JPS6359712A - Three-phase insulating spacer - Google Patents

Three-phase insulating spacer

Info

Publication number
JPS6359712A
JPS6359712A JP20071986A JP20071986A JPS6359712A JP S6359712 A JPS6359712 A JP S6359712A JP 20071986 A JP20071986 A JP 20071986A JP 20071986 A JP20071986 A JP 20071986A JP S6359712 A JPS6359712 A JP S6359712A
Authority
JP
Japan
Prior art keywords
insulating spacer
phase
cone
plate thickness
phase conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20071986A
Other languages
Japanese (ja)
Other versions
JPH0480611B2 (en
Inventor
雅文 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20071986A priority Critical patent/JPS6359712A/en
Publication of JPS6359712A publication Critical patent/JPS6359712A/en
Publication of JPH0480611B2 publication Critical patent/JPH0480611B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Installation Of Bus-Bars (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は密閉式ガス絶縁開閉装置に使用される三相絶縁
スペーサの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an improvement of a three-phase insulating spacer used in a closed gas insulated switchgear.

(従来の技術) 一般にガス絶縁開閉装置はたとえばSFsF2ガス絶縁
耐力の高いガスを金属密閉容器内に圧縮封入したもので
あり、機器の小形化をはかり、絶縁耐力の向上を目ざす
為、ますますガスを高圧縮化し使用する傾向にある。そ
の為、これに共通されるガス区分および導体支持の目的
で使用される絶縁スペーサは、高い圧力条件下でも十分
な強度を有することが要求される。
(Prior art) Generally, gas insulated switchgear is made by compressing and sealing a gas with high dielectric strength, such as SFsF2 gas, in a metal sealed container. There is a tendency to use high compression. Therefore, insulating spacers commonly used for the purpose of gas division and conductor support are required to have sufficient strength even under high pressure conditions.

従来の三相絶縁スペーサの一例を第3図(a)。FIG. 3(a) shows an example of a conventional three-phase insulating spacer.

(b)に示している。コーン状の基板部1に3本の導体
2を支持するためのコーン部3.4.5が配置され、タ
ンク6のフランジ部7で固定されている。一般的に、半
径がR9板厚がTの平板状の絶縁スペーサに圧力Pが負
荷されたときその中央部で得られる最大応力σlaXは
、 araay、 a:P (R/T) 2で与えられる。
Shown in (b). A cone portion 3.4.5 for supporting three conductors 2 is arranged on the cone-shaped substrate portion 1, and is fixed by a flange portion 7 of a tank 6. Generally, when a pressure P is applied to a flat insulating spacer with a radius of R and a thickness of T, the maximum stress σlaX obtained at the center is given by araay, a:P (R/T) 2 .

R/Tの2乗に比例し、この関係は最大応力σ1IIa
xがR/Tの2乗に比例するという関係はコーン形状の
絶縁スペーサにおいても同様なことが言える。
It is proportional to the square of R/T, and this relationship is the maximum stress σ1IIa
The relationship that x is proportional to the square of R/T also applies to cone-shaped insulating spacers.

(発明が解決しようとする問題点) 上記の関係から絶縁スペーサの機械的強度を高めて高い
圧力条件下で使用するには、板厚Tを増加させ、かつ半
径Rを減少させれば十分な機械的強度が得られると考え
られるが、電気的特性の点から上記のように板厚Tを増
加させ、かつ半径Rを減少させるには困難が生じる。
(Problem to be solved by the invention) From the above relationship, in order to increase the mechanical strength of the insulating spacer and use it under high pressure conditions, it is sufficient to increase the plate thickness T and decrease the radius R. Although it is thought that mechanical strength can be obtained, it is difficult to increase the plate thickness T and decrease the radius R as described above from the viewpoint of electrical properties.

また、第3図のように絶縁スペーサの中央部に最大応力
σIaXが生ずるため、三相絶縁スペーサでは中央部あ
るいはコーン部3とコーン部4,5の谷間で幾何学的非
対称及び基板部1とコーン部3〜5の剛性の差により局
部的な応力集中が生ずる。これは導体2が支持されるコ
ーン部3〜5が二等辺三角形の頂点に配置されていて幾
何学的非対称に形成されているからであり、このため第
4図(a)、(b)に示すように対称性を持たせて局部
的な応力集中を防止するようにしたものが先に出願され
ている。すなわち、第4図は4個のコーン部11.12
.13.14を等配置し、これらのうちコーン部14を
除きコーン部11,12゜13において導体を支持させ
るように埋込金属を設けるようにしたものである。しか
しながら、第4図の場合には導体支持に使用される剛性
の高い埋込金属15を有するコーン部11.12.13
と導体支持に使用されないコーン部14では剛性に差が
生じる為、剛性の非対称性による応力集中が生じること
になる。
In addition, as shown in Fig. 3, the maximum stress σIaX occurs at the center of the insulating spacer, so in the three-phase insulating spacer, geometric asymmetry occurs at the center or between the cone portions 3 and the cone portions 4 and 5. Local stress concentration occurs due to the difference in rigidity between the cone portions 3 to 5. This is because the cone parts 3 to 5 on which the conductor 2 is supported are arranged at the vertices of an isosceles triangle and are formed geometrically asymmetrically. As shown in the figure, an application has been previously filed in which the structure is symmetrical and prevents local stress concentration. That is, FIG. 4 shows four cone portions 11 and 12.
.. 13 and 14 are equally arranged, and embedded metal is provided in the cone parts 11, 12 and 13 except for the cone part 14 so as to support the conductor. However, in the case of FIG.
Since there is a difference in rigidity between the cone portion 14 which is not used for supporting the conductor, stress concentration occurs due to the asymmetry in rigidity.

そこで、本発明は板厚を厚くすることなく、機械的強度
の高い三相絶縁スペーサを提供することを目的とする。
Therefore, an object of the present invention is to provide a three-phase insulating spacer with high mechanical strength without increasing the plate thickness.

(発明の構成) (問題点を解決しようとする問題点) 本発明は上記目的を達成するため、絶縁性ガスが充填さ
れた管路内部に三相導体を配置し、上記管路相互間を互
いに連結区分し、上記管路内に配置された三相導体を支
持する三相絶縁スペーサにおいて、冠状の基板部と、こ
の基板部の周縁に配置され上記管路のに連結するための
フランジ部とが一体に形成されるとともに、上記基板部
の底面中央に断面が凸状に隆起した隆起部を有し、この
隆起部をのぞく基板部の底面に上記三相導体が貫通固定
され、かつ上記隆起部の中央の板厚が、上記フランジ部
と基板部との連結部近傍の板厚より厚くしたことを特徴
とするものである。
(Structure of the invention) (Problems to be solved) In order to achieve the above object, the present invention arranges a three-phase conductor inside a conduit filled with insulating gas, and connects the conduit between each other. A three-phase insulating spacer that connects and sections each other and supports three-phase conductors arranged in the conduit, comprising: a crown-shaped substrate part; and a flange part arranged at the periphery of this substrate part and connected to the conduit. are integrally formed, and have a raised part with a convex cross section in the center of the bottom surface of the board part, and the three-phase conductor is fixed through the bottom face of the board part except for this raised part, and The plate thickness at the center of the raised portion is thicker than the plate thickness near the connecting portion between the flange portion and the base plate portion.

(作用) 上記構成によれば、板厚を厚くすることなく強度の高い
三相絶縁スペーサが得られる。
(Function) According to the above configuration, a three-phase insulating spacer with high strength can be obtained without increasing the plate thickness.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明による三相絶縁スペーサの一実施例を示
す断面図で、これは基板部Bとフランジ部Fとから構成
されている。基板部Bは全体として冠状であって、この
基板部Bの周縁に配置され管路20に連結するためのフ
ランジ部Fとが一体に形成されるとともに、上記基板部
8の底面中央に断面が凸状に隆起した隆起部21を有し
、この隆起部21をのぞく基板部Bの底面に埋込金具2
2とともに三相導体23が貫通固定され、かつ上記隆起
部21の中央の板厚が、上記フランジ部Fと基板部8と
の連結部近傍の板厚より厚くしたタンク20のフランジ
部24で固定されている。
FIG. 1 is a cross-sectional view showing one embodiment of the three-phase insulating spacer according to the present invention, which is composed of a substrate portion B and a flange portion F. The base plate B has a crown shape as a whole, and is integrally formed with a flange F disposed around the periphery of the base base B for connecting to the conduit 20, and has a cross section at the center of the bottom surface of the base plate 8. It has a raised part 21 which is raised in a convex shape, and an embedded metal fitting 2 is installed on the bottom surface of the substrate part B excluding this raised part 21.
2, a three-phase conductor 23 is fixed through the tank 20, and the thickness at the center of the raised portion 21 is thicker than the thickness near the connecting portion between the flange portion F and the substrate portion 8. has been done.

更に上記コーン部(第4図の11.12.13に相当す
る)の埋込金具22の剛性と同等となるようにコーン部
25の部の板厚が厚くされている。
Further, the thickness of the cone portion 25 is increased so that the rigidity of the embedded metal fitting 22 of the cone portion (corresponding to 11, 12, 13 in FIG. 4) is equal to that of the cone portion.

このような構成となっているので局部的な集中応力が分
散し、破壊強度が高くスペーサ端部の不必要な板厚の増
加がない。このことは第2図(a)、(b)に示す応力
分布図から明らかであり、(a)は第4図に示す先願の
場合の例であり、(b)は本発明の場合である。図中2
6.27はベクトルであり、28.29は圧縮力であり
、30.31は引張力である。この図から本願は先願も
のに比べて、基板部Bの中央部の応力集中がなくなり、
基板部B全体に応力の分散化が図れ、これにより破壊強
度が向上する。
With this configuration, local concentrated stress is dispersed, the fracture strength is high, and there is no unnecessary increase in plate thickness at the end of the spacer. This is clear from the stress distribution diagrams shown in FIGS. 2(a) and (b), where (a) is an example of the case of the prior application shown in FIG. 4, and (b) is an example of the case of the present invention. be. 2 in the diagram
6.27 is the vector, 28.29 is the compressive force, and 30.31 is the tensile force. This figure shows that the stress concentration in the center of the substrate part B is reduced in the present application compared to the earlier application.
Stress can be distributed over the entire substrate portion B, thereby improving fracture strength.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、絶縁性ガスが充填された管
路内部に三相導体を配置し、上記管路相互間を互いに連
結区分し、上記管路内に配置された三相導体を支持する
三相絶縁スペーサにおいて、冠状の基板部と、この基板
部の周縁に配置され上記管路に連結するためのフランジ
部とが一体に形成されるとともに、上記基板部の底面中
央に断面が凸状に隆起した隆起部を有し、この隆起部を
のぞく基板部の底面に上記三相導体が貫通固定され、か
つ上記隆起部の中央の板厚が、上記フランジ部と基板部
との連結部近傍の板厚より厚くしたので、板厚を厚くす
ることなく、強度の高い三相絶縁スペーサを提供できる
According to the present invention described above, a three-phase conductor is disposed inside a conduit filled with an insulating gas, the conduits are interconnected and sectioned, and the three-phase conductor disposed within the conduit is connected to each other. In the supporting three-phase insulating spacer, a crown-shaped substrate portion and a flange portion disposed around the periphery of the substrate portion for connecting to the pipe line are integrally formed, and a cross section is formed at the center of the bottom surface of the substrate portion. The three-phase conductor has a convexly raised part, and the three-phase conductor is fixed through the bottom surface of the board part except for this raised part, and the plate thickness at the center of the raised part is the connection between the flange part and the board part. Since the plate thickness is made thicker than the plate thickness near the part, a high-strength three-phase insulating spacer can be provided without increasing the plate thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による三相絶縁スペーサの一実施例を示
す横断面図、第2図は同実施例の作用を説明するための
応力分布図、第3図(a)。 (b)は従来の三相絶縁スペーサの一例を示す縦断面お
よび横断面図、第4図は先願の三相絶縁スペーサの一例
を示す縦断面図および横断面図である。 B・・・基板部、F・・・フランジ部、20・・・タン
ク、21・・・隆起部、22・・・埋込金具、23・・
・三相導体、24・・・フランジ、25・・・コーン部
。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 (a) (a) 手続補正書 牡   霜?、1もj?了 ヨ
FIG. 1 is a cross-sectional view showing an embodiment of a three-phase insulating spacer according to the present invention, FIG. 2 is a stress distribution diagram for explaining the action of the embodiment, and FIG. 3(a). (b) is a vertical cross-sectional view and a cross-sectional view showing an example of a conventional three-phase insulating spacer, and FIG. 4 is a vertical cross-sectional view and a cross-sectional view showing an example of the three-phase insulating spacer of the prior application. B... Board part, F... Flange part, 20... Tank, 21... Raised part, 22... Embedded metal fitting, 23...
・Three-phase conductor, 24...flange, 25...cone part. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 (a) (a) Written amendment? , 1 is also j? Completed yo

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性ガスが充填された管路内部に三相導体を配
置し、上記管路相互間を互いに連結区分し、上記管路内
に配置された三相導体を支持する三相絶縁スペーサにお
いて、冠状の基板部と、この基板部の周縁に配置され上
記管路に連結するためのフランジ部とが一体に形成され
るとともに、上記基板部の底面中央に断面が凸状に隆起
した隆起部を有し、この隆起部をのぞく基板部の底面に
上記三相導体が貫通固定され、かつ上記隆起部の中央の
板厚が、上記フランジ部と基板部との連結部近傍の板厚
より厚くしたことを特徴とする三相絶縁スペーサ。
(1) A three-phase insulating spacer that arranges a three-phase conductor inside a conduit filled with insulating gas, connects and sections the conduits, and supports the three-phase conductor placed within the conduit. A crown-shaped base plate and a flange disposed on the periphery of the base plate for connecting to the pipe are integrally formed, and a bulge having a convex cross section is formed at the center of the bottom surface of the base plate. The three-phase conductor is fixed through the bottom surface of the board part except for this raised part, and the plate thickness at the center of the raised part is greater than the plate thickness near the connection part between the flange part and the board part. A three-phase insulating spacer characterized by being thick.
(2)基板部の底面において、この隆起部を除く部分に
4個のコーン部を等間隔に形成し、このコーン部のうち
の1個をのぞく3個に上記三相導体を貫通固定し、上記
各コーン部の剛性が同等となるようにコーン部の板厚を
変えたことを特徴とする三相絶縁スペーサ。
(2) forming four cone parts at equal intervals on the bottom surface of the substrate part except for the raised part, and fixing the three-phase conductor through three of the cone parts except for one; A three-phase insulating spacer characterized in that the plate thickness of each cone part is changed so that the rigidity of each cone part is the same.
JP20071986A 1986-08-27 1986-08-27 Three-phase insulating spacer Granted JPS6359712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20071986A JPS6359712A (en) 1986-08-27 1986-08-27 Three-phase insulating spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20071986A JPS6359712A (en) 1986-08-27 1986-08-27 Three-phase insulating spacer

Publications (2)

Publication Number Publication Date
JPS6359712A true JPS6359712A (en) 1988-03-15
JPH0480611B2 JPH0480611B2 (en) 1992-12-21

Family

ID=16429064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20071986A Granted JPS6359712A (en) 1986-08-27 1986-08-27 Three-phase insulating spacer

Country Status (1)

Country Link
JP (1) JPS6359712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271344A (en) * 1989-09-18 1993-12-21 Mitsubishi Denki K.K. Method and apparatus for controlling an automatic sewing machine
WO2008022892A1 (en) * 2006-08-23 2008-02-28 Siemens Aktiengesellschaft Arrangement with a disc insulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260948A (en) * 1975-11-14 1977-05-19 Fuji Electric Co Ltd Spacer for/3-phase package sealed type make and break equipment
JPS5518824A (en) * 1978-07-27 1980-02-09 Tokyo Shibaura Electric Co Threeephase insulating spacer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260948A (en) * 1975-11-14 1977-05-19 Fuji Electric Co Ltd Spacer for/3-phase package sealed type make and break equipment
JPS5518824A (en) * 1978-07-27 1980-02-09 Tokyo Shibaura Electric Co Threeephase insulating spacer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271344A (en) * 1989-09-18 1993-12-21 Mitsubishi Denki K.K. Method and apparatus for controlling an automatic sewing machine
WO2008022892A1 (en) * 2006-08-23 2008-02-28 Siemens Aktiengesellschaft Arrangement with a disc insulator

Also Published As

Publication number Publication date
JPH0480611B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
JPS6311016A (en) Gas insulated switchgear
JPS6359712A (en) Three-phase insulating spacer
CN210535391U (en) Resistance to compression type wire and cable
JPS6015376Y2 (en) Insulator mounting structure for gas insulated electrical equipment
JPS59107526U (en) Spacer fixing structure for gas insulated equipment
JPS6016818B2 (en) Three phase insulation spacer
JPS6392212A (en) Insulating spacer
JPH0130830Y2 (en)
JPH0828930B2 (en) Corn type insulation spacer
JPH0126057Y2 (en)
JPS59159131U (en) Seal structure at terminal connection of CV cable
JPS6277813A (en) High pressure conductor supporting device
JPS6093407U (en) Container connections for gas-insulated electrical equipment
JPS58159176U (en) Airtight terminal for submerged pump
JPS60163804U (en) Multilayer transmission line structure
JPS63254686A (en) Conductor module
JPS6248009A (en) Winding support device of transformer
JPS59169531U (en) Connection device for gas insulated electrical equipment
JPS58166229U (en) gas insulated electrical equipment
JPS6025327U (en) Sealed containers for gas insulated electrical equipment
JPS59111421U (en) Connection spacer for insulated conduit
JPS6277811A (en) Insulating spacer
JPS60108117U (en) gas insulated switchgear
JPS583716U (en) gas insulated electrical equipment
JPS58139613U (en) butsing

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term