JPH01308896A - Diamond and vapor synthesis thereof - Google Patents
Diamond and vapor synthesis thereofInfo
- Publication number
- JPH01308896A JPH01308896A JP2338689A JP2338689A JPH01308896A JP H01308896 A JPH01308896 A JP H01308896A JP 2338689 A JP2338689 A JP 2338689A JP 2338689 A JP2338689 A JP 2338689A JP H01308896 A JPH01308896 A JP H01308896A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- gas
- plasma
- carbon
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 59
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 56
- 230000015572 biosynthetic process Effects 0.000 title claims description 12
- 238000003786 synthesis reaction Methods 0.000 title claims description 11
- 239000007789 gas Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000011261 inert gas Substances 0.000 claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 11
- 239000012808 vapor phase Substances 0.000 claims description 7
- 238000001308 synthesis method Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract 3
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- 210000002381 plasma Anatomy 0.000 description 33
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 229910052750 molybdenum Inorganic materials 0.000 description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 8
- 239000011733 molybdenum Substances 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002065 inelastic X-ray scattering Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002090 carbon oxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 101000981091 Enterobacteria phage T4 Protein cef Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- -1 benzene Chemical class 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000005087 leaf formation Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- MHIGBKBJSQVXNH-IWVLMIASSA-N methacycline Chemical compound C=C([C@H]1[C@@H]2O)C3=CC=CC(O)=C3C(=O)C1=C(O)[C@@]1(O)[C@@H]2[C@H](N(C)C)C(O)=C(C(N)=O)C1=O MHIGBKBJSQVXNH-IWVLMIASSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 101150017268 secM gene Proteins 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、化学的気相合成法により、高品質のダイヤモ
ンドを高速で合成または被覆ずろ方法に関するしのであ
り、高熱伝導性、低誘電性、高透光性、高圧弾性、高強
度、耐摩耗性等を要求される分野、例えば窓材、振動板
、切削工具、ヒートシンク、ICボンダー等に応用でき
るものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for rapidly synthesizing or coating high-quality diamond by chemical vapor phase synthesis, which has high thermal conductivity and low dielectric properties. It can be applied to fields that require high light transmittance, high pressure elasticity, high strength, wear resistance, etc., such as window materials, diaphragms, cutting tools, heat sinks, and IC bonders.
[従来の技術]
従来、ダイヤモンドは高温、高圧下の熱力学的平衡状態
において合成されてきたが、近年、非平衡状態を積極的
に利用した気相からの合成法(CVD法)によってもダ
イヤモンドの合成が可能となっている。[Prior art] Diamond has traditionally been synthesized in a thermodynamic equilibrium state at high temperatures and high pressures, but in recent years diamond has also been synthesized by a gas phase synthesis method (CVD method) that actively utilizes non-equilibrium states. It is now possible to synthesize
ダイヤモンドの気相合成法としては、一般に10倍(体
積)以上の水素で希釈した炭化水素を用い、ガスをプラ
ズマもしくは熱フィラメントで励起する方法が提案され
ている。例えば、特開昭58−91100号には、炭化
水素と水素との混合ガスを、1000°C以上に加熱し
た熱電子放射材によって予備加熱した後、混合ガスを加
熱した基板表面に導入して炭化水素の熱分解でダイヤモ
ンドを析出する方法が、また特開昭58−110494
号には、水素ガスをマイクロ波無電極放電中を通過させ
た後に炭化水素と混合して同じようにダイヤモンドを析
出する方法が、更に特開昭59−3098号には、水素
ガスと不活性ガスとの混合ガスにマイクロ波を導入して
マイクロ波プラズマを発生させ、この中に基板を設置し
て、300〜1300℃の温度で加熱し、炭化水素を分
解してダイヤモンドを析出する方法が記載されている。As a method for vapor phase synthesis of diamond, a method has generally been proposed in which a hydrocarbon diluted with hydrogen at least 10 times (by volume) is used and the gas is excited with plasma or a hot filament. For example, in JP-A-58-91100, a mixed gas of hydrocarbon and hydrogen is preheated with a thermionic emitter heated to 1000°C or more, and then the mixed gas is introduced onto the heated substrate surface. A method for precipitating diamond by thermal decomposition of hydrocarbons was also disclosed in Japanese Patent Application Laid-Open No. 58-110494.
JP-A-59-3098 describes a method in which diamond is deposited in the same way by passing hydrogen gas through a microwave electrodeless discharge and then mixing it with hydrocarbons. There is a method in which microwaves are introduced into a gas mixture to generate microwave plasma, a substrate is placed in the plasma, and the substrate is heated at a temperature of 300 to 1,300°C to decompose hydrocarbons and precipitate diamonds. Are listed.
[発明が解決しようとする課題]
このような従来のダイヤモンド気相合成法は、基本的に
水素及び炭素を含む原料ガス(例えば、炭素水素系ガス
)のみを用いる為に、50Torr程度までの比較的低
圧でしかプラズマを安定して生成することが出来ず、ダ
イヤモンドの合成条件、合成速度、合成面積等が制約さ
れる問題があり、応用面で不十分であった。[Problems to be Solved by the Invention] Such conventional diamond vapor phase synthesis methods basically use only raw material gases containing hydrogen and carbon (e.g., carbon-hydrogen gases), so they cannot be used at temperatures up to about 50 Torr. Plasma could only be stably generated at extremely low pressures, and there were problems with constraints on diamond synthesis conditions, synthesis speed, synthesis area, etc., making it unsatisfactory in terms of application.
本発明はこれらの課題を解決しようとするものである。The present invention attempts to solve these problems.
[課題を解決するための手段]
本発明者らは、安定で活性度の高いプラズマを発生する
ために各種の条件を検討した結果、混合ガスの条件を次
の通りにした場合に極めて高速度でダイヤモンドを合成
できることを見い出した。[Means for Solving the Problems] As a result of examining various conditions for generating stable and highly active plasma, the present inventors found that extremely high speeds can be achieved when the mixed gas conditions are as follows. discovered that diamonds could be synthesized using
即ち、5〜760Torrの圧力で水素ガス(A)、不
活性ガス(B)及び有機化合物ガス(C)を、それらの
モル比が、
なる条件を’t+’4たすように含む混合ガスの(J:
注下、より好ましくは、30〜600Torrの圧力で
、3種のガスのモル比が
なる条件を満たすように含む混合ガスの存在下でプラズ
マを発生さけ、ダイヤモンド合成すると、不活性ガスを
使用しない場合に比べて数百倍(数十μx/h)の成長
速度で、かつ均一に、広い面積(数十平方ミリ)上にダ
イヤモンドを合成し得ることを見い出した。That is, a mixed gas containing hydrogen gas (A), inert gas (B) and organic compound gas (C) at a pressure of 5 to 760 Torr such that their molar ratio is 't+'4 plus (J:
More preferably, diamond synthesis is performed at a pressure of 30 to 600 Torr in the presence of a mixed gas containing three gases in a molar ratio such that the molar ratio of the three gases is satisfied, and an inert gas is not used. It has been found that diamond can be synthesized uniformly over a wide area (several tens of square millimeters) at a growth rate several hundred times faster (several tens of μx/h) than in the conventional method.
本発明の方法において、上記3種のガスのモル比は、 なる条件を満たすのが最も好ましい。In the method of the present invention, the molar ratio of the three types of gases is: It is most preferable to satisfy the following conditions.
本発明においてプラズマの発生源としては、直流または
交流の電磁界のどちらを用いても良く、後者の場合、周
波数IKIlz以上の高周波もしくはマイクロ波が操作
性の面から好ましい。より好ましくは、500MHz以
上のマイクロ波を用いる。投入電力は、一般に1’vV
/cm”以上である。In the present invention, either a direct current or an alternating current electromagnetic field may be used as a plasma generation source, and in the latter case, high frequency waves or microwaves having a frequency of IKIlz or higher are preferable from the viewpoint of operability. More preferably, microwaves of 500 MHz or higher are used. Input power is generally 1'vV
/cm” or more.
本発明で用いる不活性ガスの種類は、ヘリウム、ネオン
、アルゴン、クリプトン、キセノン、あるいはこれらの
混合物でよく、いずれを用いても効果は変わらないが、
安価で入手し安いアルゴンが好ましい。The type of inert gas used in the present invention may be helium, neon, argon, krypton, xenon, or a mixture thereof, and the effect remains the same no matter which one is used.
Argon is preferred because it is available and inexpensive.
炭素含有化合物ガスは、CVD条件下で気体である炭素
を含む化合物ガス、例えば気体状のメタン、エタン等の
脂肪族炭化水素ま、たはベンゼン等の芳香族炭化水素で
あってもよく、−酸化炭素、二酸化炭素等の無機化合物
、アルコール1.チオール、ケトン、エーテル等の分子
に少量の酸素、窒素、硫黄等のへテロ原子を含む有機化
合物であっても良い。本発明においては、アルゴン等の
不活性ガスがプラズマ発生雰囲気中に存在している為に
、プラズマ出力が数十W以上という通常の条件でなくて
も、出力が数十W以下という低出力で、数百T orr
以上の圧力領域でも安定して活性度の高いプラズマを生
成することが可能であり、通常プラズマが集中するので
適正な基板温度(700〜1200℃)でダイヤモンド
を被覆する事が困難な3次元的な基材にもダイヤモンド
を被覆することができる。基材の材質は、従来のCVD
法で用いられているものと同様である。特に好ましい基
材は、Si、Mo、’vV、Ta5Nb、Zr5B、C
。The carbon-containing compound gas may be a carbon-containing compound gas that is a gas under CVD conditions, for example an aliphatic hydrocarbon such as gaseous methane, ethane, or an aromatic hydrocarbon such as benzene, - Inorganic compounds such as carbon oxide and carbon dioxide, alcohol 1. It may also be an organic compound containing a small amount of a heteroatom such as oxygen, nitrogen, or sulfur in its molecule such as thiol, ketone, or ether. In the present invention, since an inert gas such as argon is present in the plasma generation atmosphere, even if the plasma output is not under the usual conditions of several tens of W or more, the output can be as low as several tens of W or less. , several hundred Torr
It is possible to generate stable and highly active plasma even in the pressure range above, and it is possible to generate three-dimensional plasma that is difficult to coat diamond at an appropriate substrate temperature (700 to 1200℃) because the plasma is usually concentrated. Even basic substrates can be coated with diamond. The material of the base material is conventional CVD
similar to that used in the Act. Particularly preferred base materials include Si, Mo, 'vV, Ta5Nb, Zr5B, C
.
AI、 S iC,S 13N4、MoC,MotC,
wc。AI, SiC, S 13N4, MoC, MotC,
wc.
ILc、TaC,NbC,BN、B4C5AIN。ILc, TaC, NbC, BN, B4C5AIN.
TiC,TiN、Tiなどである。These include TiC, TiN, Ti, etc.
また本発明の条件範囲では粒径数百μm以上のダイヤモ
ンド粒子を高速で成長させることら可能である。Further, within the condition range of the present invention, it is possible to grow diamond particles having a particle size of several hundred μm or more at high speed.
ここで活性度の高いプラズマは、プラズマの発光分光分
析及びプラズマの目視によって確認できる。つまり、発
光分光分析によれば、活性度の高いプラズマでは相対的
にH2連続帯の強度が弱く、I−I (α)等の水素ラ
ジカルならびにC7およびCIラジカルの強度が強いこ
とに特徴がある。又、目視によってらC,ラジカル(ス
ワンバンド)の緑色がかった発光を帯びることが多く観
察されろ。Here, highly active plasma can be confirmed by plasma emission spectroscopic analysis and visual observation of the plasma. In other words, according to optical emission spectroscopy, highly active plasmas are characterized by a relatively weak H2 continuous band intensity and strong hydrogen radicals such as I-I (α) and C7 and CI radicals. . Furthermore, by visual inspection, it is often observed that the luminescence has a greenish tinge due to C radicals (swan band).
このような現象から、本発明の条件下では原料ガスの分
解がより効率良く行われているものと考えられる。From this phenomenon, it is considered that the raw material gas is decomposed more efficiently under the conditions of the present invention.
本発明の不活性ガスの添加効果は、」二連のように5T
orr以上760 Torr以下の圧力範囲で現れる。The effect of adding inert gas in the present invention is as follows: 5T
It appears in the pressure range from orr to 760 Torr.
一般に、圧力が低いと、成長速度が遅くなり、圧力が高
いと、プラズマの収縮が顕著になる為析出面積が狭くな
る。従って好ましい圧力範囲は、30Torr以上60
0 Torr以下の範囲である。実用的な析出面積(数
十平方ミリ)で叶出辿度の増加効果をもたらす為には、
60Torr以上400T orr以下の圧力範囲がよ
り好ましい。Generally, when the pressure is low, the growth rate is slow, and when the pressure is high, the plasma shrinks significantly and the deposition area becomes narrow. Therefore, the preferable pressure range is 30 Torr or more and 60 Torr or more.
It is in the range of 0 Torr or less. In order to bring about the effect of increasing the degree of leaf formation with a practical precipitation area (several tens of square millimeters),
A pressure range of 60 Torr or more and 400 Torr or less is more preferable.
原料ガスが、水素ガス(A)、不活性ガス(B)及び炭
素含有化合物ガス(C)の必須成分に加え、ドーピング
ガス(D)、例えばジボラン(B、11.)、窒素(N
、)を含む場合にも、不活性ガスの添加効果は同様に現
れる。この様な場合には、水素ガス(A)、不活性ガス
(B)、炭素含有化合物ガス(C)及びドーピングガス
(D)のモル比がなる条件を満たすように各ガスを混合
して用いるのが好ましい。In addition to the essential components of hydrogen gas (A), inert gas (B), and carbon-containing compound gas (C), the raw material gas also contains doping gas (D), such as diborane (B, 11.), nitrogen (N
, ), the effect of adding an inert gas appears similarly. In such cases, hydrogen gas (A), inert gas (B), carbon-containing compound gas (C), and doping gas (D) are mixed in such a way that the molar ratio of each gas satisfies the conditions. is preferable.
明効果が小さくなる。The brightening effect becomes smaller.
なお、プラズマを用いたダイヤモンドの気相合成におい
ては、どの様な手法を用いてら本発明の効果は現れるが
、前述の様に、プラズマの発生源としては500MI(
z以上のマイクロ波を用いるのが最も好ましい。In the vapor phase synthesis of diamond using plasma, the effects of the present invention can be achieved no matter what method is used, but as mentioned above, as a plasma generation source, 500 MI (
It is most preferable to use microwaves of z or higher.
本発明の方法により得られたダイヤモンド膜成長表面め
平均結晶粒径(E)及び成長膜厚(F)を、光学顕微鏡
及び査型電子顕微鏡(SEM)により観察1.たところ
、平均結晶粒径(E)が成長膜厚(F)に対1.て比較
的大きいことが特徴であることがわかった。Observation of the average crystal grain size (E) and grown film thickness (F) on the diamond film growth surface obtained by the method of the present invention using an optical microscope and a scanning electron microscope (SEM)1. As a result, the average grain size (E) was 1.5% of the grown film thickness (F). It was found that it is characterized by its relatively large size.
そして、この様に比較的大きな結晶粒径を持つダイヤモ
ンドでは、透過型電子顕微鏡(TEM)観察により、転
位等の結晶欠陥やアモルファスカーボン等の非ダイヤモ
ンド成分の析出が多いと考えられているダイヤモンド結
晶粒界が少なく、低欠陥結晶であることがわかった。In diamond with such a relatively large crystal grain size, transmission electron microscopy (TEM) observation reveals that diamond crystals are thought to have many crystal defects such as dislocations and precipitation of non-diamond components such as amorphous carbon. It was found that the crystal has few grain boundaries and has low defects.
又、紫外から赤外領域における透過スペクトル測定から
高い透光性を示すこと、熱伝導率測定から高い熱伝導率
を有するなど、多くのダイヤモンド本来の特性を示すこ
とられかった。In addition, it was found to exhibit many properties inherent to diamond, such as high light transmittance based on transmission spectrum measurements in the ultraviolet to infrared region, and high thermal conductivity based on thermal conductivity measurements.
そしてこの結晶粒径の大きさが効果を示すのは、膜厚(
F)が5μ次以上で、平均結晶粒径(E)と膜厚(F)
が、
0.3≦E/E≦3
なる関係を満たす場合である。The effect of the crystal grain size is due to the film thickness (
F) is 5μ or higher, and the average crystal grain size (E) and film thickness (F)
This is a case where the following relationship is satisfied: 0.3≦E/E≦3.
E/IF < o 、 3 又ハ3 < E/、ff
ノ[x[[ハ、上記ダイヤモンドの特性が低下する。E/IF < o, 3 or C3 < E/, ff
ノ[x[[c, the properties of the diamond described above deteriorate.
そして本発明法によれば容易にこの領域のダイヤモンド
を得ることか出来る。According to the method of the present invention, diamond in this range can be easily obtained.
本発明で利用するダイヤモンド合成用の装置を第1図〜
第3図に示す。The apparatus for diamond synthesis used in the present invention is shown in Figures 1-
It is shown in Figure 3.
第1図はマイクロ波プラズマCVD装置、第2図は高周
波プラズマCVD装置、第3図が直流プラズマCVD装
置のそれぞれ概略図である。図中、1は基材、2は石英
管、3は真空排気口、4は供給ガス導入口、5は発生プ
ラズマ、6はマグネトロン、7は導波管、8はブランツ
ヤ−19はRF電源、lOはDC電源、IIは基材支持
台、12は絶縁シール、13はカソードである。一般に
、石英管は、50ix以上の直径を有する。FIG. 1 is a schematic diagram of a microwave plasma CVD apparatus, FIG. 2 is a schematic diagram of a high frequency plasma CVD apparatus, and FIG. 3 is a schematic diagram of a DC plasma CVD apparatus. In the figure, 1 is a base material, 2 is a quartz tube, 3 is a vacuum exhaust port, 4 is a supply gas inlet, 5 is a generated plasma, 6 is a magnetron, 7 is a waveguide, 8 is a Brantsya, 19 is an RF power source, IO is a DC power supply, II is a substrate support, 12 is an insulating seal, and 13 is a cathode. Generally, quartz tubes have a diameter of 50ix or more.
次に、本発明の効果を実施例及び比較例によって具体的
に説明する。Next, the effects of the present invention will be specifically explained using Examples and Comparative Examples.
実施例1
ダイヤモンド合成法として、マイクロ波プラズマCVD
法(以下、μ−PCVDという。)、高周波プラズマC
VD法(以下、RF−PCVDという。)、直流プラズ
マCVD法(以下、DC−PCVDという。)のい「れ
かの方法を用いた(第1表及び第2表参照)。基材とし
ては、40×35Xl(L+!I!3のモリブデン板を
1600のダイヤモンドパウダーで最終研磨したものを
用いた。Example 1 Microwave plasma CVD as a diamond synthesis method
(hereinafter referred to as μ-PCVD), high-frequency plasma C
Either the VD method (hereinafter referred to as RF-PCVD) or the direct current plasma CVD method (hereinafter referred to as DC-PCVD) was used (see Tables 1 and 2).As the base material , 40×35Xl (L+!I!3) molybdenum plate was finally polished with 1600 diamond powder.
まず、図面の石英管2の中に不活性ガスを導入口4から
導入し、圧カビr orrでプラズマ発生源によりプラ
ズマ5を発生させ、そのプラズマでモリブデン板を5分
間クリーニングした。その後、第1表及び第2表に示す
条件でプラズマCVDを行い、気相合成したダイヤモン
ドによりモリブデン板を被覆した。First, an inert gas was introduced into the quartz tube 2 shown in the drawing from the inlet 4, plasma 5 was generated by a plasma source using a pressure mold roller, and the molybdenum plate was cleaned with the plasma for 5 minutes. Thereafter, plasma CVD was performed under the conditions shown in Tables 1 and 2, and the molybdenum plate was coated with diamond synthesized in a vapor phase.
合成中の基材表面温度を光学式パイロメーターにより測
定したところ、800〜1200°Cの範囲であった。The surface temperature of the substrate during synthesis was measured using an optical pyrometer and was in the range of 800 to 1200°C.
また、プラズマCVD法で形成したダイヤモンド膜につ
いて、走査型電子顕微鏡による表面観察及び膜厚観察、
X線回折及びラマン散乱分光法による結晶性の評価を行
ったところ、第1表及び第2表に示すような結果か得ら
れた。なお、表中、rDiaJはダイヤモンドを、ra
−clはアモルファスカーボンを示す。In addition, regarding the diamond film formed by the plasma CVD method, surface observation and film thickness observation using a scanning electron microscope,
When the crystallinity was evaluated by X-ray diffraction and Raman scattering spectroscopy, the results shown in Tables 1 and 2 were obtained. In addition, in the table, rDiaJ stands for diamond, ra
-cl represents amorphous carbon.
不活性ガスの全ガスに対するモル比、炭素含有化合物ガ
スの全ガスに対するモル比及び反応1E力が本発明の条
件範囲内にあれば、ダイヤモンドの蒸着速度を、例えば
400μm/hと非常に高速にすることが可能である。If the molar ratio of the inert gas to the total gas, the molar ratio of the carbon-containing compound gas to the total gas, and the reaction 1E force are within the condition range of the present invention, the diamond deposition rate can be increased to a very high rate of, for example, 400 μm/h. It is possible to do so.
一方、本発明の条件範囲外では、不活性ガスを添加せず
に高圧力でプラズマを発生させようとしてもプラズマは
安定して生じず、例えプラズマを発生できたとしてもダ
イヤモンド膜はアモルファスカーボンを含む粗悪ならの
であり、しかも蒸着速度は最大でも2μ次/hと遅くな
る。On the other hand, outside the condition range of the present invention, even if you try to generate plasma at high pressure without adding an inert gas, plasma will not be generated stably, and even if plasma can be generated, the diamond film will be amorphous carbon. Moreover, the deposition rate is as slow as 2 μth order/h at the maximum.
又、第2表に示す試料No、 l 8〜22の熱伝導率
を簡易型サーミスタを用いた熱伝導率測定装置により測
定したところ、本発明の条件で製造された試料において
は2W/cmKから15W/crttKという高熱伝導
性か確認されたのに対し、比較条件で製造された試料に
おいては2 W / cπに未満であっ実施例2
第1表に示す試料N014から剥離したダイヤモンド板
(10X I OX 0.2gm3)を40x34xl
Ox肩3のモリブデン板上に置き、マイクa波出力80
0W、圧力300 Torrの条件下、水素流fftl
1000scc、7)L、ボン流fi500sccM及
びエタノール流量40secMで導入しながら、3時間
、マイクロ波プラズマcV・Dを行ったところ、ダイヤ
モンド板の厚さは0 、2 mmがらlR真に成長した
。このダイヤモンド板は、元の試料No、4ダイヤモン
ド板と同様に、X線回折及びラマン分光法によって結晶
性の良い、(100)優先配向のダイヤモンドであるこ
とが判った。In addition, when the thermal conductivities of samples No. 1 8 to 22 shown in Table 2 were measured using a thermal conductivity measuring device using a simple thermistor, it was found that the samples manufactured under the conditions of the present invention ranged from 2 W/cmK. A high thermal conductivity of 15 W/crttK was confirmed, whereas it was less than 2 W/cπ in the sample manufactured under comparative conditions.Example 2 A diamond plate (10X I OX 0.2gm3) 40x34xl
Placed on a molybdenum plate with Ox shoulder 3, microphone A wave output 80
Under the conditions of 0W, pressure 300 Torr, hydrogen flow fftl
Microwave plasma cV・D was performed for 3 hours while introducing 1000 scc, 7) L, Bonn flow fi 500 sccM, and ethanol flow rate 40 secM, and the diamond plate was grown to a thickness of 0.2 mm to 1 R true. This diamond plate, like the original sample No. 4 diamond plate, was found to be a (100) preferentially oriented diamond with good crystallinity by X-ray diffraction and Raman spectroscopy.
実施例3
直径40悶及び厚さ20.龍のモリブデン板の中心付近
に、超高圧法により作成した粒径25071mのダイヤ
モンド単結晶砥粒5個を置き、アルゴン流量20009
CCM、水素i1iftml OOosccM1アセチ
レン流m20secM、マイクロ波出力soow、圧力
500 Torrの条件で、5時間マイクロ波プラズマ
CVDを行ったところ、直径1mmの単結晶砥粒5個が
得られた。X線回折及びラマン分光法により、結晶性の
良いダイヤモンドであることが確認された。Example 3 Diameter: 40 mm and thickness: 20 mm. Five single-crystal diamond abrasive grains with a grain size of 25,071 m made by ultra-high pressure method were placed near the center of the dragon molybdenum plate, and an argon flow rate of 20,009 m was placed.
When microwave plasma CVD was performed for 5 hours under the conditions of CCM, hydrogen i1iftml OOosccM1 acetylene flow m20secM, microwave output soow, and pressure 500 Torr, five single crystal abrasive grains each having a diameter of 1 mm were obtained. It was confirmed by X-ray diffraction and Raman spectroscopy that it was a diamond with good crystallinity.
実施例4
40X35X10xm3のモリブデン板の中心に、超高
圧法により作成した直径3m11のダイヤモンド単結晶
粒を置き、ヘリウム流量2000SCCM、水素流量5
009CCM、プロパン流量20SCCM、?イクロ波
出力200W、圧力600Torrの条件で、5時間マ
イクロ波プラズマCV Dを行ったところ、直径4mm
に増加していた。Example 4 A diamond single crystal grain with a diameter of 3 m11 created by an ultra-high pressure method was placed in the center of a 40 x 35 x 10 x m3 molybdenum plate, and a helium flow rate of 2000 SCCM and a hydrogen flow rate of 5 were placed.
009CCM, propane flow rate 20SCCM,? When microwave plasma CVD was performed for 5 hours under the conditions of microwave output 200 W and pressure 600 Torr, the diameter was 4 mm.
It was increasing.
表面は少しグラファイト化している様であったが、クロ
ム酸処理が進行するにつれてダイヤモンドの自形がはっ
きりと現れた。これはX線回折及びラマン分光法により
ダイヤモンドであることが確認された。The surface seemed to be slightly graphitized, but as the chromic acid treatment progressed, the euhedral shape of the diamond clearly appeared. This was confirmed to be diamond by X-ray diffraction and Raman spectroscopy.
実施例5
直径40朋及び厚さ30Il1mのモリブデン板を#6
00のダイヤモンド砥石による研磨後、アルゴン流ff
1200 S CCM、水素流ff1200sccM。Example 5 A #6 molybdenum plate with a diameter of 40mm and a thickness of 30Il1m
After polishing with 00 diamond grindstone, argon flowff
1200 S CCM, hydrogen flow ff1200sccM.
メタン流ff14secM、マイクロ波出力1.5KW
、圧カフ 60 Torrの条件で、1時間マイクロ波
プラズマCVDを行ったところ、モリブデン板中心部に
直径500μ肩のダイヤモンド粒子が成長していた。こ
れはX線回折及びラマン分光法によりダイヤモンドであ
ることが確認された。Methane flow ff14secM, microwave output 1.5KW
When microwave plasma CVD was performed for 1 hour under the conditions of a pressure cuff of 60 Torr, diamond particles with a diameter of 500 μm were grown in the center of the molybdenum plate. This was confirmed to be diamond by X-ray diffraction and Raman spectroscopy.
寒嵐1撲 本発明のより好ましい実施態様を次に示す。Cold storm 1 fight More preferred embodiments of the present invention are shown below.
1、プラズマ発生の為に、周波数がIKHz以上、特に
500MHz以上のマイクロ波を用いる。1. To generate plasma, microwaves with a frequency of IKHz or higher, particularly 500MHz or higher, are used.
2、使用する炭素含有化合物ガスとして、cVD条件下
で気体の脂肪族炭化水素、芳呑族炭化水素、アルコール
、チオール、ケトン、エーテル、−酸化炭素、二酸化炭
素等から選ばれた少なくとも1種の化合物を用いる。2. The carbon-containing compound gas to be used is at least one selected from gaseous aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, thiols, ketones, ethers, carbon oxides, carbon dioxide, etc. under cVD conditions. using compounds.
3、不活性ガスとして、l\ゾリウムネオン、アルゴン
、クリプトン、キセノンから選ばれた少なくとも1種を
用いる。3. At least one selected from l\\zolium neon, argon, krypton, and xenon is used as the inert gas.
4、プラズマの発生に対する投入電力か、1w/cy、
’以上であり、圧力が60〜400 Torrである。4. Input power for plasma generation, 1w/cy,
' and the pressure is 60 to 400 Torr.
5、反応管径が直径50JJI以上である。5. The diameter of the reaction tube is 50 JJI or more.
6、ダイヤモンド生成反応部における混合ガスの流速が
0 、1 cttr/ sec以上、5cx/see以
下である。6. The flow rate of the mixed gas in the diamond production reaction section is 0.1 cttr/sec or more and 5 cx/see or less.
7、水素ガス(A)、不活性ガス(B)、炭素含有化合
物ガス(C)からなる混合ガスのモル比が、0.05≦
□≦0.8 及び
A + B + C
O,005≦□≦0,05
A+B+C
の条件を満たす。7. The molar ratio of the mixed gas consisting of hydrogen gas (A), inert gas (B), and carbon-containing compound gas (C) is 0.05≦
The following conditions are satisfied: □≦0.8 and A + B + C O,005≦□≦0,05 A+B+C.
[発明の効果] 本発明の方法は、以下の様な効果を有する。[Effect of the invention] The method of the present invention has the following effects.
数百μx/h以北という非常に高速でもダイヤモンドを
合成することが可能であり、析出面積の減少を押さえた
状@(数十平方ミリ)でし数十μm/hという高速でダ
イヤモンドを合成できる。It is possible to synthesize diamond at very high speeds north of several hundred μx/h, and it is possible to synthesize diamond at high speeds of several tens of μm/h while suppressing the decrease in the precipitation area (several tens of square millimeters). can.
又、ダイヤモンド膜成長のみならず、ダイヤモンド粒子
の成長ら1、選択的に安定して、且つ高速(数十μ71
/+1以上)で行える。In addition, not only diamond film growth but also diamond particle growth1 is selectively stable and fast (several tens of μ71
/+1 or more).
更に、従来、高圧法に依っていたダイヤモンドヒートノ
ンクやダイヤモンド砥粒への応用が可能であり、又、高
熱伝導性、低誘電性、高透光性、高比弾性、高強度、耐
摩耗性等が要求されろ分野、例えば、窓材、振動板、切
削工具、ヒートシンク、ICボンダへの薄膜(数μm以
下)のみならず、基材(数十μm以上)としてダイヤモ
ンドを提供する事ら可能となる。Furthermore, it can be applied to diamond heat noncrite and diamond abrasive grains, which conventionally relied on high-pressure methods, and also has high thermal conductivity, low dielectricity, high light transmittance, high specific elasticity, high strength, and wear resistance. In fields where high performance is required, such as window materials, diaphragms, cutting tools, heat sinks, and IC bonders, diamond is used not only as a thin film (several μm or less) but also as a base material (several tens of μm or more). It becomes possible.
加えて、本発明の方法は、プラズマトーチ等を利用ずろ
高温プラズマ装置等に比べて、従来の装置に容易に適用
可能であり、安定操業、設備コスト、原料コストの点て
優れている。In addition, the method of the present invention can be easily applied to conventional equipment, and is superior in terms of stable operation, equipment cost, and raw material cost, compared to high-temperature plasma equipment that uses a plasma torch or the like.
第1図はマイクロ波プラズマCV I)装置、第2図か
高周波プラズマCVD装置、第3図か直流プラズマCV
D装置のそれぞれ概略図である。
l・基材、 2:石英管、
3:真空排気口、 4:供給ガス導入口、5:発生
プラズマ、 6 マグネトロン、7:導波管、
8ニブランジヤー、9:RF電源、 IO:DC電
源、
It・基板支持台、12:絶縁シール、13:カソード
。
特許出願人住友電気工業株式会社Figure 1 is a microwave plasma CVD equipment, Figure 2 is a high frequency plasma CVD equipment, Figure 3 is a DC plasma CV
FIG. 3 is a schematic diagram of the D device. 1. Base material, 2: Quartz tube, 3: Vacuum exhaust port, 4: Supply gas inlet, 5: Generated plasma, 6 Magnetron, 7: Waveguide,
8 nib run gear, 9: RF power supply, IO: DC power supply, It/substrate support stand, 12: insulation seal, 13: cathode. Patent applicant Sumitomo Electric Industries, Ltd.
Claims (1)
合物ガス(C)を、それらのモル比が 0.001≦B/(A+B+C)≦0.95および0.
001≦C/(A+B+C)≦0.1 なる条件を満たすように含む混合ガスを反応容器中に導
き、5〜760Torrの圧力下、直流または交流の電
磁界によってプラズマを発生させて基体上にダイヤモン
ドを形成することを特徴とするダイヤモンドの気相合成
法。 2、気相合成法により形成され、表面ダイヤモンド膜の
平均結晶粒径(E)および膜厚(F)が、0.3≦E/
√F≦3 なる関係を満たし、かつ膜厚(F)が5μm以上である
ことを特徴とするダイヤモンド。[Claims] 1. Hydrogen gas (A), inert gas (B), and carbon-containing compound gas (C) in a molar ratio of 0.001≦B/(A+B+C)≦0.95 and 0 ..
A mixed gas containing 001≦C/(A+B+C)≦0.1 is introduced into a reaction vessel, and a plasma is generated by a direct current or alternating current electromagnetic field under a pressure of 5 to 760 Torr to form diamonds on the substrate. A method of vapor phase synthesis of diamond characterized by the formation of . 2. Formed by vapor phase synthesis method, the average crystal grain size (E) and film thickness (F) of the surface diamond film are 0.3≦E/
A diamond that satisfies the relationship: √F≦3 and has a film thickness (F) of 5 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1023386A JP2689269B2 (en) | 1988-02-01 | 1989-02-01 | Diamond and its vapor phase synthesis method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-22640 | 1988-02-01 | ||
JP2264088 | 1988-02-01 | ||
JP1023386A JP2689269B2 (en) | 1988-02-01 | 1989-02-01 | Diamond and its vapor phase synthesis method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7103914A Division JPH07300394A (en) | 1988-02-01 | 1995-04-27 | Diamond and its vapor-phase synthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01308896A true JPH01308896A (en) | 1989-12-13 |
JP2689269B2 JP2689269B2 (en) | 1997-12-10 |
Family
ID=26359899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1023386A Expired - Lifetime JP2689269B2 (en) | 1988-02-01 | 1989-02-01 | Diamond and its vapor phase synthesis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2689269B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009196832A (en) * | 2008-02-20 | 2009-09-03 | National Institute Of Advanced Industrial & Technology | Method for manufacturing single crystal diamond by plasma cvd process |
JP2012509831A (en) * | 2008-11-25 | 2012-04-26 | カーネギー インスチチューション オブ ワシントン | Production of single crystal CVD diamond at rapid growth rate. |
JP2015096463A (en) * | 2010-12-23 | 2015-05-21 | エレメント シックス リミテッド | Doping control of synthetic diamond material |
CN113186597A (en) * | 2020-01-14 | 2021-07-30 | 宁波材料所杭州湾研究院 | Low-cost, large-size and high-quality monocrystalline diamond and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918197A (en) * | 1982-07-19 | 1984-01-30 | Sumitomo Electric Ind Ltd | Gaseous phase synthesis of diamond |
JPS60137898A (en) * | 1983-12-24 | 1985-07-22 | Namiki Precision Jewel Co Ltd | Production of thin diamond film |
JPS61183198A (en) * | 1984-12-29 | 1986-08-15 | Kyocera Corp | Production of diamond film |
JPH0346436A (en) * | 1989-07-14 | 1991-02-27 | Nippon Telegr & Teleph Corp <Ntt> | Switching network for multi-point connection |
-
1989
- 1989-02-01 JP JP1023386A patent/JP2689269B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918197A (en) * | 1982-07-19 | 1984-01-30 | Sumitomo Electric Ind Ltd | Gaseous phase synthesis of diamond |
JPS60137898A (en) * | 1983-12-24 | 1985-07-22 | Namiki Precision Jewel Co Ltd | Production of thin diamond film |
JPS61183198A (en) * | 1984-12-29 | 1986-08-15 | Kyocera Corp | Production of diamond film |
JPH0346436A (en) * | 1989-07-14 | 1991-02-27 | Nippon Telegr & Teleph Corp <Ntt> | Switching network for multi-point connection |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009196832A (en) * | 2008-02-20 | 2009-09-03 | National Institute Of Advanced Industrial & Technology | Method for manufacturing single crystal diamond by plasma cvd process |
JP2012509831A (en) * | 2008-11-25 | 2012-04-26 | カーネギー インスチチューション オブ ワシントン | Production of single crystal CVD diamond at rapid growth rate. |
JP2015096463A (en) * | 2010-12-23 | 2015-05-21 | エレメント シックス リミテッド | Doping control of synthetic diamond material |
US9637838B2 (en) | 2010-12-23 | 2017-05-02 | Element Six Limited | Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area |
CN113186597A (en) * | 2020-01-14 | 2021-07-30 | 宁波材料所杭州湾研究院 | Low-cost, large-size and high-quality monocrystalline diamond and preparation method and application thereof |
CN113186597B (en) * | 2020-01-14 | 2024-04-30 | 宁波材料所杭州湾研究院 | Low-cost, large-size and high-quality single crystal diamond as well as preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2689269B2 (en) | 1997-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5776552A (en) | Process for the vapor phase synthesis of diamond and highly crystalline diamond | |
JPS622133A (en) | Diamond-coated blade for microtome and manufacture thereof | |
US5270028A (en) | Diamond and its preparation by chemical vapor deposition method | |
JP2012509831A (en) | Production of single crystal CVD diamond at rapid growth rate. | |
WO1995012013A1 (en) | Diamond film growth from fullerene precursors | |
Tachibana et al. | Diamond films grown by a 60-kW microwave plasma chemical vapor deposition system | |
US5380516A (en) | Process for synthesizing diamond in a vapor phase | |
JPH01308896A (en) | Diamond and vapor synthesis thereof | |
EP0327051B1 (en) | Diamond and its preparation by chemical vapor deposition method | |
JPS60127293A (en) | Production of diamond | |
JPS61222915A (en) | Vapor-phase synthesis of diamond | |
Benedic et al. | Investigations on nitrogen addition in the CH4–H2 gas mixture used for diamond deposition for a better understanding and the optimisation of the synthesis process | |
JPH01301586A (en) | Vapor synthesis of diamond | |
JPH07300394A (en) | Diamond and its vapor-phase synthesis | |
JPH01313393A (en) | Method for synthesizing diamond in vapor phase | |
JP2636167B2 (en) | Gas phase synthesis of diamond | |
Varshney et al. | Spontaneously detaching self-standing diamond films | |
JPS60186500A (en) | Method for synthesizing diamond from vapor phase | |
Trombetta et al. | Optical properties of DC arc-discharge plasma CVD diamond | |
Shibuya et al. | Effects of substrate pretreatments on diamond synthesis for Si3N4 based ceramics | |
Lin et al. | Fabrication of nanogranular diamond films by MPJCVD system | |
JPH08158051A (en) | Rigid carbon film | |
JPH06280019A (en) | Production of thin film of diamond-like carbon | |
Feldman et al. | Diamond, a potentially new optical coating material | |
Sumitomo et al. | Fabrication of Diamond Films by Microwave Plasma CVD at Low Hydrogen Concentration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080829 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080829 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090829 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090829 Year of fee payment: 12 |