JPH0130762B2 - - Google Patents

Info

Publication number
JPH0130762B2
JPH0130762B2 JP59138771A JP13877184A JPH0130762B2 JP H0130762 B2 JPH0130762 B2 JP H0130762B2 JP 59138771 A JP59138771 A JP 59138771A JP 13877184 A JP13877184 A JP 13877184A JP H0130762 B2 JPH0130762 B2 JP H0130762B2
Authority
JP
Japan
Prior art keywords
gas
temperature
adsorption
amount
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59138771A
Other languages
Japanese (ja)
Other versions
JPS6117413A (en
Inventor
Taisuke Nishida
Hiroshi Osada
Osamu Shigyo
Hiroaki Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP59138771A priority Critical patent/JPS6117413A/en
Priority to DE8585108247T priority patent/DE3567579D1/en
Priority to CA000486259A priority patent/CA1252451A/en
Priority to EP85108247A priority patent/EP0170884B1/en
Publication of JPS6117413A publication Critical patent/JPS6117413A/en
Priority to US06/948,394 priority patent/US4743276A/en
Publication of JPH0130762B2 publication Critical patent/JPH0130762B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 この発明はCO、CO2、N2、H2、H2O等を含有
する混合ガスからCOを分離、濃縮または除去す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating, concentrating or removing CO from a mixed gas containing CO, CO 2 , N 2 , H 2 , H 2 O and the like.

上記のような混合ガスからCOを分離、濃縮ま
たは除去して工業的に有用なガスを製造する方法
の1つとして固相吸着剤を利用したPSA法があ
る。しかし、現在使用されている吸着剤のCO2
の親和力はCOのそれよりも一般的に大きいので、
CO2を含む混合ガスからCOを分離するには何等
かの前処理が必要となる。例えば、特開昭59−
22625号公報では、前処理工程で水分とCO2を除
去するPSAを設ける2段処理をしている。また
転炉ガスからCOを分離する特開昭59−26121号公
報では、吸着剤にモルデナイトを用いCO2−PSA
とCO−PSAを別の工程で行う2段処理をしてい
る。
One of the methods for producing industrially useful gas by separating, concentrating, or removing CO from the above-mentioned mixed gas is the PSA method using a solid phase adsorbent. However, the affinity of currently used adsorbents for CO2 is generally greater than that for CO2, so
Some kind of pretreatment is required to separate CO from a mixed gas containing CO 2 . For example, JP-A-59-
In Publication No. 22625, a two-stage treatment is performed in which a PSA is provided to remove moisture and CO 2 in the pretreatment step. In addition, in Japanese Patent Application Laid-open No. 59-26121, which separates CO from converter gas, mordenite is used as an adsorbent and CO 2 -PSA
It is a two-stage process in which CO-PSA and CO-PSA are performed in separate processes.

発明者等はCO2を含む混合ガスから一段の処理
によつてCOを分離濃縮、除去できる方法につい
て鋭意検討を加えた結果、特許請求の範囲に記載
の吸着剤を使用した場合、常温ではCO2の吸着能
はCOの数倍あるにも拘らず、驚くべきことに吸
着温度を上昇せしめることによつて、COとCO2
の平衡吸着量が逆転するという事実を見出して本
発明を完成した。即ち、吸着剤により強固に吸着
されるCOの吸着量の温度上昇に対する平衡吸着
量の低下割合が極めて緩やかなのに対して、CO2
のそれは温度の上昇に伴つて急激に低下する。
The inventors have conducted intensive studies on a method that can separate, concentrate, and remove CO from a mixed gas containing CO 2 through one-step processing, and have found that when the adsorbent described in the claims is used, CO 2 can be removed at room temperature. Surprisingly, by increasing the adsorption temperature, CO and CO 2
The present invention was completed by discovering the fact that the equilibrium adsorption amount of is reversed. In other words, the rate of decrease in the equilibrium adsorption amount of CO, which is strongly adsorbed by the adsorbent, with respect to temperature rise is extremely gradual , whereas
decreases rapidly with increasing temperature.

この事実は、高温での吸着は、吸着効率が下る
のでPSAの操作は常温が望ましいという一般の
技術常識に反して驚くべき結果である。
This fact is a surprising result, contrary to the general technical knowledge that it is preferable to operate PSA at room temperature since adsorption at high temperatures reduces adsorption efficiency.

この事実をより具体的に説明すれば、第1図は
吸着剤としてCu()Yを用いた場合であるが、
吸着温度を上げるに従つてCO2の吸着量は急激に
下るが、COの吸着量の低下は少なく、約50℃で
吸着量がほぼ同程度となり、それ以上の温度では
吸着量が逆転し、100℃でCO2の吸着量はCOの吸
着量の約1/2に低下し、150℃ではCO2の吸着量は
零に近くなつている。従つて、この吸着剤を用い
操作温度50〜150℃で、PSA法により少なくとも
CO、CO2及び/又はN2を含む混合ガスを処理す
れば、一段でのCOの分離、濃縮及び除去が可能
となる。
To explain this fact more specifically, Figure 1 shows the case where Cu()Y is used as the adsorbent.
As the adsorption temperature increases, the amount of CO 2 adsorbed decreases rapidly, but the decrease in the amount of CO adsorption is small, and at about 50°C, the amount of adsorption is almost the same, and at higher temperatures, the amount of adsorption is reversed. At 100°C, the amount of CO 2 adsorbed decreases to about half of the amount of CO 2 adsorbed, and at 150°C, the amount of CO 2 adsorbed is close to zero. Therefore, using this adsorbent at an operating temperature of 50 to 150°C, at least
By treating a gas mixture containing CO, CO 2 and/or N 2 , CO can be separated, concentrated and removed in one step.

一方吸着温度が高すぎると、COの吸着量も減
少するうえ、含有するH2及び/又はCOによつ
て、担持された金属が還元されるおそれもあり、
又150℃以上ではCO2の吸着量がほぼ零となりこ
れ以上温度を上げる必要がなく、更に高温になる
程吸着塔を加熱するため多くのエネルギを必要と
する上、装置特に電磁弁の材質に高価な耐熱性の
ものを用いる必要があるなど経済的に不利である
ので、温度上限は150℃が適当である。
On the other hand, if the adsorption temperature is too high, the amount of CO adsorbed will decrease, and the supported metal may be reduced by the H 2 and/or CO contained.
Furthermore, at temperatures above 150°C, the amount of CO 2 adsorbed is almost zero, and there is no need to raise the temperature any further; the higher the temperature, the more energy is required to heat the adsorption tower, and the equipment, especially the material of the solenoid valve, is Since this is economically disadvantageous as it requires the use of expensive heat-resistant materials, an appropriate upper temperature limit is 150°C.

一方このような通常の常温よりも高い温度で
PSAを行うと、次の効果が期待できる。
On the other hand, at temperatures higher than normal room temperature,
If you perform PSA, you can expect the following effects:

より高濃度のCOを得るため、PSAでは混合
ガスを吸着させた後、高濃度の製品COガスで
吸着剤粒子間の不純ガスおよび共吸着した不純
ガスをパージする工程を用いるのが望ましい
が、高温ほどパージを短時間に容易に行うこと
ができる。
In order to obtain a higher concentration of CO, it is desirable for PSA to use a process in which the mixed gas is adsorbed and then the impurity gas between adsorbent particles and co-adsorbed impurity gas is purged with high concentration product CO gas. The higher the temperature, the easier it is to purge in a shorter time.

吸着後のCOを真空排気して脱着回収するが、
脱着も高温ほど迅速に行うことができる。
After adsorption, CO is evacuated and desorbed and recovered.
Desorption can also be carried out more quickly at higher temperatures.

なお、この発明のCOの分離方法は、CO、
CO2、N2、H2を含有する天然ガス、ナフサなど
の改質ガス、石炭、コークス及び重質油などのガ
ス化ガス、製鉄所の副生ガスとくに高炉ガス、転
炉ガスまた製油所、石油化学工場の副生ガス等の
ガスに適用できる。
In addition, the method for separating CO of this invention includes CO,
Natural gas containing CO 2 , N 2 , and H 2 , reformed gas such as naphtha, gasification gas such as coal, coke, and heavy oil, byproduct gas from steel plants, especially blast furnace gas, converter gas, and refineries It can be applied to gas such as by-product gas of petrochemical factories.

実施例 CuCl2の0.5N溶液を作製し、100ml丸底フラス
コにNaYゼオライト10gと、0.5N溶液50mlを加
え、丸底フラスコにコンデンサーを取りつけてマ
ントルヒータで100℃で加熱還流を2時間行つた。
静置後デカンテーシヨンにより上澄みを回収し、
さらに0.5N溶液50mlを加え同様に還流を行つた。
還流操作は合計3回行い、ゼオライトは純水で十
分に水洗し、110℃で乾燥後、粉砕し、電気炉で
450℃で2時間焼成して吸着剤を作製した。なお
回収した上澄み液と液を混合し、炎光分析して
放出したNa量を求めて、イオン交換率を測定し
た。交換率は82.7%であつた。得られたCu()−
Y型ゼオライトは、180℃で30分間水素雰囲気下
で還元してCu()−Yとした。
Example A 0.5N solution of CuCl 2 was prepared, 10 g of NaY zeolite and 50 ml of the 0.5N solution were added to a 100 ml round bottom flask, a condenser was attached to the round bottom flask, and the mixture was heated under reflux at 100°C using a mantle heater for 2 hours. .
After standing still, collect the supernatant by decantation,
Further, 50 ml of 0.5N solution was added and refluxed in the same manner.
The reflux operation was carried out three times in total, and the zeolite was thoroughly washed with pure water, dried at 110℃, crushed, and heated in an electric furnace.
An adsorbent was prepared by baking at 450°C for 2 hours. The collected supernatant liquid and liquid were mixed and subjected to flame light analysis to determine the amount of Na released, and the ion exchange rate was measured. The exchange rate was 82.7%. Obtained Cu()−
The Y-type zeolite was reduced to Cu()-Y at 180°C for 30 minutes in a hydrogen atmosphere.

このようにして調製した吸着剤2gを20mlの試
料びんに入れ定圧式吸着量測定装置にセツトし、
10-3mmHg、150℃で1時間、加熱真空排気して脱
水した。
Put 2 g of the adsorbent prepared in this way into a 20 ml sample bottle and set it in a constant pressure adsorption amount measuring device.
The mixture was dehydrated by heating and vacuum evacuation at 10 -3 mmHg and 150°C for 1 hour.

つづいて試料びんを恒温槽に入れ20〜30分間放
置し、測定温度に保ちながら、Heガス(純度
99.9%up)を送り込み、平衡吸着量に達するまで
吸着量を測定して死溶積を求めた。測定温度は約
0℃〜約150℃まで順次、平衡吸着量を測定した
後、昇温した。測定後は再び150℃、10-3mmHgで
1時間加熱脱着させ、放冷後被測定ガスを用いて
上記方法と同様にして吸着量を測定した。全ガス
全温度について測定を終了した後、試料を精秤し
この値を用いて単位重量あたりの平衡吸着量を求
めた。
Next, place the sample bottle in a thermostatic chamber and leave it for 20 to 30 minutes.While maintaining the measurement temperature, He gas (purity
99.9% up) was fed, and the adsorption amount was measured until the equilibrium adsorption amount was reached to determine the dead volume. The measurement temperature was raised sequentially from about 0°C to about 150°C after measuring the equilibrium adsorption amount. After the measurement, the adsorption amount was again heated at 150°C and 10 -3 mmHg for 1 hour, and after cooling, the amount of adsorption was measured using the gas to be measured in the same manner as above. After completing the measurement of all gas temperatures, the sample was accurately weighed, and this value was used to determine the equilibrium adsorption amount per unit weight.

結果を第1図に示す。CO2とCOの平衡吸着量
が50℃を境として逆転している。
The results are shown in Figure 1. The equilibrium adsorption amounts of CO 2 and CO are reversed at 50°C.

このような事実に基づいて、この吸着剤を用い
てPSA法により、少なくともCO、CO2及び/又
はN2を含む混合ガスの処理を50〜150℃で行え
ば、一段階でのCOの分離、濃縮、除去などが可
能になることは明らかである。
Based on these facts, if a mixed gas containing at least CO, CO 2 and/or N 2 is treated at 50 to 150°C by the PSA method using this adsorbent, CO can be separated in one step. , concentration, removal, etc. are clearly possible.

ここに、比較例として、吸着剤に金属でイオン
交換しないNaYを用いて、上記と同様の測定方
法により平衡吸着量を求めた結果を第2図に示
す。この場合には、CO2とCOの平衡吸着量の逆
転は起らなかつた。即ち第1図に示す平衡吸着量
の逆転は、ゼオライトに特定の遷移金属を担持さ
せた吸着剤にのみ生ずる特異の現象である。
As a comparative example, FIG. 2 shows the results of determining the equilibrium adsorption amount using the same measurement method as above using NaY, which is not ion-exchanged with metal, as the adsorbent. In this case, no reversal of the equilibrium adsorption amounts of CO 2 and CO occurred. That is, the reversal of the equilibrium adsorption amount shown in FIG. 1 is a unique phenomenon that occurs only in adsorbents in which zeolite supports a specific transition metal.

実施例 NaYに上記第1の実施例と同様の方法で、
AgNO3溶液を用いてAgを担持させた。この場合
の交換値は74.9%であつた。得られたAgY吸着剤
について上記と同様の測定方法により平衡吸着量
を求めた結果を第3図に示す。平衡吸着量の変化
状況は、第1図のCu()Yをほぼ同じ傾向を示
している。
Example In the same manner as in the first example above,
Ag was supported using AgNO 3 solution. The exchange value in this case was 74.9%. FIG. 3 shows the results of determining the equilibrium adsorption amount of the obtained AgY adsorbent using the same measuring method as above. The changes in the equilibrium adsorption amount show almost the same tendency for Cu()Y in FIG. 1.

実施例 Naモルデナイトに、上記と同様にしてAgを担
持させたAgモルデナイト吸着剤(交換率100%)
について、上記の同様の測定方法により平衡吸着
量を求めた結果を第4図に示す。CO2の吸着量の
低下割合が緩やかであるが、100℃においては
CO2の吸着量はCOの吸着量の約1/2に下つてい
る。
Example Ag mordenite adsorbent with Ag supported on Na mordenite in the same manner as above (exchange rate 100%)
FIG. 4 shows the results of determining the equilibrium adsorption amount using the same measuring method as described above. Although the rate of decrease in the adsorption amount of CO 2 is gradual, at 100℃
The adsorption amount of CO 2 is about 1/2 of the adsorption amount of CO.

実施例 30φ(内径)×500(長さ)のパイレツクス製ガラ
ス管に造粒剤20%を加えて成形した2φ×2のCu
()Yを160g充填率0.45で充填した吸着塔を用
いて実験した。混合ガスには製鉄所オフガスを想
定して作製した標準ガスCO73.9%、CO29.0%、
H23.0%、N2バランスを用いて行つた。
Example: 2φ x 2 Cu molded by adding 20% granulating agent to a 30φ (inner diameter) x 500 (length) Pyrex glass tube.
An experiment was conducted using an adsorption tower filled with 160 g of ()Y at a filling rate of 0.45. The mixed gas includes standard gas CO73.9%, CO2 9.0%, which was prepared assuming steelwork off-gas.
Performed using 3.0% H2 , N2 balance.

まずCu()Yを還元するために純COガスを
塔内に満たし、250℃、1時間加熱した。吸着剤
は青藍色から白色へと変化した。還元処理終了
後、200℃、10-3mmHgで1時間COを充分に脱着
パージし、Heを流通させながら所定温度に保つ
た。そして、吸着塔出口に、COとCO2をそれぞ
れ連続的に測定するため、非分散型赤外線分析装
置を2台設置して、上記混合ガスを常圧で2Nl/
mで通過させ、出口での濃度を測定した。110℃
と140℃で行つたときの破過曲線を第5図に示す。
いずれの場合も、CO2がCOよりも先に破過して
おり、また高温ほど破過時間が短縮されていた。
こうして、CO、CO2、H2、N2を含有する混合ガ
スから、一段の処理によつてCOをCO2及びH2
N2から分離できることが確められた。
First, in order to reduce Cu()Y, the column was filled with pure CO gas and heated at 250°C for 1 hour. The color of the adsorbent changed from blue to white. After the reduction treatment was completed, CO was sufficiently desorbed and purged at 200°C and 10 -3 mmHg for 1 hour, and the temperature was maintained at a predetermined temperature while circulating He. Then, two non-dispersive infrared analyzers were installed at the outlet of the adsorption tower to continuously measure CO and CO2 , and the mixed gas was mixed at 2Nl/2 at normal pressure.
m and the concentration at the outlet was measured. 110℃
Figure 5 shows the breakthrough curve when the test was carried out at 140°C.
In both cases, CO 2 broke through earlier than CO, and the breakthrough time was shorter as the temperature increased.
In this way, from a gas mixture containing CO, CO 2 , H 2 , and N 2 , CO is converted into CO 2 and H 2 in one step.
It was confirmed that it can be separated from N2 .

実施例 上記実施例で用いた吸着剤及び装置を用い
て、40℃と90℃において、上記混合ガスの破過終
了後、純COガスを2Nl/m流通させて塔内をパ
ージし、出口のCOおよびCO2濃度を測定した結
果を第6図に示す。CO、CO2平衡吸着量の逆転
温度である50℃以下(破線40℃)では、CO2をパ
ージするのに6分を要しているが、それ以上(実
線90℃)では2分でパージは完了していた。即ち
高温ほどパージを短時間に行うことができる。
Example Using the adsorbent and equipment used in the above example, at 40°C and 90°C, after the above mixed gas has completed breakthrough, pure CO gas is passed at 2Nl/m to purge the inside of the column, and the outlet Figure 6 shows the results of measuring CO and CO 2 concentrations. At temperatures below 50°C (broken line 40°C), which is the reversal temperature for the equilibrium adsorption amount of CO and CO2 , it takes 6 minutes to purge CO2 , but above that (solid line 90°C), it takes 2 minutes to purge CO2. had been completed. That is, the higher the temperature, the faster the purging can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はそれぞれ異なる吸着剤の温度
とCO及びCO2の吸着量との関係を示す説明図、
第5図はCu()Y吸着塔でのCO及びCO2の破過
曲線の説明図、第6図はCu()Y吸着塔での
CO及びCO2のパージ曲線の説明図である。
Figures 1 to 4 are explanatory diagrams showing the relationship between the temperature of different adsorbents and the adsorption amount of CO and CO 2 , respectively.
Figure 5 is an explanatory diagram of the breakthrough curves of CO and CO 2 in the Cu()Y adsorption tower, and Figure 6 is an illustration of the breakthrough curves of CO and CO 2 in the Cu()Y adsorption tower.
FIG. 2 is an explanatory diagram of CO and CO 2 purge curves.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni、Mn、Rh、Cu()、Agの1つ又は2以
上の混合物を担持させた吸着剤を用い、少なくと
も二酸化炭素と一酸化炭素を含有する混合ガスか
ら、PSA法(圧力変動式吸着分離法)によつて、
50℃以上150℃以下の温度で、COを優先的に分離
することを特徴とするCOの分離方法。
1 Using an adsorbent supporting one or a mixture of two or more of Ni, Mn, Rh, Cu(), and Ag, a mixed gas containing at least carbon dioxide and carbon monoxide is adsorbed using the PSA method (pressure fluctuation adsorption separation method),
A CO separation method characterized by preferentially separating CO at a temperature of 50°C or higher and 150°C or lower.
JP59138771A 1984-07-04 1984-07-04 Separation of co Granted JPS6117413A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59138771A JPS6117413A (en) 1984-07-04 1984-07-04 Separation of co
DE8585108247T DE3567579D1 (en) 1984-07-04 1985-07-03 Method of separating carbon monoxide
CA000486259A CA1252451A (en) 1984-07-04 1985-07-03 Method of separating carbon monoxide and carbon monoxide adsorbent used in this method
EP85108247A EP0170884B1 (en) 1984-07-04 1985-07-03 Method of separating carbon monoxide
US06/948,394 US4743276A (en) 1984-07-04 1986-12-31 Method of separating carbon monoxide and carbon monoxide adsorbent used in this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138771A JPS6117413A (en) 1984-07-04 1984-07-04 Separation of co

Publications (2)

Publication Number Publication Date
JPS6117413A JPS6117413A (en) 1986-01-25
JPH0130762B2 true JPH0130762B2 (en) 1989-06-21

Family

ID=15229810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138771A Granted JPS6117413A (en) 1984-07-04 1984-07-04 Separation of co

Country Status (1)

Country Link
JP (1) JPS6117413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132040A1 (en) * 2005-06-07 2006-12-14 Kabushiki Kaisha Kobe Seiko Sho Process for producing high-purity hydrogen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651563B2 (en) * 1984-10-18 1994-07-06 千代田化工建設株式会社 Recovery method of carbon monoxide
JPS6197015A (en) * 1984-10-18 1986-05-15 Chiyoda Chem Eng & Constr Co Ltd Manufacture of high-pressure gas free from co out of gaseous mixture
JPS6372337A (en) * 1986-09-12 1988-04-02 Asada Kagaku Kogyo Kk Adsorbent
JP2007252989A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP4912706B2 (en) * 2006-03-20 2012-04-11 日揮触媒化成株式会社 Carbon monoxide methanation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497462A (en) * 1967-09-20 1970-02-24 Union Carbide Corp Copper (i) zeolites
JPS5114197A (en) * 1974-07-26 1976-02-04 Toa Nenryo Kogyo Kk
US4019879A (en) * 1975-09-26 1977-04-26 Union Carbide Corporation Selective adsorption of carbon monoxide from gas streams
US4019880A (en) * 1975-09-26 1977-04-26 Union Carbide Corporation Adsorption of carbon monoxide using silver zeolites
US4034065A (en) * 1975-09-26 1977-07-05 Union Carbide Corporation Preparation of CU+ zeolites
JPS5691825A (en) * 1979-12-26 1981-07-25 Japan Tobacco Inc Removal of carbon monoxide in gas
JPS56147629A (en) * 1980-04-18 1981-11-16 Japan Tobacco Inc Carbon monoxide removing agent and its removing method
JPS5969414A (en) * 1982-10-09 1984-04-19 Hidefumi Hirai Separation of carbon monoxide by adsorption

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497462A (en) * 1967-09-20 1970-02-24 Union Carbide Corp Copper (i) zeolites
JPS5114197A (en) * 1974-07-26 1976-02-04 Toa Nenryo Kogyo Kk
US4019879A (en) * 1975-09-26 1977-04-26 Union Carbide Corporation Selective adsorption of carbon monoxide from gas streams
US4019880A (en) * 1975-09-26 1977-04-26 Union Carbide Corporation Adsorption of carbon monoxide using silver zeolites
US4034065A (en) * 1975-09-26 1977-07-05 Union Carbide Corporation Preparation of CU+ zeolites
JPS5691825A (en) * 1979-12-26 1981-07-25 Japan Tobacco Inc Removal of carbon monoxide in gas
JPS56147629A (en) * 1980-04-18 1981-11-16 Japan Tobacco Inc Carbon monoxide removing agent and its removing method
JPS5969414A (en) * 1982-10-09 1984-04-19 Hidefumi Hirai Separation of carbon monoxide by adsorption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132040A1 (en) * 2005-06-07 2006-12-14 Kabushiki Kaisha Kobe Seiko Sho Process for producing high-purity hydrogen

Also Published As

Publication number Publication date
JPS6117413A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
US4743276A (en) Method of separating carbon monoxide and carbon monoxide adsorbent used in this method
US4519813A (en) Process for extraction of highly purified oxygen
US7309378B2 (en) Syngas purification process
US5413625A (en) Mixed ion-exchanged zeolites and processes for the use thereof in gas separations
US4775396A (en) Selective adsorption of CO2 on zeolites
US4869883A (en) Inert gas purifier for bulk nitrogen without the use of hydrogen or other reducing gases
US4957514A (en) Hydrogen purification
EP0145539B1 (en) Mercury adsorbent carbons and carbon molecular sieves
US6261344B1 (en) PSA process using a faujasite zeolite containing metal cations as adsorbent
JPH0130762B2 (en)
JP2539443B2 (en) A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
NO157965B (en) PROCEDURE TE FOR Separating the oxygen from a gas
JPH10137530A (en) Removal of o2/co from inert gas by adsorption to porous metal oxide
GB2063234A (en) Process for the production of hydrogen cyanide
JPS59107910A (en) Method for purifying gaseous argon
EP0192394B1 (en) Selective adsorption process
CA2182641A1 (en) Process for the absorption of nitrogen from gas mixtures using pressure-swing adsorption with zeolites
JP2004344694A (en) Method for purifying original air in air liquefying/separating apparatus
JP3062759B2 (en) Manufacturing method of carbon dioxide adsorbent
JPS61232210A (en) Method of separating co
JPS60241931A (en) Adsorbent for pressure-variable separation by adsorption
JPS58190801A (en) Method for recovering high purity hydrogen from coke oven gas
JPH0620545B2 (en) Co selective adsorbent and method for producing the same
JPH0360523B2 (en)