m
n、厚さ2脳のセラミックス板に直径6咽の孔を1.5
個/ crlの割合で均一に形成させた平板を、上部電
極の下方30s+の位置に電極板と平行に配設した。4
インチシリコンウェハー上に1,0OOAの窒化ケイ素
膜を形成させた被処理物を下部電極面のほぼ中央に置き
、プラズマ用処利ガスとして酸素ガス8重量%を含む四
ンッ化炭素ガスを用い、反応室内の真空度を0.5TO
rrに保って、高周波発振器出力200 Wで窒化ケイ
素膜を75秒間プラズマエツチングした。マスクとして
は厚さ1μmの0MR85(商品名、東京応化工業社製
)のレジスト膜を用い、下地層としては厚さ1 、00
OAの二酸化ケイ素層を用いたが、レジスト膜の減少は
ほとんどなく、ウェハー全面にわたってむらのない均一
な高精度エツチング処理がなされた。
Example: An upper electrode with a diameter of 140tTan and a lower electrode with a diameter of 140mm that also serves as a workpiece mounting table! Single wafer automatic processing type plasma etching equipment OAPM arranged in parallel at 5om intervals
-301B (manufactured by Tokyo Ohka Kogyo Co., Ltd.), diameter 160+m
n, 2 holes in diameter and 1.5 holes in the ceramic plate of 2 brains.
A flat plate uniformly formed at a ratio of crl/crl was arranged parallel to the electrode plate at a position 30s+ below the upper electrode. 4
A workpiece on which a 1,000A silicon nitride film was formed on an inch silicon wafer was placed approximately in the center of the lower electrode surface, and carbon tetrafluoride gas containing 8% by weight of oxygen gas was used as the plasma processing gas. The degree of vacuum in the reaction chamber is 0.5TO.
rr, the silicon nitride film was plasma etched for 75 seconds with a high frequency oscillator output of 200 W. As a mask, a resist film of 0MR85 (trade name, manufactured by Tokyo Ohka Kogyo Co., Ltd.) with a thickness of 1 μm was used, and as a base layer, a resist film with a thickness of 1.00 μm was used.
Although an OA silicon dioxide layer was used, there was almost no reduction in the resist film, and uniform, high-precision etching processing was performed over the entire wafer surface.

窒化ケイ素膜のエツチング速度は800A 7分、また
下地層である二酸化ケイ素層のエツチング速度は300
A 7分であム窒化ケイ素膜との選択比は2.7でめっ
た。
The etching rate of the silicon nitride film was 800A for 7 minutes, and the etching rate of the underlying silicon dioxide layer was 300A.
A: In 7 minutes, the selectivity with respect to the silicon nitride film was 2.7.

比較のために、上記装置から多数の細孔を有する絶縁性
の平板を取り除いて、上記と同一条件でエツチング処理
を行ったところ、エツチング時間は67秒で十分でめっ
たが、レジスト膜は3.000A減少した。また、窒化
ケイ素膜及びホトレジスト膜のエツチング速度はそれぞ
れ900X/分及び2,700A/分で、選択比は0.
3であり、下地層のエツチング速度は600 A /分
で窒化ケイ素との選択比は1.5であった。
For comparison, when an insulating flat plate with many pores was removed from the above apparatus and etching was performed under the same conditions as above, the etching time was only 67 seconds, which was sufficient, but the resist film was only 3.5 seconds. 000A decreased. The etching rates of the silicon nitride film and the photoresist film were 900X/min and 2,700A/min, respectively, and the selectivity was 0.
3, the etching rate of the underlayer was 600 A/min, and the selectivity with respect to silicon nitride was 1.5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置の要部を示す側方断面図、第2図
は、絶縁性の平板の1例を示す平面図、第3図は絶縁性
の平板の別の例を示す平面図である。 図中符号1はベル型蓋部、2は底板、3は上部電極、4
は下部電極、5は多数の細孔を有する絶縁性の平板であ
る。 特許出願人 東京電子化学株式会社 代理人 阿 形  明 第1図 第2図 第3図
FIG. 1 is a side sectional view showing the main parts of the device of the present invention, FIG. 2 is a plan view showing one example of an insulating flat plate, and FIG. 3 is a plan view showing another example of an insulating flat plate. It is a diagram. In the figure, 1 is a bell-shaped lid, 2 is a bottom plate, 3 is an upper electrode, 4
5 is a lower electrode, and 5 is an insulating flat plate having many pores. Patent applicant: Tokyo Denshi Kagaku Co., Ltd. Agent Akira Agata Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 ■ レジストパターンを有する電子部品形成材料をプラ
ズマエッチフグ処理するに当り、下部電極上に、被処理
物を載置し、それに対向して上部電極を配置し、かつ両
極間に多数の細孔を有する絶縁性平板を介在させ上部電
極に高周波電圧を印加することを特徴とするプラズマエ
ツチング方法。 2 高周波電圧を印加する上部電極と、それに対向して
配置され、かつ被処理物が載置される下部電極を有する
平行平板型プラズマエツチング装置において、上記上部
電極と下部電極との間の空間に多数の細孔を有する11
!3R性の平板を配設したことを特徴とするプラズマエ
ツチング装置。 3 絶縁性平板がセラミックス板である特許請求の範囲
第2項記載の装置。
[Claims] ■ When performing plasma etch processing on an electronic component forming material having a resist pattern, the object to be processed is placed on the lower electrode, the upper electrode is placed opposite it, and the object is placed between the two electrodes. 1. A plasma etching method characterized by applying a high frequency voltage to an upper electrode with an insulating flat plate having a large number of pores interposed therebetween. 2. In a parallel plate plasma etching apparatus having an upper electrode for applying a high-frequency voltage and a lower electrode disposed opposite to the upper electrode and on which the object to be processed is placed, the space between the upper electrode and the lower electrode is 11 with many pores
! A plasma etching device characterized by having a 3R flat plate. 3. The device according to claim 2, wherein the insulating flat plate is a ceramic plate.
JP179283A 1983-01-11 1983-01-11 Method and device for plasma etching Granted JPS59126778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP179283A JPS59126778A (en) 1983-01-11 1983-01-11 Method and device for plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP179283A JPS59126778A (en) 1983-01-11 1983-01-11 Method and device for plasma etching

Publications (2)

Publication Number Publication Date
JPS59126778A true JPS59126778A (en) 1984-07-21
JPH0250197B2 JPH0250197B2 (en) 1990-11-01

Family

ID=11511424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP179283A Granted JPS59126778A (en) 1983-01-11 1983-01-11 Method and device for plasma etching

Country Status (1)

Country Link
JP (1) JPS59126778A (en)

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164433A (en) * 1986-12-26 1988-07-07 Matsushita Electric Ind Co Ltd Dry etching system
US5156703A (en) * 1987-03-18 1992-10-20 Hans Oechsner Mthod for the surface treatment of semiconductors by particle bombardment
DE10340751B4 (en) * 2002-08-28 2010-07-29 Kyocera Corp. Dry etching device, dry etching method and plate used therein
KR20140024316A (en) * 2011-03-14 2014-02-28 어플라이드 머티어리얼스, 인코포레이티드 Methods for etch of sin films
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9704723B2 (en) 2013-03-15 2017-07-11 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Cited By (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164433A (en) * 1986-12-26 1988-07-07 Matsushita Electric Ind Co Ltd Dry etching system
US5156703A (en) * 1987-03-18 1992-10-20 Hans Oechsner Mthod for the surface treatment of semiconductors by particle bombardment
DE10340751B4 (en) * 2002-08-28 2010-07-29 Kyocera Corp. Dry etching device, dry etching method and plate used therein
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
KR20140024316A (en) * 2011-03-14 2014-02-28 어플라이드 머티어리얼스, 인코포레이티드 Methods for etch of sin films
JP2014508424A (en) * 2011-03-14 2014-04-03 アプライド マテリアルズ インコーポレイテッド Etching method of SiN film
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9704723B2 (en) 2013-03-15 2017-07-11 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Also Published As

Publication number Publication date
JPH0250197B2 (en) 1990-11-01

Similar Documents

Publication Publication Date Title
JPS59126778A (en) Method and device for plasma etching
US5006220A (en) Electrode for use in the treatment of an object in a plasma
JP3275043B2 (en) Post-treatment method of etching
JPH05160076A (en) Dry etching device
JPS6210687B2 (en)
JPS58177472A (en) Reactive ion etching device
TW200828490A (en) Plasma treatment apparatus and plasma treatment method
JPS6247130A (en) Reactive ion etching device
JP2004319972A (en) Etching method and etching device
JPH0618182B2 (en) Dry etching equipment
JPH0760815B2 (en) Dry etching method
JPS5855569A (en) Plasma etching method
JPS6248759B2 (en)
JP3222620B2 (en) Discharge treatment equipment
JPH074718B2 (en) Electrostatic adsorption device
JPS59139628A (en) Dry etching device
JPH023294B2 (en)
JPS59172236A (en) Reactive ion etching device
JPH0691041B2 (en) Reactive sputter etching method
KR19980034188A (en) Lower electrode plate of semiconductor etching equipment
JPH09321128A (en) Electrostatic chuck device
JPH0344028A (en) Apparatus for plasma etching
JPH0517880Y2 (en)
JPS63107024A (en) Etching device
JP3073618B2 (en) Semiconductor manufacturing equipment