JPS633153Y2 - - Google Patents

Info

Publication number
JPS633153Y2
JPS633153Y2 JP5290078U JP5290078U JPS633153Y2 JP S633153 Y2 JPS633153 Y2 JP S633153Y2 JP 5290078 U JP5290078 U JP 5290078U JP 5290078 U JP5290078 U JP 5290078U JP S633153 Y2 JPS633153 Y2 JP S633153Y2
Authority
JP
Japan
Prior art keywords
capacitor
case
resin
insulating tube
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5290078U
Other languages
Japanese (ja)
Other versions
JPS54155145U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5290078U priority Critical patent/JPS633153Y2/ja
Publication of JPS54155145U publication Critical patent/JPS54155145U/ja
Application granted granted Critical
Publication of JPS633153Y2 publication Critical patent/JPS633153Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は電解コンデンサ等のコンデンサに関す
るもので、詳しくは外部からの衝撃に耐えるよう
にコンデンサ素子から引出した外部リード線を保
持固定するとともに、プリント基板に取付けた場
合に於いて、プリント基板に付着している半田フ
ラツクスをハロゲン化有機溶剤で洗浄する場合に
ハロゲン化有機溶剤がコンデンサ内部に侵入して
コンデンサ素子を腐蝕断線させるのを防ぐことを
目的とするものである。 一般に、電解コンデンサは第1図に示す様に構
成されている。即ち、コンデンサ素子1をケース
2内に収納しコンデンサ素子1の内部リード線3
及び外部リード線4を貫通させる弾性封口体5を
ケース2の開口部に封着して電解コンデンサとし
たものである。なお、6はケース2の外周部に密
着するように被せた絶縁チユーブである。 この様な構成に於いては、輸送時やプリント基
板への組込み時に外部リード線4に外部衝撃が加
えられると、その外部衝撃が外部リード線4から
内部リード線3を伝わつてコンデンサ素子1に伝
わり、内部リード線3とコンデンサ素子1の接続
部に悪影響を与えて第2図に示す様な漏れ電流特
性に悪影響を与えるという欠点が生じていた。 また、一般にコンデンサをプリント基板に取付
けた後、回路の信頼性を上げる為、基板に付着し
た半田フラツクスを洗剤で洗浄しており、この時
その洗剤がコンデンサ素子1の内部に浸入すると
いう問題が生じていた。その上、洗剤として最近
は安全性の為、難燃性、価格、循環再使用を考え
ハロゲン化有機溶剤が最も広く市場で使われてい
る。その為、弾性封口体5を通してコンデンサの
内部に浸入した洗剤は電極のAl金属と接触し、
ハロゲンイオンを分解、放出し、そしてAl電極
と反応して電極の腐蝕発性が生じ、コンデンサ素
子1の断線となりコンデンサとしての機能を果さ
なくなつていた。 この様な電解コンデンサの信頼性を広げ、不良
を防ぐ為に、第3図、第4図に示す様に、弾性封
口体5の上に樹脂を充填して外部リード線4とケ
ース2を固定するとともに、封口に於いて気密性
を高め、前述の外部リード線4に加えられる外部
衝撃をこの樹脂層部7で吸収阻止する様にし、そ
してハロゲン化有機溶剤が弾性封口体5を透過し
てコンデンサ内部に入るのを樹脂層部7で防ぎコ
ンデンサの腐蝕断線の発生を防止する様にしたも
のが開発されている。 しかし、第3図の様にケース2を高くした場合
は、新しいケース2を作らねばならず、ケース2
の絞り、組立て方も改造しなければならず、また
弾性封口体5の位置の固定が困難であるという問
題が生じていた。また、第4図の様に樹脂を盛り
上げた場合には、絶縁チユーブ6上に盛ることと
なり、ケース2と樹脂層部7の密着を妨げ、その
為、ハロゲン化有機溶剤に侵されたり、膨潤した
りして弾性封口体5にその溶剤が入にこんで、結
局コンデンサの内部にハロゲン化有機溶剤が入り
込み、溶剤の浸入防止の役目を充分果さないとい
う問題が生じていた。また、樹脂を盛る場合、樹
脂の粘度が低い場合は硬化するまでに流れてしま
い、均一な形状に充填することができず、しかも
充分な樹脂層の厚さを作ることが困難であつた。
更に、樹脂層部7の面が平面とならず、プリント
基板への取付け時、及び取付け後も樹脂面が曲面
であり、充分に固定できず安定性が悪く取付け作
業性が劣り信頼性に於いても劣るという欠点が生
じていた。 本考案はこの様な従来の問題点に鑑み成された
もので、以下本考案の一実施例を示す第5図を用
いて詳細に説明する。 本考案による電解コンデンサでは、熱収縮率が
15%〜25%の低い絶縁チユーブ8を用い、ケース
2の弾性封口体5を挿着した封口部側にケース2
より長さを長くし、そして熱収縮させてケース2
に密着させ、そしてその熱収縮によつて第5図に
示す様に封口部側より突出した絶縁チユーブ8の
一部と封口部による凹部に樹脂を充填し硬化させ
て樹脂層部9により封口部を覆つたものである。 この本考案の構造によれば、絶縁チユーブ8の
熱収縮率が低い為、充填樹脂は常温硬化性、熱硬
化性あるいは紫外線硬化性等いずれのものでも充
填時の熱による変形がなく、とりわけ熱硬化性樹
脂を充填し高温で熱硬化性させる場合でも充分に
使用することができる。更に、樹脂層部9はケー
ス2、弾性封口体5に直接接するため、それらの
間の密着は望ましい良好な状態となる。 ところで、従来の絶縁チユーブはポリ塩化ビニ
ルやポリエチレンテレフタレート等の材質で厚さ
0.1mm〜0.5mm程度の熱収縮率が約35%〜45%の熱
収縮チユーブを使用しており、熱収縮させればケ
ース2に密着し、第5図の様に絶縁チユーブの一
部を立てることが非常に困難である。また、熱収
縮チユーブの長さを長くして先端部がケース2に
密着しないようにして凹部を形成することも考え
られるが、この場合、熱収縮チユーブが円錐形状
の様に形成され、またチユーブを長くした分だけ
寸法が長くなつてしまうため、そのままでは樹脂
を充填することができなく、熱収縮後余分な部分
を切り取るという作業が必要となる。 一方、本考案では絶縁チユーブの径の方向に熱
収縮率が15%〜25%の低熱収縮チユーブを用いる
ものであり、前述した様に熱収縮させてケース2
に密着させた場合、絶縁チユーブ8の一部を立て
ることができる。なお、本考案では、絶縁チユー
ブ8の厚さが薄いと、樹脂を充填した時にその時
の樹脂による荷重により絶縁チユーブ8が変形す
る恐れがある為、従来の絶縁チユーブの厚さの
1.5倍〜2倍程度の厚さにする必要がある。また、
絶縁チユーブ8の材質としては、従来と同じポリ
塩化ビニルやポリエチレンテレフタレート等を使
用しても、別のものを使用してもよい。 次表に、一具体例として、第1図、第3図、第
4図に示す従来品と第5図に示す本考案品とにつ
いて封口部に充填硬化させる樹脂として熱硬化性
エポキシ樹脂を用いた場合のコンデンサ素子に於
ける腐蝕断線発生状態を調べた結果を示してい
る。試験方法としては、従来品と本考案品それぞ
れを50℃の1,1,1−トリクロルエタン中に15
分間浸漬した後、直流電圧を50V印加し、105℃
の恒温槽中に入れて腐蝕の発生状態を調べた。な
お、それぞれの試料数は100個であり、製品の定
格は50W・V.,100μFである。
This invention relates to capacitors such as electrolytic capacitors, and more specifically, it holds and fixes the external lead wire drawn out from the capacitor element so as to withstand external shocks, and also prevents the wire from adhering to the printed circuit board when it is installed on the printed circuit board. The purpose of this is to prevent the halogenated organic solvent from penetrating into the capacitor and corroding and breaking the capacitor element when cleaning solder flux with a halogenated organic solvent. Generally, an electrolytic capacitor is constructed as shown in FIG. That is, the capacitor element 1 is housed in the case 2, and the internal lead wire 3 of the capacitor element 1 is
An electrolytic capacitor is obtained by sealing an elastic sealing body 5 to the opening of the case 2 through which an external lead wire 4 is passed. Note that 6 is an insulating tube that is tightly placed over the outer circumference of the case 2. In such a configuration, when an external impact is applied to the external lead wire 4 during transportation or installation into a printed circuit board, the external impact is transmitted from the external lead wire 4 to the internal lead wire 3 and is applied to the capacitor element 1. This has resulted in a disadvantage that the leakage current has an adverse effect on the connection between the internal lead wire 3 and the capacitor element 1, thereby adversely affecting the leakage current characteristics as shown in FIG. Additionally, after a capacitor is mounted on a printed circuit board, the solder flux adhering to the board is generally cleaned with a detergent in order to improve the reliability of the circuit, and at this time, there is a problem in that the detergent gets into the inside of the capacitor element 1. It was happening. Furthermore, in recent years, halogenated organic solvents have been most widely used as detergents in the market due to their safety, flame retardance, cost, and cyclical reuse. Therefore, the detergent that has entered the inside of the capacitor through the elastic sealing body 5 comes into contact with the Al metal of the electrode.
The halogen ions were decomposed and released, and reacted with the Al electrode, causing corrosion of the electrode, causing the capacitor element 1 to become disconnected and no longer functioning as a capacitor. In order to increase the reliability of such electrolytic capacitors and prevent defects, as shown in Figures 3 and 4, resin is filled on top of the elastic sealing body 5 to fix the external lead wire 4 and the case 2. At the same time, the airtightness of the seal is increased, and the external impact applied to the external lead wire 4 is absorbed and prevented by the resin layer 7, and the halogenated organic solvent permeates through the elastic seal member 5. A capacitor has been developed in which the resin layer 7 prevents the wire from entering the capacitor, thereby preventing corrosion and breakage of the capacitor. However, if case 2 is made higher as shown in Figure 3, a new case 2 must be made, and case 2
The aperture and assembly method had to be modified, and there was also the problem that it was difficult to fix the position of the elastic sealing body 5. Furthermore, if the resin is piled up as shown in Figure 4, it will be piled up on the insulating tube 6, which will prevent the case 2 and the resin layer 7 from coming into close contact with each other. As a result, the solvent enters the elastic sealing member 5, and the halogenated organic solvent ends up entering the inside of the capacitor, resulting in a problem that the capacitor does not sufficiently prevent the infiltration of the solvent. Furthermore, when applying resin, if the resin has a low viscosity, it will flow before it hardens, making it impossible to fill it into a uniform shape and making it difficult to create a sufficient thickness of the resin layer.
Furthermore, the surface of the resin layer 7 is not flat, and the resin surface is curved during and after mounting on a printed circuit board, resulting in insufficient fixation, poor stability, poor installation workability, and reduced reliability. However, the disadvantage was that it was inferior. The present invention has been developed in view of these conventional problems, and will be described in detail below with reference to FIG. 5, which shows an embodiment of the present invention. The electrolytic capacitor according to this invention has a thermal shrinkage rate of
A low insulation tube 8 of 15% to 25% is used, and the case 2 is attached to the sealing part side where the elastic sealing body 5 of the case 2 is inserted.
Case 2 is made by increasing the length and heat shrinking.
As shown in FIG. 5, as shown in FIG. It covers the According to the structure of the present invention, since the thermal shrinkage rate of the insulating tube 8 is low, the filling resin will not be deformed by heat during filling, regardless of whether it is room temperature curable, thermosetting, or ultraviolet curable. It can be used satisfactorily even when filled with a curable resin and thermosetted at high temperatures. Furthermore, since the resin layer portion 9 is in direct contact with the case 2 and the elastic sealing body 5, the adhesion between them is desirable and good. By the way, conventional insulating tubes are made of materials such as polyvinyl chloride and polyethylene terephthalate and have a limited thickness.
A heat shrinkable tube with a heat shrinkage rate of approximately 35% to 45% is used, with a thickness of about 0.1 mm to 0.5 mm, and when it is heat shrunk, it will stick tightly to the case 2, and a part of the insulating tube will be removed as shown in Figure 5. It is very difficult to stand. It is also possible to form a concave portion by increasing the length of the heat-shrink tube so that the tip part does not come into close contact with the case 2, but in this case, the heat-shrink tube is formed into a conical shape, and the tube Since the dimensions become longer by the length of , it is not possible to fill with resin as is, and it is necessary to cut off the excess portion after heat shrinking. On the other hand, in the present invention, a low heat shrink tube with a heat shrink rate of 15% to 25% is used in the radial direction of the insulating tube, and as described above, it is heat shrunk to form the case 2.
When the insulation tube 8 is brought into close contact with the insulation tube 8, a part of the insulation tube 8 can be erected. In addition, in the present invention, if the thickness of the insulating tube 8 is thin, there is a risk that the insulating tube 8 may be deformed by the load caused by the resin when it is filled with resin.
It needs to be about 1.5 to 2 times thicker. Also,
The material of the insulating tube 8 may be the same as conventional ones such as polyvinyl chloride or polyethylene terephthalate, or another material may be used. The following table shows, as a specific example, the conventional products shown in Figs. 1, 3, and 4 and the invented product shown in Fig. 5, in which thermosetting epoxy resin is used as the resin to be filled and hardened in the sealing part. This figure shows the results of investigating the occurrence of corrosion and disconnection in capacitor elements when As for the test method, each of the conventional product and the invented product was placed in 1,1,1-trichloroethane at 50°C.
After soaking for a minute, apply a DC voltage of 50V and raise the temperature to 105℃.
The state of corrosion was examined by placing it in a constant temperature bath. The number of samples for each is 100, and the product ratings are 50W・V., 100μF.

【表】【table】

【表】 この表より明らかな様に、本考案の構造によれ
ば、従来のものに比較して半田フラツクスの洗浄
用のハロゲン化有機溶剤に対して腐蝕断線を起こ
しにくい信頼性の高いコンデンサを得ることがで
きる。また、作業工数の点からも絶縁チユーブを
変更するだけでよい為、作業性が悪くなることが
なく、価格が高くなることもない。 更に、コンデンサ素子のリード線の保持固定も
充分強固なものとすることができ、外部からの衝
撃に対して安定なコンデンサを得ることができ
る。 以上のように本考案によれば、コンデンサの特
性向上を図る上で極めて有効であり、その実用的
価値は非常に大きい。
[Table] As is clear from this table, the structure of the present invention makes it possible to obtain a highly reliable capacitor that is less susceptible to corrosion and breakage caused by halogenated organic solvents used to clean solder flux than conventional capacitors. Also, in terms of labor, it is only necessary to change the insulating tube, so there is no deterioration in workability and no increase in cost. Furthermore, the lead wires of the capacitor element can be held and fixed firmly enough, making it possible to obtain a capacitor that is stable against external shocks. As described above, the present invention is extremely effective in improving the characteristics of a capacitor, and its practical value is very great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な電解コンデンサを示す断面
図、第2図はそのコンデンサ(定格50V、47μF)
の漏れ電流特性を示す図、第3図および第4図は
それぞれ従来の電解コンデンサを示す断面図、第
5図は本考案の一実施例による電解コンデンサを
示す断面図である。 1……コンデンサ素子、2……ケース、3……
内部リード線、4……外部リード線、5……弾性
封口体、8……絶縁チユーブ、9……樹脂層部。
Figure 1 is a cross-sectional view of a typical electrolytic capacitor, Figure 2 is the capacitor (rated at 50V, 47μF)
FIGS. 3 and 4 are cross-sectional views showing conventional electrolytic capacitors, and FIG. 5 is a cross-sectional view showing an electrolytic capacitor according to an embodiment of the present invention. 1... Capacitor element, 2... Case, 3...
Internal lead wire, 4... External lead wire, 5... Elastic sealing body, 8... Insulating tube, 9... Resin layer portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内部にコンデンサ素子を収納しかつそのコンデ
ンサ素子のリード線を引出した開口部を封口体で
封口したケースの外周部に、熱収縮率が15%〜25
%の絶縁チユーブをケースの外周部に密着するよ
うに被せ、前記ケースの封口部側に突出した前記
絶縁チユーブの一部と前記封口部とによつて形成
された凹部に樹脂を充填してなるコンデンサ。
The outer periphery of the case, which houses a capacitor element inside and seals the opening from which the lead wire of the capacitor element is drawn out with a sealing material, has a heat shrinkage rate of 15% to 25%.
% insulating tube is placed tightly over the outer periphery of the case, and a recess formed by a portion of the insulating tube protruding toward the sealing portion of the case and the sealing portion is filled with resin. capacitor.
JP5290078U 1978-04-20 1978-04-20 Expired JPS633153Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5290078U JPS633153Y2 (en) 1978-04-20 1978-04-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5290078U JPS633153Y2 (en) 1978-04-20 1978-04-20

Publications (2)

Publication Number Publication Date
JPS54155145U JPS54155145U (en) 1979-10-29
JPS633153Y2 true JPS633153Y2 (en) 1988-01-26

Family

ID=28944938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5290078U Expired JPS633153Y2 (en) 1978-04-20 1978-04-20

Country Status (1)

Country Link
JP (1) JPS633153Y2 (en)

Also Published As

Publication number Publication date
JPS54155145U (en) 1979-10-29

Similar Documents

Publication Publication Date Title
US4126758A (en) Method for sealing integrated circuit components with heat recoverable cap and resulting package
US4521830A (en) Low leakage capacitor header and manufacturing method therefor
JP3198376B2 (en) Manufacturing method of electrolytic capacitor
US2444880A (en) Electrical seal
US3731130A (en) Wound-film dry capacitors
JPS633153Y2 (en)
US2993153A (en) Seal
US3155770A (en) Entrance seal for electrical conductors extending through the wall of a pressure vessel
JPS62131431A (en) End-cap assembly for electric apparatus with fluid resistance and manufacture of the same
US4458414A (en) Method of manufacturing a low leakage capacitor header
JP2673991B2 (en) Chip type capacitor and manufacturing method thereof
JPS6214099B2 (en)
US3163692A (en) Method for making high voltage high altitude bushing
JPH0418453B2 (en)
US3117179A (en) Transistor capsule and header therefor
JPH0338817A (en) Chip type solid electrolytic capacitor
JPH0347412Y2 (en)
JP2776126B2 (en) Chip solid electrolytic capacitor with fuse and method of manufacturing the same
JP2525104B2 (en) Resin-impregnated paper capacitor core and manufacturing method thereof
JPH0373208B2 (en)
JPS5950594A (en) Method of covering electronic part on printed board
JPH0230830Y2 (en)
JPS63146427A (en) Aluminum electrolytic capacitor
JPH0328787B2 (en)
JPH0341373Y2 (en)