JPH01307159A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPH01307159A
JPH01307159A JP63137501A JP13750188A JPH01307159A JP H01307159 A JPH01307159 A JP H01307159A JP 63137501 A JP63137501 A JP 63137501A JP 13750188 A JP13750188 A JP 13750188A JP H01307159 A JPH01307159 A JP H01307159A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
oil furnace
furnace black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63137501A
Other languages
Japanese (ja)
Inventor
Mitsuo Hiruma
光生 晝間
Nobuaki Chiba
千葉 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63137501A priority Critical patent/JPH01307159A/en
Publication of JPH01307159A publication Critical patent/JPH01307159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase heavy load discharge performance by containing a positive active material comprising beta-MnO2 obtained by oxidizing gamma-MnOOH at high temperature and a conductive material comprising oil furnace black in a positive electrode. CONSTITUTION:beta-MnO2 obtained by oxidizing gamma-MnOOH at high temperature is used as a positive active material. Liquid hydrocarbon is partially oxidized in a furnace in the existence of molecular-state oxygen and steam, and by- product carbon produced together with synthetic gas is dried, then heated to obtain oil furnace black having a specific surface area of 90-150m<2>/g. This oil furnace black is used as a positive conductive material. Conductivity and electrolyte retaining capability in a positive electrode are increased, and heavy load discharge performance of a battery is also increased.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非水溶媒電池に関し、さらに詳しくは、重負荷
放電性能が優れた非水溶媒電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent battery, and more particularly to a non-aqueous solvent battery with excellent heavy load discharge performance.

(従来の技術) 負極活物質としてLi、Na、Aβ等の軽金属を用いた
非水溶媒電池はエネルギー密度が高く、貯蔵特性に優れ
、かつ作動温度範囲が広いという特性を持ち、電卓、時
計、メモリーのバックアップ電源として多用されている
が、最近は特に重負荷放電性能が要求されている。かか
る非水溶媒電池において、負極活物質であるLi、Na
等の軽金属と組み合わせる正極活物質は、電池の性能の
大部分を決定するため、その選択は非常に重要な問題で
ある。
(Prior art) Nonaqueous solvent batteries using light metals such as Li, Na, and Aβ as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, and are used in calculators, watches, It is often used as a backup power source for memory, but recently there has been a particular demand for heavy load discharge performance. In such a nonaqueous solvent battery, negative electrode active materials such as Li and Na
The selection of the cathode active material in combination with light metals, such as metals, is a very important issue because it determines a large part of the performance of the battery.

従来多くの正極活物質が検討されて来たが、その中で二
酸化マンガン(MnO□)は比較的層れた性能を示し、
化学的にも安定しているという長所を有するため広(用
いられてきた。特に、二酸化マンガンの中でも非水溶媒
電池用には硫酸マンガンを電解酸化して得られる電解二
酸化マンガン(EMD)が一般に用いられている。
Many positive electrode active materials have been studied in the past, but among them, manganese dioxide (MnO□) has shown relatively good layered performance.
It has been widely used because it has the advantage of being chemically stable. In particular, among manganese dioxides, electrolytic manganese dioxide (EMD), which is obtained by electrolytically oxidizing manganese sulfate, is generally used for non-aqueous batteries. It is used.

このENDを有機溶媒電池に使用する場合、EMDの結
晶構造はγタイプであるため、例えば負極活物質にリチ
ウムを用いた場合はM n 02の結晶中をリチウムイ
オンがスムーズに拡散せず、放電容量が減少する。また
、γタイプは結合水を多く含んでいるため、この結合水
が負極活物質と激しく反応して電池容器の腐蝕や漏液を
引き起こす。このため、350〜450°Cの高温で長
時間加熱処理して結晶構造をβタイプに転移させ、かつ
結合水を除去していた。
When using this END in an organic solvent battery, since the crystal structure of EMD is γ type, for example, when lithium is used as the negative electrode active material, the lithium ions do not diffuse smoothly in the M n 02 crystal, resulting in discharging. Capacity decreases. Furthermore, since the γ type contains a large amount of bound water, this bound water reacts violently with the negative electrode active material, causing corrosion and leakage of the battery container. For this reason, a heat treatment is performed at a high temperature of 350 to 450° C. for a long time to transform the crystal structure to the β type and to remove bound water.

また、β−MnO2の製法としては上記の他に硝酸マン
ガン[Mn (No 3)−・6H201を熱分解する
方法が知られている。
In addition to the method described above, a method of thermally decomposing manganese nitrate [Mn (No 3)-.6H201 is known as a method for producing β-MnO2.

一方、非水溶媒電池の正極は上記の活物質に導電材およ
び結着材を添加混合し、この混合物を電池の種類に合わ
せて成型して作られている。その際に用いられる導電材
としては、アセチレンブラック、黒鉛等がある。
On the other hand, the positive electrode of a non-aqueous solvent battery is made by adding and mixing a conductive material and a binder to the above-mentioned active material, and molding this mixture according to the type of battery. Examples of conductive materials used in this case include acetylene black and graphite.

(発明が解決しようとする課題) しかしながら、前述のように現在は重負荷放電性能が要
求されており、これには従来の電解二酸化マンガンと、
アセチレンブラックまたは黒鉛との組合わせ使用では対
応できなくなってきている。
(Problem to be solved by the invention) However, as mentioned above, heavy load discharge performance is currently required, and this requires conventional electrolytic manganese dioxide,
It is no longer possible to use it in combination with acetylene black or graphite.

すなわちEMDを用いて重負荷放電性能を上げるために
は導電材を検討する必要がある。従来用いられているア
セチレンブラックは、吸液特性が優れているが、導電性
が劣り、一方、黒鉛は、導電性が優れているが吸液特性
が劣る。従ってこれらを導電材として非水溶媒電池の正
極に用いた場合、正極合剤の液保持性または導電性が低
下し、従って電池の内部抵抗を下げに(<、放電性能を
向上させることが困難である。このことは両者を混合し
て使用しても同様である。
That is, in order to improve heavy load discharge performance using EMD, it is necessary to consider conductive materials. Acetylene black, which has been conventionally used, has excellent liquid absorption properties but poor conductivity, while graphite has excellent conductivity but poor liquid absorption properties. Therefore, when these are used as conductive materials in the positive electrode of a non-aqueous battery, the liquid retention or conductivity of the positive electrode mixture decreases, making it difficult to lower the battery's internal resistance (<, to improve discharge performance). The same holds true even when a mixture of both is used.

また上記EMDも非水溶媒電池用活物質として、必ずし
も充分な特性を有しているとはいえず、また製造工程は
前述のように電解を含み、その電解に長時間を要しかつ
多(の電力を消費するため、製造コストが高くなるとい
う問題がある。
Furthermore, the EMD described above cannot necessarily be said to have sufficient properties as an active material for non-aqueous batteries, and the manufacturing process includes electrolysis as described above, and the electrolysis requires a long time and a large amount of ( There is a problem in that the manufacturing cost is high because of the power consumption.

しかも、前述のようにEMDは結晶構造がγタイプであ
るため、それをβタイプに変えるために350〜450
℃で加熱処理すると、高温のため生成するβ−MnO□
が更に分解してM n a Osのような低級酸化物を
生成し、これを正極活物質に使用すると容量劣化を招く
恐れがある。また、Mn (No −)  2 ’ 6
H* Oを熱分解する方法においてもM n 20 s
を生成する可能性があり、しかもMn (NOs )2
 ・6H* Oは大量に人手することが難しく高価であ
るという問題がある。
Moreover, as mentioned above, EMD has a γ-type crystal structure, so in order to change it to a β-type, 350 to 450
When heat treated at ℃, β-MnO□ is produced due to the high temperature.
is further decomposed to produce a lower oxide such as MnaOs, and if this is used as a positive electrode active material, there is a risk of capacity deterioration. Also, Mn (No −) 2′ 6
Also in the method of thermally decomposing H*O, M n 20 s
Mn (NOs)2
- 6H*O has the problem of being difficult and expensive to produce in large quantities.

本発明は上記従来の問題点を解決するためになされたも
ので、重負荷放電性能が優れた非水溶媒電池を提供する
ことを目的とするものである。
The present invention was made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a non-aqueous solvent battery with excellent heavy load discharge performance.

[発明の構成] (課題を解決するための手段) 本発明の非水溶媒電池は、γ−MnOOHの高温酸化処
理により得られたβ−M n O2を正極活物質とし、 また、液状炭化水素を炉内で分子状酸素および水蒸気の
存在下で部分酸化反応せしめ、合成ガス生成と同時に生
成する副生カーボンを乾燥し、次いで加熱処理して得た
比表面積90〜150rn”/gのオイルファーネスブ
ラックを正極導電材として用いたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The nonaqueous solvent battery of the present invention uses β-MnO2 obtained by high-temperature oxidation treatment of γ-MnOOH as a positive electrode active material, and also uses liquid hydrocarbon An oil furnace with a specific surface area of 90 to 150 rn''/g obtained by subjecting it to a partial oxidation reaction in the presence of molecular oxygen and water vapor in a furnace, drying the by-product carbon produced at the same time as synthesis gas production, and then heat-treating it. It is characterized by using black as the positive electrode conductive material.

ここで比表面積はBET法により求めたものであり、以
下の記載においても同様である。
Here, the specific surface area is determined by the BET method, and the same applies to the following description.

本発明の電池は、正極活物質が上記β−MnOz、正極
導電材が上記オイルファーネスブラックであることに特
徴があり、他の要素は従来の非水溶媒電池と同じであっ
てよい。
The battery of the present invention is characterized in that the positive electrode active material is the above β-MnOz and the positive electrode conductive material is the above oil furnace black, and other elements may be the same as conventional nonaqueous solvent batteries.

本発明に用いるβ−MnO□の詳細な製造方法は次の通
りである。
The detailed method for producing β-MnO□ used in the present invention is as follows.

本発明に使用するM n OOHは、γタイプで、その
他にもα、βタイプがあるが、この中で明確なX線回折
像を示す合成物はγ−MnOOHのみである。γ−Mn
OOHは比重的3.26の黒色固体、結晶は単斜晶系で
a=8.86人、b=5.24人、c=5.70人、単
位格子はMn a Os (OH) aである。
The M n OOH used in the present invention is of the γ type, and there are also α and β types, but among these, γ-MnOOH is the only compound that shows a clear X-ray diffraction pattern. γ-Mn
OOH is a black solid with a specific gravity of 3.26, the crystal is monoclinic, a = 8.86, b = 5.24, c = 5.70, the unit cell is Mn a Os (OH) a. be.

上記γ−MnOOHの高温酸化処理での温度は、高くし
過ぎるとM n t O*のような低級酸化物を生成し
、逆に低くし過ぎるとβ−M n Oxが生成されない
ため、180〜350℃の範囲、より好ましくは250
℃前後で高温酸化処理することが望ましい。
If the temperature in the high-temperature oxidation treatment of γ-MnOOH is too high, lower oxides such as M n t O* will be generated, and if the temperature is too low, β-M n Ox will not be generated. in the range of 350°C, more preferably 250°C
It is desirable to perform high-temperature oxidation treatment at around ℃.

高温酸化処理の雰囲気は、酸素が欠乏した状態ではM 
n x O3のような低級酸化物を生成する恐れがある
ため、酸素を20%以上含む雰囲気にすることが望まし
い。処理時間は、前記条件で2〜8時間程度が適当であ
る。
The atmosphere for high-temperature oxidation treatment is M
Since lower oxides such as n x O3 may be generated, it is desirable to create an atmosphere containing 20% or more of oxygen. Appropriate treatment time is about 2 to 8 hours under the above conditions.

また、本発明に用いるオイルファーネスブラックの詳細
な製造方法は次の通りである。
Further, the detailed method for producing the oil furnace black used in the present invention is as follows.

まず、原料として用いる液状炭化水素は炭素原子/水素
原子が重量比で9以上のもので、そのような液状炭化水
素としては、例えばナフサの熱分解油(エチレンヘビー
エンド)、芳香族系炭化水素にカーボンを混合した液状
炭化水素(カーボンオイル)、芳香族系液状炭化水素に
C重油などを混合した混合オイル等が挙げられる。
First, the liquid hydrocarbon used as a raw material has a carbon atom/hydrogen atom weight ratio of 9 or more. Examples of such liquid hydrocarbon include naphtha pyrolysis oil (ethylene heavy end), aromatic hydrocarbons, etc. Examples include liquid hydrocarbons (carbon oil) in which carbon is mixed with carbon, mixed oils in which aromatic liquid hydrocarbons are mixed with C heavy oil, and the like.

このような液状炭化水素を炉内で分子状酸素および水蒸
気の存在下、部分酸化せしめて合成ガスを生成させ、そ
の際に副生ずるカーボンを使用するが、目的とするカー
ボンを得るためには、液状炭化水素1トンに対し、水蒸
気は200〜800kg、好ましくは400〜800k
g使用する。
Such liquid hydrocarbons are partially oxidized in the presence of molecular oxygen and water vapor in a furnace to generate synthesis gas, and the carbon by-produced at this time is used, but in order to obtain the desired carbon, For 1 ton of liquid hydrocarbon, steam is 200-800kg, preferably 400-800kg
Use g.

炉内の温度は1200〜1450℃、好ましくは130
0〜1450℃であり、反応時の圧力は、10〜80気
圧、好ましくは25〜80気圧である。なお、分子状酸
素は気体として供給される。
The temperature inside the furnace is 1200-1450°C, preferably 130°C
The temperature is 0 to 1450°C, and the pressure during the reaction is 10 to 80 atm, preferably 25 to 80 atm. Note that molecular oxygen is supplied as a gas.

次に、この副生カーボンを窒素雰囲気下、300〜90
0°Cで0.5〜3時間乾燥し、さらに、不活性ガス雰
囲気下、1000〜3000℃で、0.5〜5時間加熱
処理を行なうことにより得られたものが、目的とするオ
イルファーネスブラックである。ここで、該加熱処理は
オイルファーネスブラック粒子表面の官能基を除去する
ために行なうものである。
Next, this by-product carbon is heated to 300 to 90% under nitrogen atmosphere.
The product obtained by drying at 0°C for 0.5 to 3 hours and further heating treatment at 1000 to 3000°C for 0.5 to 5 hours in an inert gas atmosphere is the desired oil furnace. It is black. Here, the heat treatment is performed to remove functional groups on the surface of the oil furnace black particles.

かくして得られたオイルファーネスブラックの比表面積
は90〜150rn’/gであることが望ましい。比表
面積が90rri″/g未満の場合には保液性が低下し
、従って放電性能の低下を引起こす。
The oil furnace black thus obtained preferably has a specific surface area of 90 to 150 rn'/g. If the specific surface area is less than 90 ri''/g, the liquid retention property will be reduced, resulting in a reduction in discharge performance.

また150rn’/gより大きい場合、かかるオイルフ
ァーネスブラックを電池に用いると、二酸化マンガンを
還元し、容量劣化につながる。
Further, if the oil furnace black is larger than 150 rn'/g and used in a battery, manganese dioxide is reduced, leading to capacity deterioration.

またこのオイルファーネスブラックはJISK  14
69による塩酸吸液量が20m115g以上であること
が好ましい。
Also, this oil furnace black is JISK 14
It is preferable that the amount of hydrochloric acid absorbed by No. 69 is 20 m 115 g or more.

本発明の電池の正極は、上述の化学合成二酸化マンガン
及びオイルファーネスブラックを、結着材と共に80〜
94:5〜15:1〜5の重量比で混合し、ペレット等
に成形して得られた正極合剤から成る。このとき用いる
結着剤としては、例えば、ポリテトラフルオロエチレン
、ポリアクリル酸およびその塩等が挙げられる。
The positive electrode of the battery of the present invention contains the above-mentioned chemically synthesized manganese dioxide and oil furnace black together with a binder at 80% to 80%
It consists of a positive electrode mixture obtained by mixing at a weight ratio of 94:5 to 15:1 to 5 and molding into pellets or the like. Examples of the binder used at this time include polytetrafluoroethylene, polyacrylic acid, and salts thereof.

負極は、活物質として軽金属が用いられる。ここで軽金
属とは、アルカリ金属、アルカリ土類金属等の比重の小
さい金属をいい、例えば、リチウム、ナトリウム、カリ
ウム、カルシウム、マグネシウム、アルミニウム等であ
る。好ましくは、リチウムおよびアルミニウムが用いら
れる。
A light metal is used as an active material in the negative electrode. Here, light metals refer to metals with low specific gravity such as alkali metals and alkaline earth metals, such as lithium, sodium, potassium, calcium, magnesium, and aluminum. Preferably lithium and aluminum are used.

電解液としては、プロピレンカーボネート、1.2−ジ
メトキシエタン、γ−ブチロラクトン、テトラヒドロフ
ラン、ジオキソラン等の非水有機溶媒に過塩素酸リチウ
ム、ホウフッ化リチウム、塩化リチウム等の電解質を、
濃度0.2〜1.5モル/I2で溶解せしめたものが用
いられる。
As the electrolyte, an electrolyte such as lithium perchlorate, lithium borofluoride, lithium chloride, etc. is added to a non-aqueous organic solvent such as propylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, or dioxolane.
A solution dissolved at a concentration of 0.2 to 1.5 mol/I2 is used.

(作用) 本発明の電池においては、その正極の導電材であるオイ
ルファーネスブラックは、カーボンブラック粒子が鎖状
構造に連結し、しかも粒子の表面は薄層の黒鉛化され、
内部は中空状の細孔構造をもつため、その比表面積が大
きく吸液性に優れていると共にアセチレンブラックより
も粒子表面の黒鉛化度が進んでいるため導電性が優れて
いる。また粒子表面に官能基が少ないので、正極活物質
の劣化を防ぐことができる。
(Function) In the battery of the present invention, the oil furnace black that is the conductive material of the positive electrode has carbon black particles connected in a chain structure, and the surface of the particles is graphitized in a thin layer.
Since the inside has a hollow pore structure, its specific surface area is large and it has excellent liquid absorption properties, and the particle surface has a higher degree of graphitization than acetylene black, so it has excellent conductivity. Furthermore, since there are few functional groups on the particle surface, deterioration of the positive electrode active material can be prevented.

(発明の実施例) 以下、本発明をコイン形非水溶媒電池に適用した一実施
例を図面に基づいて説明する。
(Embodiment of the Invention) Hereinafter, an embodiment in which the present invention is applied to a coin-shaped non-aqueous solvent battery will be described based on the drawings.

実施例 本発明のβ−M n O□及びオイルファーネスブラッ
クの他にポリテトラフルオロエチレン(結着剤)をそれ
ぞれ重量比で87:10:3の割合で混合し、これを外
径16mm、厚さ17mm、重量0.69gのベレット
状に成形し、正極合剤とした。
Example In addition to the β-M n O It was molded into a pellet shape with a length of 17 mm and a weight of 0.69 g to prepare a positive electrode mixture.

ついで、ステンレス鋼製の正極容器1に上記した正極合
剤2を充填し、その上にポリプロピレン不織布からなり
、プロピレンカーボネートと1゜2−ジメトキシエタン
1:l容量比)の混合溶媒に過塩素酸リチウムを1モル
/aの濃度で溶解した電解液が含浸保持されているセパ
レータ3を載置し、さらにその上に負極として金属リチ
ウム4を載置して、発電要素を構成した。
Next, the positive electrode mixture 2 described above is filled into a positive electrode container 1 made of stainless steel, and on top of the positive electrode mixture 2, a mixed solvent of propylene carbonate and 1°2-dimethoxyethane (volume ratio of 1:1) made of a polypropylene nonwoven fabric is mixed with perchloric acid. A power generation element was constructed by placing a separator 3 impregnated with an electrolytic solution in which lithium was dissolved at a concentration of 1 mol/a, and further placing metal lithium 4 as a negative electrode thereon.

そして、前記正極容器lの開口部にバッキング5を介し
て負極端子を兼ねるステンレス鋼製の利口板6を設ける
ことにより電池容器内に正極合剤2、セパレータ3およ
び金属リチウム4を密閉した。
Then, a smart plate 6 made of stainless steel, which also serves as a negative electrode terminal, was provided at the opening of the positive electrode container 1 via a backing 5, thereby sealing the positive electrode mixture 2, the separator 3, and the metal lithium 4 in the battery container.

か(して図に示したような外径20mm、厚さ2.4闘
のコイン非水溶媒電池を製作した。
Then, a coin non-aqueous solvent battery with an outer diameter of 20 mm and a thickness of 2.4 mm as shown in the figure was manufactured.

製作した電池を20個用いて、30日間貯蔵し、その後
300Ω負荷をかけた時の放電持続時間(放電終止電圧
2.OV)を測定した。その結果を平均値として表に示
した。
Twenty manufactured batteries were stored for 30 days, and then the discharge duration (discharge end voltage 2.OV) when a 300Ω load was applied was measured. The results are shown in the table as average values.

比較例 EMDを400°Cで8時間加熱したものを活物質に、
黒鉛を導電材に用いた以外実施例と同様にして、コイン
形非水溶媒電池を組み立て、実施例と同一の条件で貯蔵
し、放電持続時間を測定し、結果を表に併記した。
Comparative example EMD heated at 400°C for 8 hours was used as an active material.
A coin-shaped nonaqueous solvent battery was assembled in the same manner as in the example except that graphite was used as the conductive material, stored under the same conditions as in the example, and the discharge duration was measured. The results are also listed in the table.

表 [発明の効果] 本発明によれば、正極は導電i生並びに保液性に優れ、
重負荷放電性能に優れた非水溶媒電池を提供することが
できる。
Table [Effects of the Invention] According to the present invention, the positive electrode has excellent conductivity and liquid retention,
A non-aqueous solvent battery with excellent heavy load discharge performance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の一実施例であるコイン型非水溶媒電池の
縦断面図である。 l・・・正極容器 2・・・正極合剤
The figure is a longitudinal sectional view of a coin-type non-aqueous solvent battery that is an embodiment of the present invention. l...Positive electrode container 2...Positive electrode mixture

Claims (1)

【特許請求の範囲】  活物質が軽金属である負極、非水溶媒系電 解液ならびに活物質および導電材からなる正極を有する
非水溶媒電池において、該正極がγ−MnOOHの高温
酸化処理により得られるβ−MnO_2からなる正極活
物質と、比表面積が90〜15Om^2/gのオイルフ
ァーネスブラックからなる正極導電材とを含むことを特
徴とする非水溶媒電池。
[Scope of Claims] A non-aqueous battery having a negative electrode whose active material is a light metal, a non-aqueous electrolyte, and a positive electrode made of an active material and a conductive material, wherein the positive electrode is obtained by high-temperature oxidation treatment of γ-MnOOH. A non-aqueous solvent battery comprising a positive electrode active material made of β-MnO_2 and a positive electrode conductive material made of oil furnace black having a specific surface area of 90 to 15 Om^2/g.
JP63137501A 1988-06-06 1988-06-06 Nonaqueous solvent battery Pending JPH01307159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137501A JPH01307159A (en) 1988-06-06 1988-06-06 Nonaqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137501A JPH01307159A (en) 1988-06-06 1988-06-06 Nonaqueous solvent battery

Publications (1)

Publication Number Publication Date
JPH01307159A true JPH01307159A (en) 1989-12-12

Family

ID=15200140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137501A Pending JPH01307159A (en) 1988-06-06 1988-06-06 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPH01307159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material

Similar Documents

Publication Publication Date Title
JP3064655B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
Karthikeyan et al. Electrochemical performance of cobalt free, Li1. 2 (Mn0. 32Ni0. 32Fe0. 16) O2 cathodes for lithium batteries
Yoshio et al. Synthesis of LiCoO2 from cobalt—organic acid complexes and its electrode behaviour in a lithium secondary battery
US7135252B2 (en) Lithium metal oxide electrodes for lithium cells and batteries
EP1083614B1 (en) Lithium intercalating material containing oxygen, sulfur and a transition metal, electrode structure and production process thereof, and secondary lithium battery
EP1837937B1 (en) Lithium manganese-based composite oxide and method for preparing the same
KR100271459B1 (en) Positive electrode marerials for rechargeable electrochemicals cells methods of making same
WO1999033128A1 (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
US20120228562A1 (en) Anode active material for a rechargeable lithium battery
CN1142691A (en) Method of producing active material of positive electrode for nonaqueous battery
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
CA2708708C (en) Negative electrode material for li-ion batteries
US6270925B1 (en) Lithium battery
JP4339741B2 (en) Layered oxide electrode material and battery using the same
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JPH01307159A (en) Nonaqueous solvent battery
JP2003272623A (en) Positive electrode active material for lithium secondary battery and its manufacturing method as well as lithium secondary battery using it
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH04112455A (en) Secondary battery
JPH01279565A (en) Nonaqueous solvent battery
CN115472820A (en) Sodium ion positive electrode material and preparation method and application thereof
JP2005332691A (en) Layered nickel oxide electrode material and its manufacturing method, and battery using it