JPS61166504A - Optical circuit device - Google Patents

Optical circuit device

Info

Publication number
JPS61166504A
JPS61166504A JP687485A JP687485A JPS61166504A JP S61166504 A JPS61166504 A JP S61166504A JP 687485 A JP687485 A JP 687485A JP 687485 A JP687485 A JP 687485A JP S61166504 A JPS61166504 A JP S61166504A
Authority
JP
Japan
Prior art keywords
optical
core
transmission line
optical waveguide
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP687485A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Hidetaka Tono
秀隆 東野
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP687485A priority Critical patent/JPS61166504A/en
Publication of JPS61166504A publication Critical patent/JPS61166504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To obtain an optical circuit device whose efficiency is high and optical coupling efficiency is less varied with time and assembling is easy, by forming a core in one end of an optical transmission line into a small-angled taper shape and approximating the section of the core terminal surface in this taper core part to the terminal surface of an optical waveguide and providing a supporting plate which holds the taper core part. CONSTITUTION:The device consists of, at least, one optical waveguide 12 provided on a substrate 1 and one optical transmission line 14 having a core 13 which transmits optical waves coupled optically to the optical waveguide 12. A taper core part 13a where the core 13 in one end of the optical transmission line 14 is tapered is provided, and the section of a core terminal surface 13b of the taper core part 13a is approximated to a terminal surface 12a of the optical waveguide, and a supporting plate 15 is provided which has a common surface 15a with the core terminal surface 13b and holds the taper core part 13a. Optical axes of the waveguide 12 and the optical transmission line 14 coincide with each other, and they are constituted on the same plane approximately, and therefore, assembling is made easy, and the optical coupling loss is good 3dB.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信、光制御に係る光回路デバイスに関する
。特に薄膜光導波路型の光回路デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical circuit device related to optical communication and optical control. In particular, it relates to thin film optical waveguide type optical circuit devices.

従来の技術 従来のこの種の薄膜光導波路型の光回路デノ(イスは、
第3図に示すように基板31上に設けた光導波路32と
光波を伝送するコア33を含む光伝送線34を光結合さ
せて構成していた。光結合の方法は通常信頼性、小型化
の観点から第3図に示した光導波路31およびコア33
の鏡面端面をつき合わせる端面結合法が使用されている
(例えば、小山次部、西原浩「光波電子工学」(昭63
.5゜15)、コロナ社、P、250)。
Conventional technology This kind of thin-film optical waveguide type optical circuit denomination (chair)
As shown in FIG. 3, an optical waveguide 32 provided on a substrate 31 and an optical transmission line 34 including a core 33 for transmitting light waves were optically coupled. The optical coupling method is usually the optical waveguide 31 and core 33 shown in FIG. 3 from the viewpoint of reliability and miniaturization.
An end-face bonding method is used in which the mirror-finished end faces of
.. 5゜15), Coronasha, P, 250).

この種の構成において、光導波路32とコア33との断
面積は通常例えば、18mX10μmWと10μmψと
異なるため良好な結合効率が得られなかった。改良の観
点から見ると半導体し〜ザと単一モード光伝送線との光
結合にかかる構成(坂ロ晴男、関紀男、山本周、(電子
通信学会光量子エレクトロニクス研究会資料0QE80
−123(1980)P、57)を薄膜光導波路への適
用が考考えられる。構成を第4図に示す。同図において
31.32,33.34は第3図と同一である。
In this type of configuration, the cross-sectional areas of the optical waveguide 32 and the core 33 are usually different from, for example, 18 m×10 μmW to 10 μmφ, so that good coupling efficiency cannot be obtained. From the perspective of improvement, the configuration of optical coupling between semiconductor devices and single-mode optical transmission lines (Haruo Sakaro, Norio Seki, Shu Yamamoto, IEICE Photonics and Quantum Electronics Study Group Material 0QE80
-123 (1980) P, 57) may be applied to thin film optical waveguides. The configuration is shown in FIG. In the figure, 31.32, 33.34 are the same as in FIG. 3.

構成は光フアイバ光端を約900のテーパ(楔)状に研
磨したのち、コア33の先端をアーク放電によシ加熱溶
融しテーパ状半円柱レンズ41に加工し結合効率を上げ
る工夫がなされている。例えば0.6μm  X2〜3
μmwの半導体レーザ、10μmψ のステップ形単−
モード光伝送線では、2.9〜3.3 dBの結合損失
が報告されている。
The structure is such that the optical end of the optical fiber is polished into a taper (wedge) shape of about 900, and then the tip of the core 33 is heated and melted by arc discharge and processed into a tapered semi-cylindrical lens 41 to increase the coupling efficiency. There is. For example, 0.6μm x2~3
μmw semiconductor laser, 10 μmψ step type single-
Coupling losses of 2.9 to 3.3 dB have been reported for mode optical transmission lines.

発明が解決しようとする問題点 しかし、この種の構成では光導波路32とテーパ状半円
柱レンズ41とコア33との光軸の一致が困難であるた
め、光結合効率が経年変動するという問題があった。し
たがって、光導波路32で光回路を構成すると、光回路
の特性の経年変動が発生する問題があった。これは下記
の理由による。
Problems to be Solved by the Invention However, in this type of configuration, it is difficult to align the optical axes of the optical waveguide 32, the tapered semi-cylindrical lens 41, and the core 33, so there is a problem that the optical coupling efficiency changes over time. there were. Therefore, when an optical circuit is constructed using the optical waveguide 32, there is a problem in that the characteristics of the optical circuit change over time. This is due to the following reasons.

つl、コア33をテーパ状に加工するに要求される点は
、コア33の中心軸を2テ一パ面42の交線とを一致さ
せ且つ2テ一パ面42のなす角の2等分線とコアの中心
軸とを一致させることである。加えて精度よいコア先端
のテーパ状半円柱レンズの放電溶融加工である。結果、
コア33の中心軸と一致する光軸とテーパ状円柱レンズ
の光軸が一致し、焦点面で光導波路の断面にビーム径を
絞り込み一致させ、コア33と光導波路32との光結合
効率を論理値に接近させることが出来る。
In order to process the core 33 into a tapered shape, it is necessary to align the center axis of the core 33 with the line of intersection of the two taper surfaces 42, and to make the angles formed by the two taper surfaces 42 equal to 2. The goal is to match the branch line with the central axis of the core. In addition, the tapered semi-cylindrical lens at the tip of the core is manufactured using electrical discharge melting with high precision. result,
The optical axis that coincides with the central axis of the core 33 and the optical axis of the tapered cylindrical lens coincide, and the beam diameter is narrowed down to match the cross section of the optical waveguide at the focal plane, and the optical coupling efficiency between the core 33 and the optical waveguide 32 is logically determined. It is possible to approach the value.

このテーパ状円柱レンズ加工はサブミクロン精度の加工
技術が必要であり、放電溶融加工(例えば、レンズ半径
4〜Tμm ×8〜10μmWのレンズ加工)も技術的
に未確立な点が多い。
Machining of this tapered cylindrical lens requires a processing technique with submicron precision, and there are many technologically unestablished aspects of electric discharge melting machining (for example, machining of a lens with a lens radius of 4 to T μm x 8 to 10 μmW).

したがって、コア33とテーバ状半円柱レンズの光軸の
一致と焦点面での光波断面の一致との実現が困難なため
、光結合面の微少な相対位置ずれ(温度等による)によ
る光結合効率の不安定の発生が生ずるのである。加えて
、光軸の不一致のため、光導波路32とコア33とを同
一平面近傍にて光結合が出来ず所定の角度で光結合効率
が極大となり、組立加工が難しい問題があった。多モー
ド光導波路ではさらに基本モードの励振効率の極大と光
結合効率の極大が一致せず効率良いデバイス構成を実現
することが出来ず、さらに光導波路内のモードの分散状
態の安定化が光結合面の相対位置ずれにより困難であっ
た。
Therefore, it is difficult to match the optical axes of the core 33 and the tapered semi-cylindrical lens and match the cross sections of light waves at the focal plane, so the optical coupling efficiency due to slight relative positional deviation (due to temperature, etc.) of the optical coupling surface This results in the occurrence of instability. In addition, due to the mismatch of the optical axes, the optical waveguide 32 and the core 33 cannot be optically coupled near the same plane, and the optical coupling efficiency becomes maximum at a predetermined angle, making assembly difficult. Furthermore, in multimode optical waveguides, the maximum excitation efficiency of the fundamental mode and the maximum optical coupling efficiency do not match, making it impossible to realize an efficient device configuration. This was difficult due to the relative positional deviation of the surfaces.

そこで、本発明は光導波路と光伝送線の光軸を一致させ
高効率で光結合効率の経年変動が少なく組立の容易な構
造を提供するものである。
Therefore, the present invention provides a structure that allows the optical axes of the optical waveguide and the optical transmission line to coincide with each other to provide high efficiency, less secular variation in optical coupling efficiency, and easy assembly.

問題点を解決するための手段 そして前記問題点を解決する本発明の技術的手段は、前
記光伝送線の一端のコアの厚さを小角のテーパ状とする
テーパコア部を有し且つ前記テーパコア部のコア終端面
の断面を前記光導波路祷端面に近似させ、前記コア終端
面との共通面を有し前記テーパコア部を保持する支持板
を設けるものである。
Means for solving the problems and the technical means of the present invention for solving the problems described above include a tapered core portion in which the core thickness at one end of the optical transmission line is tapered at a small angle; A support plate is provided which has a cross section of the core end face approximated to the optical waveguide end face, has a common surface with the core end face, and holds the tapered core portion.

作   用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、光伝送線の一端のコアの厚さを小角のテーパ
状とし支持板での保持により、テーパコア部表面の保護
と安定化が果たされるので、光伝送線中の伝送光は基本
モードのままコア終端面まで伝送される作用し、光伝送
線と光導波路とをつき合わせることにより伝送光の電磁
界分布を光導波路の基本モード導波光の電磁界分布にほ
ぼ一致させることができる。この結果得られる光結合は
、第4図に示したレンズ作用とは異なり、第3図に示し
たつき合わせの端面結合法なので高効率で経年変動の少
ない光結合が得られる。
In other words, the thickness of the core at one end of the optical transmission line is tapered to a small angle, and by holding it with a support plate, the surface of the tapered core is protected and stabilized, so that the transmitted light in the optical transmission line remains in its fundamental mode. By aligning the optical transmission line and the optical waveguide, the electromagnetic field distribution of the transmitted light can be made to substantially match the electromagnetic field distribution of the fundamental mode guided light of the optical waveguide. The optical coupling obtained as a result is different from the lens action shown in FIG. 4 and uses the butt end face coupling method shown in FIG. 3, so that optical coupling with high efficiency and less fluctuation over time can be obtained.

支持板の採用によシテーパコア部の固有振動が除去され
る作用を有しているため、安定した結合効率も得られる
Since the use of the support plate has the effect of eliminating the natural vibration of the taper core, stable coupling efficiency can also be obtained.

多モード光導波路の場合にも、光伝送線のコア終端面ま
で基本モードで伝送され、光軸の一致したつき合わせに
よる光結合であるので、基本的に基本モード以外は励振
されにくく、したがって光導波路のモード分散状態が安
定で高い光結合効率が得られる。
In the case of a multimode optical waveguide, the fundamental mode is transmitted to the core terminal surface of the optical transmission line, and since optical coupling is achieved by matching the optical axes, it is basically difficult for anything other than the fundamental mode to be excited, and therefore the optical guide The mode dispersion state of the wave path is stable and high optical coupling efficiency can be obtained.

以上の結果、高効率で経年変動の少なく、組立が容易に
実現されるのである。
As a result of the above, high efficiency, little change over time, and easy assembly are achieved.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図において、bは要部構成を示しており、aはbの
A−A/断面の要部構成を示している。
In FIG. 1, b indicates the main part structure, and a shows the main part structure of the AA/cross section of b.

同図において、基板11上に設けた少なくとも1つの光
導波路12と、光導波路12と光結合する光波を伝送す
るコア13を有する少なくとも1つの光伝送線14とか
らなり、光伝送線14の一端のコア13の厚さをテーパ
状とするテーパコア部13aを有し且つテーパコア部1
3aのコア終端面13bの断面を光導波路終端面12a
に近似させ、コア終端面13bとの共通面15aを有し
テーパコア部13aを保持する支持板16を設けている
In the same figure, it consists of at least one optical waveguide 12 provided on a substrate 11 and at least one optical transmission line 14 having a core 13 for transmitting a light wave that is optically coupled to the optical waveguide 12, and one end of the optical transmission line 14. The tapered core part 13a has a tapered core part 13a having a tapered thickness.
The cross section of the core termination surface 13b of 3a is the optical waveguide termination surface 12a.
A support plate 16 is provided which has a common surface 15a with the core end surface 13b and holds the tapered core portion 13a.

次に、この一実施例の構成における作用を具体的に説明
する。サファイア基板11(屈折率1.77)上にスパ
ッタ蒸着により膜厚0.8μmのPLZT薄膜(屈折率
26)を形成した。次に幅10μmに例エバ、イオンビ
ームエツチングにより光導波路12を形成したのち、端
面研磨を行い鏡面端面12aを作製した。一方、光伝送
線14には例えキ、外径126μmψ、コア径10μm
ψの石英単一モードファイバを使用し、テーバ面をテー
ノく面のなす角度を100として研磨を行い厚さlff
11mの石英基板をエポキシ樹脂接着剤(屈折率1.6
)で接着し、テーパコア部13aを保持した。次にコア
終端の鏡面研磨を行い、1μmD×10μmWのコア終
端面13bを作製した。伝送光の遠視野像は単一モード
であることが確認された。エポキシ樹脂の屈折率は1.
6と石英ファイバの屈折率1.47よりも大きいが、エ
ポキシ樹脂の膜厚が0.2μm(SEM観察)とコア終
端面13bでの厚さに比較し薄く、コア13の厚さを角
度10°のテーパ状の構成としているので、基本モード
のままコア終端面13bまで伝送されたと考えられる。
Next, the operation of the configuration of this embodiment will be specifically explained. A 0.8 μm thick PLZT thin film (refractive index 26) was formed on a sapphire substrate 11 (refractive index 1.77) by sputter deposition. Next, an optical waveguide 12 was formed to a width of 10 .mu.m by evaporation and ion beam etching, and then the end surface was polished to produce a mirror end surface 12a. On the other hand, the optical transmission line 14 has an outer diameter of 126 μmφ and a core diameter of 10 μm.
Using a quartz single mode fiber with a diameter of ψ, polish the Taber surface with the angle of 100 to obtain a thickness of lff.
An 11m long quartz substrate was glued with epoxy resin adhesive (refractive index 1.6).
) to hold the tapered core portion 13a. Next, the end of the core was mirror-polished to produce a core end surface 13b of 1 μmD×10 μmW. It was confirmed that the far-field image of the transmitted light was a single mode. The refractive index of epoxy resin is 1.
6 and the refractive index of the quartz fiber is 1.47, but the film thickness of the epoxy resin is 0.2 μm (SEM observation), which is thinner than the thickness at the core end surface 13b, and the thickness of the core 13 is set at an angle of 10 Since it has a tapered configuration of .degree., it is considered that the fundamental mode is transmitted to the core end face 13b.

作製された光導波路終端面12&とコア終端面13bと
をつき合わせて光結合を行い、光回路デバイスを作製し
た。
The fabricated optical waveguide termination surface 12 & was brought into contact with the core termination surface 13b to perform optical coupling, thereby producing an optical circuit device.

作製した光回路デバイスにおいて、光伝送線14中の伝
送光は基本モードで伝送されているので、光伝送線14
と光導波路12とをつき合わせることにより伝送光の電
磁界分布と光導波路の基      ;・本モードの電
磁界分布にほぼ一致していると考えられる。光結合損失
は3 dBと良好であった。光導波路12と光伝送線1
4は光軸が一致しており、同一平面上にほぼ構成され組
立が容易に出来た。
In the manufactured optical circuit device, since the transmission light in the optical transmission line 14 is transmitted in the fundamental mode, the optical transmission line 14
By matching the optical waveguide 12 with the optical waveguide 12, the electromagnetic field distribution of the transmitted light and the base of the optical waveguide are considered to almost match the electromagnetic field distribution of this mode. The optical coupling loss was good at 3 dB. Optical waveguide 12 and optical transmission line 1
No. 4 had the same optical axis and was constructed almost on the same plane, making it easy to assemble.

特に光導波路12と光伝送線14との光軸が一致してお
り、支持板の採用によるテーパコア部の固有振動の除去
もなされているので、1週間の経時変化にも光結合損失
3dBと極めて変動は少ないものであった。多モードP
LZT薄膜光導波路(4モード)でY分岐を構成した場
合も、分岐1対1で安定しているのを確認しており、従
って主として基本モードが励振されておりモード分散状
態が安定していたと考えられる。
In particular, the optical axes of the optical waveguide 12 and the optical transmission line 14 are aligned, and the natural vibration of the tapered core part is eliminated by using a support plate, so the optical coupling loss is extremely low at 3 dB even after one week of aging. There was little variation. Multimode P
Even when a Y branch is configured with an LZT thin film optical waveguide (4 modes), it has been confirmed that the branch ratio is stable 1:1, and therefore, the fundamental mode is mainly excited and the mode dispersion state is stable. Conceivable.

なお第1図における11は基板、12は光導波路、13
はコア、14は光伝送線、16は支持板である。
In FIG. 1, 11 is a substrate, 12 is an optical waveguide, and 13 is a substrate.
14 is a core, 14 is an optical transmission line, and 16 is a support plate.

次に本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第2図は他の実施例を示しており、この実施例では、光
伝送線側の要部構成図を示しだ。同図において、13,
14.15は第1図と同一である。
FIG. 2 shows another embodiment, and in this embodiment, the main part configuration diagram on the optical transmission line side is shown. In the same figure, 13,
14.15 are the same as in FIG.

同図においては光伝送線を4本並列したものである。光
伝送線14には例えば、外径125μmφ。
In the figure, four optical transmission lines are arranged in parallel. For example, the optical transmission line 14 has an outer diameter of 125 μmφ.

コア径10μmφ の石英単一モードファイバを使用し
、光伝送線14を126μm間隔で並列し、第1の実施
例で示した加工を施し作製した。光導波路12は幅10
μm、膜厚1μmのTi拡散LiNbO3光導波路を用
い126μm間隔で作製し端面研磨を行った。両者をつ
き合わせて光結合させ光回路デバイスを作製した。
A quartz single mode fiber with a core diameter of 10 μmφ was used, optical transmission lines 14 were arranged in parallel at intervals of 126 μm, and the processing shown in the first example was performed. The optical waveguide 12 has a width of 10
Ti-diffused LiNbO3 optical waveguides with a film thickness of 1 μm were fabricated at intervals of 126 μm, and the end faces were polished. The two were brought together and optically coupled to fabricate an optical circuit device.

作製した光回路デバイスの光結合損失は3.6±o、t
s dBの範囲に入り良好であった。又、経年変動も認
められなかった。一方、第2従来例で示した構成では加
工時に光軸が各光結合点で不一致が発生し、結合損失の
ばらつきをおさえることが困難である。したがって、本
発明の構成は複数の光伝送線と光導波路との光結合に有
効である。
The optical coupling loss of the fabricated optical circuit device was 3.6±o,t
It was well within the s dB range. Also, no change over time was observed. On the other hand, in the configuration shown in the second conventional example, the optical axes do not match at each optical coupling point during processing, and it is difficult to suppress variations in coupling loss. Therefore, the configuration of the present invention is effective for optical coupling between a plurality of optical transmission lines and optical waveguides.

本実施例においてエポキシ樹脂接着剤を使用したが、低
融点ガラス、例えばコーニング8363(軟化点380
’C、屈折率1.9)の薄膜(例えば0.2μm)を支
持板に蒸着し、テーパコア部とを真空加熱接着を行うな
ど、支持板とテーパコア部の接着が本発明の手段に含ま
れるものでありエポキシ樹脂接着材に限定されるもので
ない。
Although an epoxy resin adhesive was used in this example, low-melting glass such as Corning 8363 (softening point 380
Adhesion of the support plate and the taper core part is included in the means of the present invention, such as depositing a thin film (e.g., 0.2 μm) with a refractive index of 1.9 on the support plate and bonding the tapered core part with vacuum heat. It is not limited to epoxy resin adhesives.

次に本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第6図は他の実施例の要部構成を示し、11゜12.1
3,14.15は第1図と同じである。
FIG. 6 shows the main part configuration of another embodiment, with 11°12.1
3, 14, and 15 are the same as in FIG.

この実施例ではテーパコア部13bの終端の厚さを0.
4μmとし、テーパ面に金属薄膜51例えばAq O,
2μmを蒸着したのち、エポキシ樹脂で支持板を接着し
た。勾の屈折率は0.2(波長1.3μm)であり、伝
送光は良好に閉じ込められて伝送されるため0.4μm
まで絞ることが出来た。
In this embodiment, the thickness of the end of the tapered core portion 13b is set to 0.
4 μm, and a metal thin film 51 such as Aq O,
After evaporating 2 μm, a support plate was bonded with epoxy resin. The refractive index of the gradient is 0.2 (wavelength: 1.3 μm), and the transmitted light is well confined and transmitted, so the wavelength is 0.4 μm.
I was able to narrow it down to.

0.4μm×10μmWのPLZT薄膜光導波路との光
結合させて回路デバイスを作製した。
A circuit device was fabricated by optically coupling with a 0.4 μm×10 μmW PLZT thin film optical waveguide.

作製した光回路デバイスの結合損失は4 dBが得られ
、膜厚1μmの場合に遜色ない特性が得られた。この実
施例では、膜厚の薄くて第1 、第2の実施例が適用で
きない場合に有効であることが示された。すなわち、第
1.第2の実施例では接着層の屈折率がコアよりも高い
ためにテーパコア部を薄くすると輻射モードが生じ結合
損失を増大させる。もちろん、光結合効率の安定性、モ
ード分散状態の安定性は第1.第2の実施例と同様の効
果が得られた。
The coupling loss of the manufactured optical circuit device was 4 dB, and the characteristics were comparable to those with a film thickness of 1 μm. This example has been shown to be effective in cases where the first and second examples cannot be applied due to the thin film thickness. That is, 1st. In the second embodiment, since the refractive index of the adhesive layer is higher than that of the core, when the tapered core portion is made thinner, a radiation mode occurs, increasing coupling loss. Of course, the stability of the optical coupling efficiency and the stability of the mode dispersion state are the first. The same effects as in the second example were obtained.

発明の効果 本発明は、光伝送線の一端のコアの厚さを小角のテーパ
状とするテーパコア部を有し、且つ前記テーパコア部の
コア終端面の断面を光導波終端面に近似させ、コア終端
面との共通面を有しテーパコア部を保持する支持板を設
けであるので、高効率で光結合効率の経年変動が少なく
組立が容易であり、しかも次のような効果も有している
Effects of the Invention The present invention has a tapered core portion in which the thickness of the core at one end of the optical transmission line is tapered at a small angle, and the cross section of the core termination surface of the tapered core portion is approximated to the optical waveguide termination surface. Since it is provided with a support plate that has a common surface with the end surface and holds the tapered core part, it has high efficiency, little change in optical coupling efficiency over time, and is easy to assemble.Moreover, it also has the following effects. .

すなわち、本発明ではつき合わせによる光結合を用いて
いるので複数本の光伝送線と光導波路との光結合も、高
効率でバラツキを少なく作製できる効果を有しており、
光回路デバイスの小型集積化を図ることもできるもので
ある。
That is, since the present invention uses optical coupling by butting, it has the effect that optical coupling between multiple optical transmission lines and optical waveguides can be manufactured with high efficiency and less variation.
It is also possible to achieve miniaturization and integration of optical circuit devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、Φ)は本発明の一実施例の光回路デバイ
スの要部断面図、要部構成図、第2図は本発明の他の実
施例の同デバイスの要部構成図、第3図は従来例の同デ
バイスの要部構成図、第4図は他の従来例の要部構成図
、第5図は本発明の第3の実施例の同デバイスの要部構
成図である。 11・・・・・・基板、12・・・・・・光導波路、1
3・・・・・・コア、14・・・・・・光伝送線、16
・・・・・・支持板、61・・・・・・金属薄膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名13
・−・コ ア g、、・光イ云送織 15・・・友詩扱 ′:pIz図 f3 第3図      34 第4図
FIG. 1(a), Φ) is a sectional view and a configuration diagram of a main part of an optical circuit device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a main part of the same device according to another embodiment of the present invention. , FIG. 3 is a diagram showing the main part of the same device according to the conventional example, FIG. 4 is a diagram showing the main part of another conventional example, and FIG. 5 is a diagram showing the main part of the same device according to the third embodiment of the present invention. It is. 11... Substrate, 12... Optical waveguide, 1
3...Core, 14...Optical transmission line, 16
... Support plate, 61 ... Metal thin film. Name of agent: Patent attorney Toshio Nakao and 1 other person13
・-・Core g、・・光い亚线 15...Friend poem treatment': pIz diagram f3 Figure 3 34 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 基板上に設けた少なくとも1つの光導波路と前記光導波
路と光結合する光波を伝送するコアを有する少なくとも
1つの光伝送線とからなり、前記光伝送線の一端のコア
の厚さをテーパ状とするテーパコア部を有し、且つ前記
テーパコア部のコア終端面の断面を前記光導波路終端面
に近似させ、前記コア終端面との共通面を有し前記テー
パコア部を保持する支持板を設けたことを特徴とする光
回路デバイス。
It consists of at least one optical waveguide provided on a substrate and at least one optical transmission line having a core for transmitting a light wave optically coupled to the optical waveguide, and the thickness of the core at one end of the optical transmission line is tapered. a support plate for holding the tapered core portion, the cross section of the core end surface of the tapered core portion being approximated to the optical waveguide end surface, and having a common surface with the core end surface; An optical circuit device featuring:
JP687485A 1985-01-18 1985-01-18 Optical circuit device Pending JPS61166504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP687485A JPS61166504A (en) 1985-01-18 1985-01-18 Optical circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP687485A JPS61166504A (en) 1985-01-18 1985-01-18 Optical circuit device

Publications (1)

Publication Number Publication Date
JPS61166504A true JPS61166504A (en) 1986-07-28

Family

ID=11650369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP687485A Pending JPS61166504A (en) 1985-01-18 1985-01-18 Optical circuit device

Country Status (1)

Country Link
JP (1) JPS61166504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113212A (en) * 1988-10-24 1990-04-25 Hitachi Cable Ltd Waveguide type optical module
US5077818A (en) * 1989-09-29 1991-12-31 Siemens Aktiengesellschaft Coupling arrangement for optically coupling a fiber to a planar optical waveguide integrated on a substrate
US5307433A (en) * 1989-09-29 1994-04-26 Siemens Aktiengesellschaft Optical connection member of silicon and method for the manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113212A (en) * 1988-10-24 1990-04-25 Hitachi Cable Ltd Waveguide type optical module
US5077818A (en) * 1989-09-29 1991-12-31 Siemens Aktiengesellschaft Coupling arrangement for optically coupling a fiber to a planar optical waveguide integrated on a substrate
US5307433A (en) * 1989-09-29 1994-04-26 Siemens Aktiengesellschaft Optical connection member of silicon and method for the manufacture thereof

Similar Documents

Publication Publication Date Title
US4737004A (en) Expanded end optical fiber and associated coupling arrangements
US4765702A (en) Glass integrated optical component
JP2774467B2 (en) Polarization independent optical isolator
JPH01260405A (en) Optical fiber
US5546486A (en) Optical fiber end for application in an optical isolator and a method of manufacture thereof
US4976506A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
US7068864B2 (en) Waveguide-embedded optical circuit and optical functional element used therein
EP0846966A2 (en) Optical waveguide
JPS61166504A (en) Optical circuit device
US5146522A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
JPH0634837A (en) Optical component
JPS6170516A (en) Semiconductor laser module with optical isolator
JPH03189607A (en) Production of fiber type optical coupler
JPS6243609A (en) Optical circuit element
JPH04158340A (en) Light wavelength conversion element and manufacture thereof
JPS61256310A (en) Optical circuit device
JPH01234806A (en) Light guide device
JPS61190307A (en) Coupling light guide
JPS58196521A (en) Optical coupling circuit
JPH0131161B2 (en)
JPS61232406A (en) Coupled optical waveguide and its manufacture
JPS6235308A (en) Connecting method for light guide and optical fiber
Hsu et al. Coupling methods in prospective single-mode fiber integrated optics systems: A progress report
JPS59102203A (en) Optical polarizing plane separating element
JPH02157730A (en) Base plate type optical switch