JPH01311812A - Three-phase batch type insulating spacer - Google Patents

Three-phase batch type insulating spacer

Info

Publication number
JPH01311812A
JPH01311812A JP63138451A JP13845188A JPH01311812A JP H01311812 A JPH01311812 A JP H01311812A JP 63138451 A JP63138451 A JP 63138451A JP 13845188 A JP13845188 A JP 13845188A JP H01311812 A JPH01311812 A JP H01311812A
Authority
JP
Japan
Prior art keywords
section
insulating spacer
flat
stress
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63138451A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoki
浩 青木
Hiroyuki Haneuma
洋之 羽馬
Hiroshi Yamamoto
宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63138451A priority Critical patent/JPH01311812A/en
Publication of JPH01311812A publication Critical patent/JPH01311812A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

PURPOSE:To simplify and compact a device further by projecting the whole to a protruding shape from a peripheral support section, forming a flat section to the upper section of the protuberance and supporting the flat section by a conductor. CONSTITUTION:The outer circumferential section of the protruding section 13 of an insulating spacer is supported to the flange section 12 of a tank 11 grounded. A flat section 17 is shaped to the upper section of the protruding section 13 while being connected to the protruding section 13, and conductors 14-16 are supported to the flat section 17. Since the protruding section 13 is formed, stress at a central section is reduced. Since the flat section 17 is shaped without forming a cone section as seen in conventional devices, the trouble of stress concentration is not caused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、三相一括形絶縁スペーサに関し、さらに詳
しくいうと、ガス絶縁開閉装置における高電圧導体の絶
縁支持またはガス区分に適用される三相一括形絶縁スペ
ーサに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a three-phase bulk type insulating spacer, and more specifically, a three-phase bulk type insulating spacer applied to insulating support of high voltage conductors or gas division in gas insulated switchgear. The present invention relates to a bulk type insulating spacer.

〔従来の技術〕[Conventional technology]

一般に、ガス絶縁変電所は、機器のコンパクト化の傾向
にあり、その観点からガス圧力の高圧化の適用が考えら
れ、さらK、高電圧導体の支持という点からも、よりコ
ンパクトな三相絶縁スペーサにおいて、より高い応力に
対して長期的に信頼性を保証できる機械的強度をもつこ
とが要求されてくる。
In general, gas-insulated substations tend to have more compact equipment, and from this point of view it is considered possible to apply higher gas pressure. Spacers are required to have mechanical strength that can guarantee long-term reliability against higher stress.

一方、電気的性能という点からは、上記九反して、一般
に絶縁スペーサにおいて、その厚みが薄い程よく、さら
に、組立および解体における作業性、注型の作業性およ
び製造コスト等の点からは、よりコンパクト、かつ、シ
ンプルな構造が要求される。
On the other hand, in terms of electrical performance, contrary to the above, in general, the thinner the insulating spacer, the better. A compact and simple structure is required.

従って、今後、絶縁スペーサにおいて、電気的性能およ
び各作業性を損うことなく、一方、より高い機械的強度
を有する構造のものが要求される。
Therefore, in the future, insulating spacers will be required to have a structure that has higher mechanical strength without impairing electrical performance and workability.

第9図、第10図は、例えば特公昭55−18824号
公報に記載された従来の三相一括形絶縁スペーサを示し
、図において、接地されているタンク(41)の7ラン
ジ部(42)に基盤部(43)が支持されている。この
基盤部(43)の凸側方向には4個のコーン部(44)
、(45’l、(4i、(5o)が突出形成されており
、コーン部(44’)、(45)、(46)のそれぞれ
に棒状の導体(47)、(48’)、(49)が支持さ
れている。
9 and 10 show a conventional three-phase all-in-one insulating spacer described in, for example, Japanese Patent Publication No. 55-18824. A base portion (43) is supported by the base portion (43). There are four cone parts (44) on the convex side of this base part (43).
, (45'l, (4i, (5o)) are formed protrudingly, and rod-shaped conductors (47), (48'), (49 ) is supported.

以上のように、従来の三相−話形絶縁スペーサは、基板
部(43)を盛りあげることにより、中央部での応力を
軽減し、かつ、この上に4個のコーン(44)〜(46
)、(50)を等配ツにすることにより、剛性の均一化
と増加を図っている。
As described above, the conventional three-phase conical insulating spacer reduces the stress in the central part by raising the substrate part (43), and the four cones (44) to ( 46
) and (50) are evenly distributed in order to equalize and increase the rigidity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の三相−話形絶縁スペーサは以上のように構成され
ているので、形状が複雑であり、注型における作業性が
悪く、製作コストが高くなり、また、凸状の基盤部(4
3)にさらに4個のコーン部(44)〜(46)、(5
0)を設けているため、必要以上に各導体間のピッチを
広げることとなり、サイズの増大につながる。さらに、
導体の長さ方向の占有容積が大きく、例えば、母線の組
立および解体時の作業性が急く、かつ、4個のコーン部
(44)へ−(46)、(so)の根元の、特に相間部
(第4図のX印)において、絶縁物の曲不半径が少さく
、応力集中しやすい構造となっており、また、剛性を均
一化するために、第4のコーン部(50)を余分に必要
としている等、多くの問題があった。
Since the conventional three-phase/channel type insulating spacer is constructed as described above, it has a complicated shape, poor workability in casting, high manufacturing cost, and a convex base (4
3), four more cone parts (44) to (46), (5
0), the pitch between each conductor is increased more than necessary, leading to an increase in size. moreover,
The volume occupied by the conductor in the longitudinal direction is large, and the workability is quick when assembling and disassembling the busbar, for example. (marked with X in Figure 4), the insulator has a small radius of bending, making it easy to concentrate stress, and in order to equalize the rigidity, a fourth cone part (50) is added. There were many problems, such as the need for extra equipment.

この発明は上記のような課題を解決するためになされた
もので、スペーサの形状を簡素化し、占有容積を削減し
、かつ、構造的にはほぼ対称性を持っており、剛性の均
一化の問題は付加的な構造を加えることなくほぼ解消さ
れ、さらに、中央部近傍での応力を軽減することができ
る三相−話形絶縁スペーサを得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it simplifies the shape of the spacer, reduces the occupied volume, has almost symmetrical structure, and makes the rigidity uniform. It is an object of the present invention to obtain a three-phase-cone-shaped insulating spacer in which the problem is substantially solved without adding any additional structure, and furthermore, the stress near the center can be reduced.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る三相−話形絶縁スペーサは、タンクのフ
ランジ部における支持部近傍より凸状に盛りあげた凸部
の上部に平坦部を設けた絶縁物からなり、前記平坦部の
部位で導体を支持している。
The three-phase, conical insulating spacer according to the present invention is made of an insulator that has a flat part on the top of a convex part that is raised from the vicinity of the support part in the flange part of the tank, and the conductor is connected to the flat part at the part of the flat part. is supported.

〔作 用〕[For production]

この発明においては、平坦部により構造が単純化され、
従来のコーン部での構造上の不均一、応力の集中が生じ
ない。
In this invention, the structure is simplified by the flat part,
There is no structural non-uniformity or stress concentration in the conventional cone part.

〔実施例〕〔Example〕

第1図、第2図はこの発明の実施例を示し、図にお(・
て、接地されているタンク(11)のフランジ部(12
’)K絶縁物の盛りあがり部(13)の外周辺が支持さ
れている。この盛りあがり部(13)K連接して、盛り
あがり部のL部に平坦部(17)が形成されており、平
坦部(17)に導体(14)〜(16)が支持されてい
る。
1 and 2 show embodiments of this invention, and the figures (
and the flange part (12) of the tank (11) which is grounded.
') The outer periphery of the raised portion (13) of the K insulator is supported. A flat part (17) is formed in the L part of the raised part in connection with the raised part (13), and the conductors (14) to (16) are supported on the flat part (17).

一般に、材料力学の知識より、第3図圧示すような周囲
を固定された円板(D)が、等分布荷重(P)を円板(
D)の水平面に対し垂直方向−\受けるときの応力分布
は、半径方向の応力を(σr)、これと直角方向の応力
を(σt)として、第4図に示す分布圧なることが知ら
れており、従い、ディスク形スベーザにおいては、中央
部または、周辺の支持部位において応力が増大し、これ
らの箇所における機械的強度が問題となる。さらに、特
に中央部においては、電気的性能上の制約から板厚を上
げることが難しく、板厚を上げることなく別な手段によ
る中央部での応力緩和対策が要求されてくる。
In general, from the knowledge of material mechanics, it is known that a disk (D) with a fixed circumference as shown in Fig. 3 will receive a uniformly distributed load (P) from the disk (
It is known that the stress distribution when the pressure is applied in the direction -\ perpendicular to the horizontal plane of D) is the distributed pressure shown in Figure 4, where the stress in the radial direction is (σr) and the stress in the direction perpendicular to this is (σt). Therefore, in the disk-shaped swazer, stress increases at the central portion or the peripheral support portions, and the mechanical strength at these portions becomes a problem. Furthermore, it is difficult to increase the plate thickness, especially in the central part, due to restrictions on electrical performance, and there is a need to take measures to relieve stress in the central part by other means without increasing the plate thickness.

まず、第9図、第10図に丞1〜だ従来のもののようK
、基盤部(43)を凸状に盛りあげた構造は、め 中央部の応力低減というXで効果があり、上記実施例に
おいても盛りあがり部(13)を形成したことにより、
ディスク形スペーサに比べ、中央部の応力を削減するこ
とを可能にしている。また、周辺の支持部位における応
力分布の不均一性については、従来のものでは基盤部(
43)上に形成されたコーン部(44)−(46)を設
けたために生じる構造上の不均一性を、第4のコーン部
(50)を形成して解消しているが、上記実施例におい
ては、平坦部(17)を設けており、構造的に不均一性
をもたらすコーン部は設けていないので、応力分布が必
然的に均一化される構造となっている。
First of all, in Figures 9 and 10, there are 1 to 1 K, like the conventional ones.
The structure in which the base part (43) is raised in a convex shape is effective in reducing the stress in the central part, and in the above embodiment, by forming the raised part (13),
Compared to disk-shaped spacers, it makes it possible to reduce stress in the center. In addition, regarding the non-uniformity of the stress distribution in the surrounding support parts, the conventional model
43) The structural non-uniformity caused by providing the cone parts (44) to (46) formed above is eliminated by forming the fourth cone part (50), but the above embodiment In this case, a flat part (17) is provided, and a cone part that causes structural non-uniformity is not provided, so that the stress distribution is inevitably made uniform.

また、前述したように、従来のものでは、特にコーン部
とコーン部の谷間(第9図のX印)において絶縁物の曲
率半径が小さく、その部位で応力集中を生じやすい構造
となっているが、上記実施例ではコーン部を設けること
なく、平坦部(17)としたため、上記応力集中の開院
は生じない。
In addition, as mentioned above, in the conventional structure, the radius of curvature of the insulator is small, especially in the valley between the cone parts (X mark in Figure 9), and stress concentration tends to occur in that part. However, in the above embodiment, since the cone portion was not provided and a flat portion (17) was provided, the stress concentration did not occur.

さらK、上記実施例においては、以上の応力的問題以外
に、平坦部(17)を設けたことにより、従来の構造の
問題点の一つである形状の複雑性に対し、以下の具体的
効果がある。まず従来は、基盤部(43)上にコーン部
(44)〜(46)、 (50)を形成したため、電気
的に必要以上に寸法(Lx) (第10図)を必要とし
ていたが、上記実施例の構造では、この寸法(L2)が
従来のものに比べ削減でき〔第2図寸法(Ll)”l、
組立および解体作業性を向上させることが可能となる。
Furthermore, in the above embodiment, in addition to the above-mentioned stress problem, by providing the flat part (17), the following specific problems can be solved with respect to the complexity of the shape, which is one of the problems of the conventional structure. effective. First, in the past, since the cone parts (44) to (46), (50) were formed on the base part (43), the dimension (Lx) (Fig. 10) was required to be larger than necessary electrically. In the structure of the embodiment, this dimension (L2) can be reduced compared to the conventional structure [Figure 2 dimension (Ll)"l,
It becomes possible to improve assembly and disassembly workability.

また、従来のものでは、4個のコーン部(44)〜(4
6’)、(50)を設けたため、構造上、このコーン部
を形成するために、ある一定以上の相関距離82 (第
9図)を必要としていたが、実用上の機器において、こ
れらのコーン部を設けることは、必然的に半径方向への
サイズの増加へつながる。この点で上記実施例では、コ
ーン部を設けず平担部(17)としたため、Sl〈S2
となり、よりコンパクトな設計が可能となる。
Moreover, in the conventional one, four cone parts (44) to (4
6') and (50), a certain correlation distance 82 (Fig. 9) was required to form this cone part due to the structure. Providing a section necessarily leads to an increase in size in the radial direction. In this respect, in the above embodiment, since the cone part was not provided and the flat part (17) was used, Sl<S2
This allows for a more compact design.

さらに前記したとおり、形状がコンパクト、かつ、シン
プル化された点で製造上、組立解体作業上および製造コ
ストの点での効果は大きなものがある。
Furthermore, as described above, the compact and simple shape has great effects in terms of manufacturing, assembly and disassembly work, and manufacturing costs.

なお、上記実施例では、製造、組立、解体およびコスト
等の実用上の長所を具現するために平担部(17)を設
けたが、これKより従来装置に比べ、相関の絶縁物の沿
面長が短かくなっている点、および従来装置のように基
盤部(43)全体が凸でなく、上記実施例では盛りあが
り部(13)の上部に平担部(17)を設けているため
に、この平担部(17”lKついては中央部の応力低減
効果を期待できない等の相違がある。
In the above embodiment, the flat part (17) is provided in order to realize practical advantages such as manufacturing, assembly, disassembly, and cost. The length is short, and unlike the conventional device, the entire base portion (43) is not convex, but in the above embodiment, a flat portion (17) is provided above the raised portion (13). , there are differences such as the fact that the flat part (17"lK) cannot be expected to have a stress reduction effect in the central part.

第5図、第6図は上記の問題をより緩和するための他の
実施例であり、盛りあがり部(23)に続く平坦部(2
7)K、この平坦部(27)の両側にそれぞれ突出した
バリヤ(28a ’> 、(29a )+ (30a 
)および(28b)、 (29b)、 (30b)が形
成されている。
FIGS. 5 and 6 show other embodiments to further alleviate the above problem, in which a flat part (23) following a raised part (23) is shown.
7) K, barriers (28a'>, (29a) + (30a) projecting on both sides of this flat part (27), respectively
), (28b), (29b), and (30b) are formed.

以上の構成により、相関の絶縁物の沿面長が、バリヤ(
28a)〜(30b)により長くとれ、電気的性能の向
上が図れ、かつ、平坦部(27)の補強も兼ね得る。さ
らに相関方向のストリーマの進展に対するバリヤ効果も
期待できる。
With the above configuration, the creepage length of the related insulator is
28a) to (30b) can be made longer, improve electrical performance, and also serve as reinforcement for the flat portion (27). Furthermore, a barrier effect against the progress of the streamer in the correlation direction can be expected.

第7図、第8図はさらに他の実施例を示し、盛りあがり
部(33)と平坦部(37)でなり、盛りあがり部(3
3)の周辺支持部近傍に、凸側のバリヤ(38a)およ
び凹側のバリヤ(38b)が一体に形成されている。
FIGS. 7 and 8 show still another embodiment, which includes a raised part (33) and a flat part (37), and has a raised part (33) and a flat part (37).
3), a convex barrier (38a) and a concave barrier (38b) are integrally formed near the peripheral support portion.

以上の構成により、バリヤ(38a)、(38b)が相
関に設けたバリヤと同様に作用し、さらK、実機運転時
におけるタンク(11)底面の異物の浮上抑制等の効果
も期待できる。
With the above configuration, the barriers (38a) and (38b) act in the same manner as the barriers provided in relation to each other, and further effects such as suppressing the floating of foreign matter on the bottom of the tank (11) during actual machine operation can be expected.

当然ながら、第5図、第6図におけるバリヤ(28a’
)〜(30a)、(28b)〜(30b)および第7図
、第8図におけるバリヤ(38a)(38b)を共に備
えた形状であっても、より電気的、機械的性能の向上を
図ることができる。
Naturally, the barrier (28a'
) to (30a), (28b) to (30b) and the barriers (38a) and (38b) in FIGS. 7 and 8, the electrical and mechanical performance is further improved. be able to.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、周辺支持部より全体
を凸状に盛りあげ、かつ、その上部に平坦部を設け、平
坦部で導体を支持したので、装置がよりシンプル、かつ
、コンパクトに製造でき、製造および組立、解体作業を
より容易にし、製造コストも低減でき、さらに、板厚を
厚くすることなく強度を増大し得るなどの効果がある。
As described above, according to the present invention, the entire area is raised in a convex shape from the peripheral support part, and a flat part is provided on the upper part, and the conductor is supported by the flat part, so that the device is simpler and more compact. This makes manufacturing, assembly, and disassembly operations easier, reduces manufacturing costs, and increases strength without increasing the thickness of the plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の一実施例のそれぞれ縦
断面図および横断面図、第3図(al 、 (b)は等
分布荷lが加わる円板を示す平面図と側断面図、第4図
は第3図におけ石応力分布線図、第5図および第6図は
他の実施例のそれぞれ縦断面図および横断f図、第7図
および第8図はさらに他の実施例のそれぞれ縦断面図お
よび横断面図、第9図および第10図は従来の三相−話
形絶縁スペーサのそれぞれ縦断面図および横断面図であ
る。 (11)・Φタンク、(12)・・フランジ部、(14
)、(15)、(16)・・導体、(13)、 (23
)。 (33)・φ盛りあがり部、(17)、(2’l、(3
7)拳・平坦部、(28a)〜(30a)、(28b)
〜(30b)。 (38a)、(38b)・・バリヤ。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人  曾 我 道 照1’:’l:j1.:1+4
.15.16  停停 悠4図 手続補正書 昭和63年12月12日
Figures 1 and 2 are longitudinal and cross-sectional views, respectively, of an embodiment of the present invention, and Figures 3 (al and 3) are plan views and side sectional views showing a disk to which a uniformly distributed load l is applied. , FIG. 4 is a stone stress distribution diagram in FIG. 3, FIGS. 5 and 6 are longitudinal sectional views and cross-sectional views of other embodiments, respectively, and FIGS. 7 and 8 are diagrams of still other embodiments. FIGS. 9 and 10 are longitudinal and cross-sectional views, respectively, of a conventional three-phase wire-shaped insulating spacer. (11) Φ tank, (12) ...Flange part, (14
), (15), (16)...conductor, (13), (23
). (33)・φ raised part, (17), (2'l, (3
7) Fist/flat part, (28a) to (30a), (28b)
~(30b). (38a), (38b)... Barrier. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Zeng Wa Dao Teru1':'l:j1. :1+4
.. 15.16 Sutakuyu 4 drawing procedure amendment document December 12, 1988

Claims (1)

【特許請求の範囲】[Claims] 絶縁体でなり、高電圧導体を接地されたタンク内に保持
するための三相一括形絶縁スペーサにおいて、前記タン
クのフランジ部で支持される周辺部近傍より凸状に盛り
あげられた盛りあがり部と、この盛りあがり部に連続し
て形成された三相の前記導体を支持する平坦部とを備え
てなる三相一括形絶縁スペーサ。
In a three-phase bulk type insulating spacer made of an insulator and used to hold a high voltage conductor in a grounded tank, a raised part that is raised in a convex shape from the vicinity of a peripheral part supported by a flange part of the tank; A three-phase all-in-one insulating spacer comprising: a flat portion that supports the three-phase conductors formed continuously on the raised portion;
JP63138451A 1988-06-07 1988-06-07 Three-phase batch type insulating spacer Pending JPH01311812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138451A JPH01311812A (en) 1988-06-07 1988-06-07 Three-phase batch type insulating spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138451A JPH01311812A (en) 1988-06-07 1988-06-07 Three-phase batch type insulating spacer

Publications (1)

Publication Number Publication Date
JPH01311812A true JPH01311812A (en) 1989-12-15

Family

ID=15222318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138451A Pending JPH01311812A (en) 1988-06-07 1988-06-07 Three-phase batch type insulating spacer

Country Status (1)

Country Link
JP (1) JPH01311812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328600A (en) * 2004-05-13 2005-11-24 Mitsubishi Electric Corp Enclosed switchgear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328600A (en) * 2004-05-13 2005-11-24 Mitsubishi Electric Corp Enclosed switchgear

Similar Documents

Publication Publication Date Title
US3962609A (en) Voltage transformer for a completely insulated high-voltage installation
JP3549499B2 (en) Semiconductor integrated circuit device, D / A converter, and A / D converter
JPH01311812A (en) Three-phase batch type insulating spacer
EP1049175B1 (en) Reverse conducting thyristor, mechanical contact semiconductor device, and semiconductor substrate
JPS5947926B2 (en) Gas sealed switchgear
JP3161027B2 (en) Gas insulated current transformer
JPH0245334B2 (en)
JPS5999769A (en) Semiconductor device
US3793477A (en) Condenser bushing having displaced gaps between conducting layers
JPH0721983B2 (en) Circuit switchgear
JPH0242017Y2 (en)
JPH0650973Y2 (en) Gas insulated electromagnetic induction equipment
JP3413045B2 (en) Support insulator
JP2000021276A (en) Vacuum circuit breaker
JPH1169581A (en) Gas-insulated bus and gas-insulated switchgear
JPH02280610A (en) Insulating spacer
JPS6016818B2 (en) Three phase insulation spacer
JPH071772Y2 (en) Stationary induction
JPH03222621A (en) Gas-insulated spacer
JPS62195174A (en) Thyristor
RU1820972C (en) Span of aerial transmission line
JPS5975527A (en) Vacuum switching device
JPS6359712A (en) Three-phase insulating spacer
JP2626187B2 (en) Internal partitioning equipment for stationary electrical equipment
JPH0223048Y2 (en)