JPH0131161B2 - - Google Patents

Info

Publication number
JPH0131161B2
JPH0131161B2 JP6048982A JP6048982A JPH0131161B2 JP H0131161 B2 JPH0131161 B2 JP H0131161B2 JP 6048982 A JP6048982 A JP 6048982A JP 6048982 A JP6048982 A JP 6048982A JP H0131161 B2 JPH0131161 B2 JP H0131161B2
Authority
JP
Japan
Prior art keywords
optical fiber
optical
core
optical fibers
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6048982A
Other languages
Japanese (ja)
Other versions
JPS58176612A (en
Inventor
Noryoshi Shibata
Takao Edahiro
Yutaka Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6048982A priority Critical patent/JPS58176612A/en
Publication of JPS58176612A publication Critical patent/JPS58176612A/en
Publication of JPH0131161B2 publication Critical patent/JPH0131161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3803Adjustment or alignment devices for alignment prior to splicing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 本発明は接続しようとする光フアイバ端面に凸
部または凹部を形成して、接合時の位置合わせを
行うことができるようにした単一偏波光フアイバ
の接続法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for connecting single polarized optical fibers in which a convex portion or a concave portion is formed on the end face of the optical fibers to be connected to enable alignment during bonding.

通常の光フアイバは軸対称の円筒状構造を有し
ているが、単一偏波光フアイバでは偏波面を安定
に保存するために、その構造は非軸対称でなけれ
ばならない。すなわち単一偏波光フアイバは第1
図に示すような180゜回転対称構造を有する。
A typical optical fiber has an axially symmetrical cylindrical structure, but a single polarization optical fiber must have a non-axially symmetrical structure in order to stably preserve the plane of polarization. In other words, the single polarization optical fiber
It has a 180° rotationally symmetrical structure as shown in the figure.

第1図aはコア1が楕円形状を有し、第1図b
はクラツド2が楕円形状を有し、第1図cはコア
1の両側に組成の異なる部分(応力付与部)3を
有する構造を示す。
In Fig. 1a, the core 1 has an elliptical shape, and Fig. 1b
The cladding 2 has an elliptical shape, and FIG. 1c shows a structure in which the core 1 has portions (stress applying portions) 3 having different compositions on both sides.

このような構造を有する光フアイバの接続に際
しては、従来の軸対称光フアイバのように、単に
コアの中心位置合わせを行うのみならず、接続し
ようとする両光フアイバ端面の構造が互いに一致
するように、すなわち両光フアイバのX軸同志お
よびY軸同志がそれぞれ一致するように位置合わ
せを行うことが要求される。
When connecting optical fibers with such a structure, it is necessary not only to simply align the centers of the cores as with conventional axisymmetric optical fibers, but also to ensure that the structures of the end faces of both optical fibers to be connected match each other. In other words, it is required that the positioning be performed so that the X-axes and Y-axes of both optical fibers are aligned with each other.

従来の光フアイバの接続法を第2図に示す。従
来の方法においては、接続しようとする光フアイ
バの端面を平面状に切断し、一方の光フアイバ4
aの一端から光を入射し、接続点を介して他の光
フアイバ4bに送り、他方の光フアイバ4bの他
端で光電力を検出して接続点の位置合わせを行つ
ていた。
A conventional optical fiber connection method is shown in FIG. In the conventional method, the end faces of the optical fibers to be connected are cut into a flat shape, and one optical fiber 4 is cut into a flat shape.
Light is input from one end of the optical fiber 4b and sent to another optical fiber 4b via a connection point, and the optical power is detected at the other end of the other optical fiber 4b to align the connection point.

しかし前記の方法によつては、コア中心の位置
合わせを行うことはできるが、前記のような非軸
対称構造の光フアイバのX軸同志およびY軸同志
をそれぞれ一致させることは不可能であつた。
However, although the core centers can be aligned by the above-mentioned method, it is impossible to align the X-axes and Y-axes of the optical fibers having a non-axisymmetric structure as described above. Ta.

本発明は光フアイバ端面にエツチング処理を加
えることにより、光フアイバ端面に凹凸部を形成
し、この凹凸部を利用して光フアイバを接続する
ことを特徴とし、その目的は非軸対称構造から成
る単一偏波光フアイバを、低損失で、しかも偏光
度劣化も少なく、接続する方法を提供するにあ
る。以下、図面により本発明を詳細に説明する。
The present invention is characterized in that by applying an etching process to the end face of the optical fiber, an uneven part is formed on the end face of the optical fiber, and this uneven part is used to connect the optical fiber. It is an object of the present invention to provide a method for connecting single polarization optical fibers with low loss and less deterioration in polarization degree. Hereinafter, the present invention will be explained in detail with reference to the drawings.

実施例 1 第3図は本発明の一実施例の側面図であり、光
フアイバ端面が凸対凸の組合せを示している。第
3図に示した光フアイバは第1図cに示した構造
を有するものであり、以下この構造の光フアイバ
について説明する。第3図において、6および7
は光フアイバ端面のコアおよび応力付与部が凸の
部分である。
Embodiment 1 FIG. 3 is a side view of an embodiment of the present invention, showing a combination of convex-convex optical fiber end faces. The optical fiber shown in FIG. 3 has the structure shown in FIG. 1c, and the optical fiber having this structure will be explained below. In Figure 3, 6 and 7
The core and stress applying portion of the optical fiber end face are convex portions.

光フアイバ端面の形状は、コア、クラツド、応
力付与部の材質の差異を利用し、ふつ酸を用いた
エツチングにより作製することができる。エツチ
ング液としてNH4F(40%水溶液)とHF(49%水
溶液)を9:1で混合したものを用いたとき、石
英ガラスのエツチング速度はドーパントを添加し
た石英ガラスのエツチング速度より速くすること
ができ、GeO2を5モル%含む石英ガラスに対し
ては、約1.4倍のエツチング速度に達する。
The shape of the end face of the optical fiber can be fabricated by etching using hydrofluoric acid, taking advantage of the differences in the materials of the core, cladding, and stress-applying portion. When using a 9:1 mixture of NH 4 F (40% aqueous solution) and HF (49% aqueous solution) as the etching solution, the etching rate of quartz glass should be faster than the etching rate of dopant-added silica glass. The etching rate is about 1.4 times that of silica glass containing 5 mol% of GeO 2 .

以上のことから、コアおよび応力付与部がドー
パントを含む石英ガラス、ならびにクラツドが石
英ガラスから成る単一偏波光フアイバを前記エツ
チング液を用いてエツチングすると、第3図に示
すようにコアと応力付与部が凸形をした端面が得
られることがわかる。実際にコアにGeO2を8モ
ル%、応力付与部にB2O3を9モル%とGeO2を4
モル%添加した光フアイバを前記エツチング液に
約15分間浸したところ、コアの凸部の高さ0.7μ
m、応力付与部の凸部の高さ2.1μmの端面形状が
得られた。
From the above, when a single polarized optical fiber whose core and stress-applying portion are made of quartz glass containing a dopant and whose cladding is made of silica glass is etched using the above-mentioned etching solution, the core and stress-applying portion are formed as shown in FIG. It can be seen that an end face with a convex portion can be obtained. Actually, 8 mol% of GeO 2 was used in the core, 9 mol% of B 2 O 3 and 4 mol% of GeO 2 were added to the stress applying part.
When the optical fiber doped with mol% was immersed in the etching solution for about 15 minutes, the height of the convex part of the core was 0.7μ.
An end face shape with a height of 2.1 μm in the convex portion of the stress applying portion was obtained.

次にこのように形成された光フアイバの表面に
付着したエツチング液を洗浄除去する。洗浄は、
まず該光フアイバ端部をアルコールに浸し、次い
でほう酸により中和し、さらに純水に浸すことに
より、完全に行うことができる。
Next, the etching solution adhering to the surface of the optical fiber thus formed is washed away. The cleaning is
This can be done completely by first immersing the end of the optical fiber in alcohol, then neutralizing it with boric acid, and then immersing it in pure water.

該光フアイバを接続する場合、まず第3図に示
すように、光フアイバ5a,5bを光フアイバ端
面を向い合わせV溝等の固定具に固定する。この
端部を顕微鏡で観察しながら、固定具を駆動する
微動機構により、両光フアイバの相対位置合わせ
を行う。
When connecting the optical fibers, first, as shown in FIG. 3, the optical fibers 5a and 5b are fixed to a fixture such as a V-groove with their end surfaces facing each other. While observing this end with a microscope, the relative positioning of both optical fibers is performed using a fine movement mechanism that drives the fixture.

まず光フアイバの中心軸が一致するように2軸
(X,Y)を調整し、次に光フアイバ端部のそれ
ぞれの凸部が対応する凸部と一致するように光フ
アイバの軸のまわりの回転角を調整し、さらに放
電融着するためにZ軸調整して、両光フアイバ間
隔を約10μmとする。以上の操作により、該光フ
アイバの接続準備が完了するので、最適設定され
た放電時間と電圧による放電融着接続を行なえ
ば、非軸対称構造の単一モードフアイバのコア中
心同志が一致し、さらに接続する両光フアイバの
X軸方向およびY軸方向がそれぞれ一致し、低損
失で、かつ偏光度劣化の少ない接続が可能とな
る。
First, adjust the two axes (X, Y) so that the central axes of the optical fibers coincide, and then adjust the axis around the optical fiber so that each convex part of the optical fiber end coincides with the corresponding convex part. The rotation angle is adjusted, and the Z-axis is adjusted for discharge fusion, so that the distance between both optical fibers is about 10 μm. With the above operations, the preparation for connection of the optical fibers is completed, and if discharge fusion splicing is performed using the optimally set discharge time and voltage, the core centers of the single mode fibers with a non-axisymmetric structure will coincide, Furthermore, the X-axis direction and Y-axis direction of both optical fibers to be connected coincide with each other, allowing a connection with low loss and little deterioration of the degree of polarization.

実施例 2 第4図は本発明の他の実施例の側面図であり、
光フアイバ端面が凸対凹の組み合わせを示してい
る。第4図において、6および7は光フアイバ端
面のコアおよび応力付与部が凸の部分であり、こ
の形状は前記実施例で用いたエツチング液を使用
して形成できる。第4図において8および9は光
フアイバ端面のコアおよび応力付与部が凹の部分
であり、この形状はHF(49%水溶液)を用いた
エツチングにより作製できる。エツチング液とし
てHF(49%水溶液)を用いた場合には、ドーパ
ントを添加した石英ガラスのエツチング速度は、
石英ガラスのエツチング速度より大きく、たとえ
ば石英ガラスのエツチング速度が約230Å/secで
あるのに対して、GeO210モル%添加した石英ガ
ラスでは約1100Å/secである。
Embodiment 2 FIG. 4 is a side view of another embodiment of the present invention,
The optical fiber end face shows a combination of convex and concave. In FIG. 4, numerals 6 and 7 are convex portions of the core and stress applying portions on the end face of the optical fiber, and this shape can be formed using the etching solution used in the previous embodiment. In FIG. 4, reference numerals 8 and 9 indicate concave portions of the core and stress-applying portion of the optical fiber end face, and this shape can be produced by etching using HF (49% aqueous solution). When HF (49% aqueous solution) is used as the etching solution, the etching rate of dopant-doped silica glass is:
This is higher than the etching rate of quartz glass; for example, while the etching rate of quartz glass is approximately 230 Å/sec, the etching rate of silica glass doped with 10 mol % of GeO 2 is approximately 1100 Å/sec.

実際にコアにGeO2を8モル%、応力付与部に
B2O3を9モル%とGeO2を4モル%添加した光フ
アイバをHF(49%水溶液)に約1分間浸したと
ころ、コアの凹部の深さ0.6μm、応力付与部の凹
部の深さ約2.2μmの端面形状が得られた。
Actually, 8 mol% of GeO 2 was added to the core and the stress-applying part.
When an optical fiber containing 9 mol% of B 2 O 3 and 4 mol% of GeO 2 was immersed in HF (49% aqueous solution) for about 1 minute, the depth of the recess in the core was 0.6 μm, and the depth of the recess in the stress-applying part was 0.6 μm. An end face shape of approximately 2.2 μm was obtained.

このように形成された端部を有する光フアイバ
の接続は、前記実施例と同様にして接続を行うこ
とができる。この場合、両光フアイバの端面の位
置決めは、一方の光フアイバの端面の凸部と他方
の光フアイバの端面の凹部が一致するように行
う。
Optical fibers having end portions formed in this manner can be connected in the same manner as in the embodiments described above. In this case, the end faces of both optical fibers are positioned so that the convex part of the end face of one optical fiber matches the concave part of the end face of the other optical fiber.

実施例 3 前記実施例は光フアイバ相互の接続について説
明したが、本発明は光フアイバと平面光導波路と
の接続に対しても有効である。
Embodiment 3 Although the above embodiment describes the connection between optical fibers, the present invention is also effective for connection between optical fibers and planar optical waveguides.

第5図は単一偏波光フアイバと平面光導波路と
の接続方法の説明図である。第5図において、5
aは前記実施例1の方法により端部に凸部を形成
した光フアイバ、10は導波路基板、11は光導
波層、12はクラツド層である。平面光導波路は
本質的に偏光依存性を有するので、接続に際して
は、光導波層11の主軸と光フアイバ5aの主軸
とを一致させる必要がある。このためには、まず
光導波層11を水平に保持し、続いて光フアイバ
5aを軸のまわりに回転して、応力付与部7とコ
ア部6を水平に配置し、次に光フアイバ5aをコ
ア部6と光導波層11とが一致するように調整す
る。
FIG. 5 is an explanatory diagram of a method of connecting a single polarization optical fiber and a planar optical waveguide. In Figure 5, 5
Reference numeral a designates an optical fiber having a convex portion formed at its end by the method of Example 1, 10 a waveguide substrate, 11 an optical waveguide layer, and 12 a cladding layer. Since a planar optical waveguide essentially has polarization dependence, it is necessary to align the main axis of the optical waveguide layer 11 and the main axis of the optical fiber 5a during connection. To do this, first, the optical waveguide layer 11 is held horizontally, then the optical fiber 5a is rotated around the axis to arrange the stress applying part 7 and the core part 6 horizontally, and then the optical fiber 5a is Adjustments are made so that the core portion 6 and the optical waveguide layer 11 are aligned.

前記の状態を保つたまま、光フアイバ5aと平
面導波路とを固定することにより、偏光度劣化の
少ない接続を行うことができる。
By fixing the optical fiber 5a and the planar waveguide while maintaining the above-mentioned state, it is possible to perform a connection with less deterioration in the degree of polarization.

以上の実施例においては、第1図cに示す構造
を有する単一偏波光フアイバについて説明を行つ
たが、前記実施例においては、光フアイバ構造は
第1図cに限定されず、任意の非軸対称構造に対
して適用できる。たとえば第1図aまたはbの場
合には、凹部および凸部は楕円形状を有してお
り、接続時に端面の楕円の主軸方向を検出して位
置合わせを行うことにより、低損失で偏光度劣化
の少ない接続を達成することができる。
In the above embodiments, a single polarization optical fiber having the structure shown in FIG. Applicable to axially symmetric structures. For example, in the case of Figure 1 a or b, the concave part and the convex part have an elliptical shape, and by detecting the main axis direction of the ellipse on the end face and aligning it at the time of connection, the degree of polarization can be degraded with low loss. can achieve fewer connections.

以上説明したように、本発明の単一偏波光フア
イバの接続方法は非軸対称構造の光フアイバの接
続において、光フアイバ端面の凹凸形の形状を観
察することにより、コアの中心位置合わせに加え
て、光フアイバの中心軸のまわりの回転位置合わ
せも行うことができるので、従来困難とされてき
た単一偏波光フアイバの接続を可能とする利点が
ある。
As explained above, the method for connecting single-polarized optical fibers according to the present invention can be used to connect optical fibers with non-axisymmetric structures by observing the uneven shape of the end face of the optical fiber, in addition to aligning the center of the core. Since rotational positioning around the central axis of the optical fiber can also be performed, there is an advantage that it is possible to connect single-polarized optical fibers, which has been considered difficult in the past.

すなわち本発明によれば、光フアイバの構造を
側面から容易に検出できるので非軸対称構造の光
フアイバを、光フアイバ断面における直交する二
つの主軸がそれぞれ一致するように接続すること
ができる。このため偏光を入射した場合に、接続
点で偏光度の劣化を著しく減少できるという利点
がある。
That is, according to the present invention, since the structure of the optical fiber can be easily detected from the side, optical fibers having a non-axisymmetric structure can be connected so that the two orthogonal principal axes in the cross section of the optical fiber coincide with each other. Therefore, when polarized light is incident, there is an advantage that deterioration of the degree of polarization at the connection point can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は代表的な単一偏波光フアイバの構造を
示す説明図であつて、第1図aは楕円コアを有す
る光フアイバ、第1図bは楕円クラツドを有する
光フアイバ、第1図cは応力付与部を有する光フ
アイバをそれぞれ示す図、第2図は従来の光フア
イバ接続における側面図、第3図は本発明の一実
施例の側面図であつて、両端面形状が凸形状の例
を示す図、第4図は本発明の他の実施例の側面図
であつて、一方が凸形、他方が凹形の例を示す
図、第5図は本発明の別の実施例の斜視図であつ
て、一方が単一偏波光フアイバ、他方が平面光導
波路の例を示す図である。 1…コア、2…クラツド、3…応力付与部、4
a,4b…軸対称構造光フアイバ、5a,5b…
単一偏波光フアイバ、6…凸形コア端部、7…凸
形応力付与部端部、8…凹形コア端部、9…凹形
応力付与部端部、10…平面光導波路基板、11
…光導波層、12…クラツド層。
Figure 1 is an explanatory diagram showing the structure of a typical single polarization optical fiber, in which Figure 1a is an optical fiber with an elliptical core, Figure 1b is an optical fiber with an elliptical cladding, and Figure 1c is an optical fiber with an elliptical cladding. 2 is a side view of a conventional optical fiber connection, and FIG. 3 is a side view of an embodiment of the present invention, in which both end faces are convex. FIG. 4 is a side view of another embodiment of the present invention, in which one side is convex and the other is concave, and FIG. 5 is a side view of another embodiment of the present invention. FIG. 2 is a perspective view showing an example in which one side is a single polarization optical fiber and the other side is a planar optical waveguide. DESCRIPTION OF SYMBOLS 1... Core, 2... Clad, 3... Stress applying part, 4
a, 4b...Axisymmetric structure optical fiber, 5a, 5b...
Single polarized optical fiber, 6... Convex core end, 7... Convex stress applying part end, 8... Concave core end, 9... Concave stress applying part end, 10... Planar optical waveguide substrate, 11
...optical waveguide layer, 12...cladding layer.

Claims (1)

【特許請求の範囲】 1 石英ガラスを主成分とする単一偏波光フアイ
バを互いに接続するに際し、光フアイバ端部をエ
ツチング液に浸して、材質の差異によるエツチン
グ速度の相違を利用して光フアイバ端面に凸部ま
たは凹部を形成した後、該光フアイバ端面の凸部
または凹部を観察しながら、コアの位置合わせを
行うことを特徴とする単一偏波光フアイバの接続
方法。 2 石英ガラスを主成分とする単一偏波光フアイ
バと、平面光導波路とを接続するに際し、光フア
イバ端部をエツチング液に浸して、材質の差異に
よるエツチング速度の相違を利用して光フアイバ
端面に凸部を形成した後、該光フアイバ端面の凸
部を観察しながら、光フアイバのコアの位置と該
平面光導波路の光導波層の位置を合わせることを
特徴とする単一偏波光フアイバの接続方法。
[Claims] 1. When connecting single-polarized optical fibers mainly composed of silica glass, the ends of the optical fibers are immersed in an etching solution, and the optical fibers are etched using the difference in etching speed due to the difference in material. 1. A method for connecting single polarized optical fibers, which comprises forming a convex portion or a concave portion on an end surface and then aligning a core while observing the convex portion or concave portion on the end surface of the optical fiber. 2. When connecting a single-polarized optical fiber whose main component is silica glass to a planar optical waveguide, the end of the optical fiber is immersed in an etching solution and the end face of the optical fiber is etched using the difference in etching speed due to the difference in material. After forming a convex part on the end face of the optical fiber, the position of the core of the optical fiber and the position of the optical waveguide layer of the planar optical waveguide are aligned while observing the convex part on the end face of the optical fiber. Connection method.
JP6048982A 1982-04-12 1982-04-12 Connecting method of single polarization optical fiber Granted JPS58176612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6048982A JPS58176612A (en) 1982-04-12 1982-04-12 Connecting method of single polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6048982A JPS58176612A (en) 1982-04-12 1982-04-12 Connecting method of single polarization optical fiber

Publications (2)

Publication Number Publication Date
JPS58176612A JPS58176612A (en) 1983-10-17
JPH0131161B2 true JPH0131161B2 (en) 1989-06-23

Family

ID=13143740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6048982A Granted JPS58176612A (en) 1982-04-12 1982-04-12 Connecting method of single polarization optical fiber

Country Status (1)

Country Link
JP (1) JPS58176612A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467106A (en) * 1990-07-09 1992-03-03 Nippon Telegr & Teleph Corp <Ntt> Optical fiber parameter converting and connecting element and production thereof
JPH05181040A (en) * 1991-12-28 1993-07-23 Nec Corp Optical connector and its production
US6859589B2 (en) * 2002-04-16 2005-02-22 National Research Council Of Canada Alignment of optical waveguides

Also Published As

Publication number Publication date
JPS58176612A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
JP2696269B2 (en) Integrated optical chip
US4113346A (en) Method of making optical fiber terminations
EP0310535B1 (en) Mounting of optical fibers to integrated optical chips
US6879757B1 (en) Connection between a waveguide array and a fiber array
JPS62139504A (en) Coupler for connecting optical fiber to ingegrated optical unit
EP1015921A1 (en) Connection between an integrated optical waveguide and an optical fibre
US5849204A (en) Coupling structure for waveguide connection and process for forming the same
JPH0131161B2 (en)
JP2771167B2 (en) Optical integrated circuit mounting method
JP3201864B2 (en) Method for manufacturing quartz optical waveguide component
JPH0634837A (en) Optical component
JPH03189607A (en) Production of fiber type optical coupler
US20020131715A1 (en) Optical coupling
JPH02168208A (en) Optical fiber coupler and its production
JPS61260208A (en) Light guide with fiber guide
JP3476095B2 (en) Connection method between optical waveguide and optical fiber
JPS61166504A (en) Optical circuit device
JP2570307B2 (en) Optical fiber connector
JP3095511B2 (en) Polarization-maintaining optical fiber coupler
JPH0593824A (en) Optical connector and its manufacture
JPH06324237A (en) Production of optical fiber array
JPH06317724A (en) Method for connecting optical waveguide
JPH1172643A (en) Production of v-grooved substrate for optical fiber and terminal holding structure of optical fiber
JPH0356907A (en) Production of polarization maintaining type optical fiber coupler
JPH01246510A (en) Polarized wave maintaining optical fiber