JPS6392212A - Insulating spacer - Google Patents

Insulating spacer

Info

Publication number
JPS6392212A
JPS6392212A JP61234331A JP23433186A JPS6392212A JP S6392212 A JPS6392212 A JP S6392212A JP 61234331 A JP61234331 A JP 61234331A JP 23433186 A JP23433186 A JP 23433186A JP S6392212 A JPS6392212 A JP S6392212A
Authority
JP
Japan
Prior art keywords
stress
embedded
insulating spacer
counterbore
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61234331A
Other languages
Japanese (ja)
Other versions
JPH0720328B2 (en
Inventor
保田 邦昭
澄川 俊雄
高橋 秀像
孝一 ▲吉▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61234331A priority Critical patent/JPH0720328B2/en
Publication of JPS6392212A publication Critical patent/JPS6392212A/en
Publication of JPH0720328B2 publication Critical patent/JPH0720328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は絶縁ガスとともに充電部を収納したガス絶縁母
線等のガス絶縁開閉装置の例えば母線導体等を接続支持
する絶縁スペーサに関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to an insulating spacer for connecting and supporting, for example, a bus conductor of a gas insulated switchgear such as a gas insulated bus bar, which houses a live part together with an insulating gas. Regarding.

(従来の技術) ガス絶縁電気機器は、しゃ断器や断路器等の電気機器を
絶縁ガスが充填された金属容器内に収納して構成され、
容器相互間の接続部には絶縁スペーサが設けられて容器
相互間のガス区分が図られている。この場合絶縁スペー
サはそのフランジ部が隣接する金属容器のフランジ部間
に挟まれるように配置され、金属容器のフランジ部及び
絶縁スペーサを貫通するボルトにより締め付けられてい
る0例えば第4図(A)及び(B)は、一般に用いられ
ている絶縁スペーサの一例を示したもので、この絶縁ス
ペーサ1は、中央寄りの位置に導体接続部2を支持する
膨出部3を有し、周辺のフランジ部4にボルトを螺入ま
たは貫通させるための埋込金具5,5.・・・を有して
いる。このような絶縁スペーサ1は一般に埋込金具5と
絶縁主体1bとをエポキシ樹脂で一体注形し所定温度で
加熱硬化して製作される。しかし、絶縁スペーサ1の注
形後の冷却段階において、埋込金具5と絶縁主体1bと
の間の接触面に界面剥a現象が発生する恐れがある。
(Prior Art) Gas-insulated electrical equipment is constructed by housing electrical equipment such as circuit breakers and disconnectors in a metal container filled with insulating gas.
Insulating spacers are provided at the connections between the containers to separate the gases between the containers. In this case, the insulating spacer is arranged so that its flange part is sandwiched between the flange parts of adjacent metal containers, and is tightened with a bolt passing through the flange part of the metal container and the insulating spacer. and (B) show an example of a generally used insulating spacer. This insulating spacer 1 has a bulge 3 that supports a conductor connection part 2 at a position near the center, and a peripheral flange. Embedded fittings 5, 5 for screwing or penetrating bolts into portion 4; ···have. Such an insulating spacer 1 is generally manufactured by integrally molding the embedded fitting 5 and the insulating main body 1b with epoxy resin, and heating and curing the resin at a predetermined temperature. However, in the cooling stage after casting the insulating spacer 1, there is a possibility that interfacial peeling phenomenon may occur at the contact surface between the embedded fitting 5 and the insulating main body 1b.

この界面剥離は特に埋込金具5と絶縁主体1bの線膨張
係数の相違(約1.5〜2倍)によるものである。
This interfacial peeling is caused in particular by the difference in coefficient of linear expansion between the embedded fitting 5 and the insulating main body 1b (approximately 1.5 to 2 times).

また、界面剥離の存在は、例えば曲げ等の機械的外力に
より界面剥離が進展し、さらには、第4図(A)の二点
鎖線で示すa部及びb部をそれぞれ拡大して示した第5
図(A)及び(B)のように、埋込金具5を中心にクラ
ック6が生じることもあり、その結果絶縁スペーサ1の
強度を低下させる恐れがある。そこで、化学処理により
埋込金具5と絶縁主体1bとの接触面における接着性を
高めて界面剥離及び界面剥離の進展を抑える方法等が試
みられているが、信頼性の点で未だ問題がある。
In addition, the presence of interfacial peeling is caused by the progress of interfacial peeling due to mechanical external forces such as bending, and furthermore, the presence of interfacial peeling is caused by the progress of interfacial peeling due to mechanical external forces such as bending, and furthermore, the presence of interfacial peeling is caused by the progress of interfacial peeling due to mechanical external forces such as bending. 5
As shown in FIGS. (A) and (B), cracks 6 may occur around the embedded metal fitting 5, which may reduce the strength of the insulating spacer 1. Therefore, attempts have been made to improve the adhesion at the contact surface between the embedded fitting 5 and the insulating main body 1b through chemical treatment to suppress the interfacial peeling and the progress of interfacial peeling, but there are still problems in terms of reliability. .

(発明が解決しようとする問題点) 以上のように、従来の絶縁スペーサ1においては、フラ
ンジ部4の埋込金具5と絶縁主体lb間に界面剥離を生
じ強度が低下する恐れがあった。
(Problems to be Solved by the Invention) As described above, in the conventional insulating spacer 1, interfacial peeling may occur between the embedded metal fitting 5 of the flange portion 4 and the insulating main body lb, resulting in a decrease in strength.

本発明は上記欠点を除去し、熱応力等により埋込金具と
絶縁主体部との間に発生する剥離応力を低減して、長期
信頼性の高いガス絶縁電気機器用絶縁スペーサを提供す
ることを目的とする。
The present invention aims to eliminate the above-mentioned drawbacks, reduce the peeling stress generated between the embedded metal fitting and the insulating main body due to thermal stress, etc., and provide an insulating spacer for gas-insulated electric equipment that has high long-term reliability. purpose.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために本発明においては、埋込金具
の少なくとも一端面に座ぐりを施している。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, at least one end surface of the embedded metal fitting is provided with a counterbore.

(作用) このように構成することにより、埋込金具の端面近傍の
変形が容易となり絶縁主体との間に剥離を生じることが
ない。
(Function) With this configuration, the vicinity of the end face of the embedded fitting is easily deformed, and separation from the insulating body does not occur.

(実施例) 本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

絶縁スペーサ1は、略第4図(A)、 (B)に示され
たものと同様であり、絶縁主体1bの周辺部に埋込金具
部5を略同一円周上に複数個一体性形し絶縁スペーサ1
のフランジ部4に埋込まれた各埋込金具5には、座ぐり
加工が施こされている。即ち、埋込金具5は厚さHの略
円柱状に形成し、その中央部にボルト挿通用の孔を設け
ている。また、埋込金具5の両端面には深さtの座ぐり
7を施こしている。さらに、座ぐり7の深さtは機械的
強度上埋込金具5の厚さHの10〜30%にすることが
望ましく、座ぐり7部分の埋込金具の肉厚は埋込金具5
直径の10%程度に設定することが望ましい。
The insulating spacer 1 is approximately the same as that shown in FIGS. 4(A) and 4(B), and has a plurality of embedded metal fittings 5 on approximately the same circumference around the insulating main body 1b. Insulating spacer 1
Each of the embedded metal fittings 5 embedded in the flange portion 4 of is subjected to counterbore processing. That is, the embedded metal fitting 5 is formed into a substantially cylindrical shape with a thickness H, and a hole for inserting a bolt is provided in the center thereof. Also, counterbores 7 with a depth t are provided on both end surfaces of the embedded metal fitting 5. Further, it is desirable that the depth t of the counterbore 7 is 10 to 30% of the thickness H of the embedded metal fitting 5 in terms of mechanical strength, and the wall thickness of the embedded metal fitting 5 at the counterbore 7 portion is
It is desirable to set it to about 10% of the diameter.

尚、本実施例においては座ぐり7を埋込金具5の両端面
に施しているけれども、一端面にのみ施しても良い。
Although the counterbore 7 is provided on both end surfaces of the embedded fitting 5 in this embodiment, it may be provided on only one end surface.

今、製造工程時における樹脂硬化時の温度低下に伴う絶
縁スペーサ1に発生する熱応力による影響を考えてみる
。このとき、接触面8の端部では埋込金具5と絶縁主体
1bと線膨張係数の相違により大きな引張り力即ち剥離
応力が発生する。
Let us now consider the influence of thermal stress generated in the insulating spacer 1 due to the temperature drop during resin curing during the manufacturing process. At this time, a large tensile force, that is, peeling stress, is generated at the end of the contact surface 8 due to the difference in linear expansion coefficient between the embedded fitting 5 and the insulating main body 1b.

もし、埋込金具5に座ぐり7を設けないとすれば接触面
8上の応力は直線的に変化し、接触面8の上下端で最大
となる。しかし、埋込金具5に座ぐり7を設けることに
より、最大応力が発生していた接触面8の上下端の変形
は容易となり、この場所での応力が減少する。このこと
を第4図に示す応力分布の解析図を用いて説明する。
If the counterbore 7 is not provided in the embedded fitting 5, the stress on the contact surface 8 changes linearly and becomes maximum at the upper and lower ends of the contact surface 8. However, by providing the counterbore 7 in the embedded metal fitting 5, the upper and lower ends of the contact surface 8, where the maximum stress was generated, can be easily deformed, and the stress at these locations is reduced. This will be explained using the stress distribution analysis diagram shown in FIG.

第2図は接触面8上の剥離応力の分布を示し、横軸には
剥離応力S、縦軸には接触面8の埋込金具5の厚さH方
向の−を夫々とり、更に原点は引張が生じない埋込金具
5の厚さ方向の中点にとっている。また、破線は座ぐり
7を設けない場合の剥離応力の分布であり実線は座ぐり
7をもうけた場合の剥離応力の分布である。
FIG. 2 shows the distribution of peeling stress on the contact surface 8, where the horizontal axis shows the peeling stress S, the vertical axis shows - in the direction of the thickness H of the embedded fitting 5 on the contact surface 8, and the origin is The center point in the thickness direction of the embedded metal fitting 5 is set where no tension occurs. Further, the broken line is the distribution of peeling stress when the counterbore 7 is not provided, and the solid line is the distribution of the peeling stress when the counterbore 7 is provided.

座ぐり7を設けない場合の剥離応力は埋込金具5の厚さ
方向の変化と共に直線的に変化し、接触面8の上下端で
最大剥離応力S1となる。一方。
The peeling stress in the case where the counterbore 7 is not provided varies linearly with the change in the thickness direction of the embedded fitting 5, and reaches the maximum peeling stress S1 at the upper and lower ends of the contact surface 8. on the other hand.

座ぐり7を設けた場合の剥離応力は、厚さ方向に曲線的
に変化し、接触面8の上下端においてS。
When the counterbore 7 is provided, the peeling stress changes in a curved manner in the thickness direction, and reaches S at the upper and lower ends of the contact surface 8.

となる、 しかし、この場合の最大剥離応力S2の発生
域は、接触面8の上下端ではなく、座ぐり7の深さtに
ほぼ等しい場所である。また、この場合の最大剥離応力
S、は、座ぐり7を設けない場合の最大剥離応力S1に
比べ減少している。
However, in this case, the region where the maximum peeling stress S2 occurs is not at the upper and lower ends of the contact surface 8, but at a location approximately equal to the depth t of the counterbore 7. Further, the maximum peel stress S in this case is smaller than the maximum peel stress S1 in the case where the counterbore 7 is not provided.

つまり、埋込金具5の接触面8に座ぐり7を設けること
により、最大剥離応力が発生していた接触面8の上下端
の変形が容易となり、この部分の応力が軽減される。結
果的に座ぐり7の深さ位置での変位に対する拘束が一番
大きなものとなり、ここでの剥離応力が最大となる。
That is, by providing the counterbore 7 in the contact surface 8 of the embedded metal fitting 5, the upper and lower ends of the contact surface 8, where the maximum peeling stress has occurred, can be easily deformed, and the stress in these parts is reduced. As a result, the restriction on displacement at the depth position of the counterbore 7 is greatest, and the peeling stress here is the greatest.

また、埋込金具5と絶縁主体1bとの接触面8における
接着力が均一であるとすれば、接触面8の上下端の限界
応力は接触面8の他部分の応力の半分である。第2図か
られかるように、接触面8の上下端の剥離応力5つは座
ぐり7の深さ位置に発生する最大剥離応力S2のほぼ半
分となっている。
Further, assuming that the adhesive force at the contact surface 8 between the embedded fitting 5 and the insulating main body 1b is uniform, the limit stress at the upper and lower ends of the contact surface 8 is half of the stress at other parts of the contact surface 8. As can be seen from FIG. 2, the peel stress 5 at the upper and lower ends of the contact surface 8 is approximately half of the maximum peel stress S2 generated at the depth position of the counterbore 7.

このため、接触面8の剥離応力は、強度的に調和がとれ
ている。また、図3のように埋込金具5は上下端面に貫
通するねじ孔を有する金具に座ぐりを設けても良い。
Therefore, the peel stress of the contact surface 8 is balanced in terms of strength. Further, as shown in FIG. 3, the embedded fitting 5 may have a counterbore in the fitting having screw holes passing through the upper and lower end surfaces.

更に、ここでは単相絶縁スペーサについて説明したが、
同様に三相−括絶縁スペーサについても適用できる。
Furthermore, although we have explained the single-phase insulating spacer here,
The same applies to three-phase bulk insulation spacers.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、埋込金具における
接続面の少なくとも一方の面に座ぐりを設けたことによ
り、熱応力等により埋込金具と絶縁主体との間に発生す
る剥離応力の最大値を低くすることができ、耐久性に優
れた絶縁スペーサを提供できる。
As explained above, according to the present invention, by providing a counterbore on at least one of the connection surfaces of the embedded fitting, peeling stress generated between the embedded fitting and the insulating body due to thermal stress, etc. can be reduced. The maximum value can be lowered, and an insulating spacer with excellent durability can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す絶縁スペーサの断面図
、第2図は接触面における剥離応力分布図、第3図は本
発明の他の実施例を示す絶縁スペーサの部分断面図、第
4図(A)、(B)は従来の絶縁スペーサを示すもので
第4図(A)、第4図(B)は夫々平面図及び断面図、
第5図(A)、(B)は第4図(A)の拡大図であり第
5図(A)、第5図(B)は夫々第4図(A)のa部分
及びb部分の拡大図である。 1・・・絶縁スペーサ  1b・・・絶縁主体2・・・
導体接続部   3・・・膨出部4・・・フランジ部 
  5・・・埋込金具6・・・クラック    7・・
・座ぐり8・・・接触面 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第 1 図 第2図 第3図 第4図 (A)                口ノ第5図
FIG. 1 is a sectional view of an insulating spacer showing one embodiment of the present invention, FIG. 2 is a peeling stress distribution diagram on a contact surface, and FIG. 3 is a partial sectional view of an insulating spacer showing another embodiment of the present invention. FIGS. 4(A) and 4(B) show a conventional insulating spacer, and FIGS. 4(A) and 4(B) are a plan view and a sectional view, respectively.
Figures 5(A) and 5(B) are enlarged views of Figure 4(A), and Figures 5(A) and 5(B) are of portions a and b of Figure 4(A), respectively. It is an enlarged view. 1... Insulating spacer 1b... Insulating main body 2...
Conductor connection part 3...Bulging part 4...Flange part
5...Embedded metal fittings 6...Crack 7...
・Spothole 8...Contact surface agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata No. 1 Figure 2 Figure 3 Figure 4 (A) Mouth Figure 5

Claims (1)

【特許請求の範囲】[Claims] 絶縁主体の周辺部の略同一円周上に複数の埋込金具を一
体注形した絶縁スペーサにおいて、前記埋込金具の少な
くとも一端面に座ぐりを施こしたことを特徴とする絶縁
スペーサ。
An insulating spacer in which a plurality of embedded fittings are integrally cast on substantially the same circumference of a peripheral portion of an insulating main body, characterized in that at least one end surface of the embedded fittings is counterbore.
JP61234331A 1986-10-03 1986-10-03 Insulation spacer Expired - Lifetime JPH0720328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234331A JPH0720328B2 (en) 1986-10-03 1986-10-03 Insulation spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234331A JPH0720328B2 (en) 1986-10-03 1986-10-03 Insulation spacer

Publications (2)

Publication Number Publication Date
JPS6392212A true JPS6392212A (en) 1988-04-22
JPH0720328B2 JPH0720328B2 (en) 1995-03-06

Family

ID=16969327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234331A Expired - Lifetime JPH0720328B2 (en) 1986-10-03 1986-10-03 Insulation spacer

Country Status (1)

Country Link
JP (1) JPH0720328B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011601A (en) * 2006-06-27 2008-01-17 Mitsubishi Electric Corp Gas-insulated device
WO2023238944A1 (en) * 2022-06-09 2023-12-14 ヤマハ発動機株式会社 Speed changing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011601A (en) * 2006-06-27 2008-01-17 Mitsubishi Electric Corp Gas-insulated device
WO2023238944A1 (en) * 2022-06-09 2023-12-14 ヤマハ発動機株式会社 Speed changing device
WO2023238314A1 (en) * 2022-06-09 2023-12-14 ヤマハ発動機株式会社 Transmission device

Also Published As

Publication number Publication date
JPH0720328B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US3770878A (en) Hermetically sealed electrical terminal
US3433893A (en) Cast electrical bushing
JPS6392212A (en) Insulating spacer
JPH03118710A (en) Insulating spacer
JPS63298925A (en) Insulator
JPH0223048Y2 (en)
JPH063751B2 (en) Radiation resistant airtight electrical connector
JPS6373820A (en) Insulating spacer
JPH07122145A (en) Insulating spacer
JP2600031Y2 (en) Signal extraction terminal
JPS63242113A (en) Insulating spacer
JPS63144706A (en) Insulating spacer
JPS6015376Y2 (en) Insulator mounting structure for gas insulated electrical equipment
JPS63242115A (en) Manufacture of insulating spacer
JPH0581952A (en) Insulation spacer
JPS6373821A (en) Insulating spacer
JPS6359712A (en) Three-phase insulating spacer
JPS6277811A (en) Insulating spacer
JPH1080027A (en) Insulating spacer
JPS6212324A (en) Insulation ring
JPH0312560A (en) Detecting insulator
JP3068922B2 (en) Superconducting magnet
JPS62100120A (en) Insulating spacer
JPS58107007A (en) Gas insulated electric device
JPH0628903Y2 (en) Electrically insulated structure with embedded fittings