JPH01304391A - Production of oxide nuclear fuel body - Google Patents

Production of oxide nuclear fuel body

Info

Publication number
JPH01304391A
JPH01304391A JP63134299A JP13429988A JPH01304391A JP H01304391 A JPH01304391 A JP H01304391A JP 63134299 A JP63134299 A JP 63134299A JP 13429988 A JP13429988 A JP 13429988A JP H01304391 A JPH01304391 A JP H01304391A
Authority
JP
Japan
Prior art keywords
gas
nuclear fuel
treatment
oxide nuclear
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63134299A
Other languages
Japanese (ja)
Other versions
JP2701043B2 (en
Inventor
Yuhei Harada
雄平 原田
Masami Saito
正美 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP63134299A priority Critical patent/JP2701043B2/en
Publication of JPH01304391A publication Critical patent/JPH01304391A/en
Application granted granted Critical
Publication of JP2701043B2 publication Critical patent/JP2701043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To allow molding and processing even in the case of raw material powder with which crystal grains relatively hardly grow by executing a 3-stage treatment to assure a prescribed oxygen partial pressure by incorporating and mixing air into and with gaseous CO2 or gaseous N2. CONSTITUTION:Oxide nuclear fuel pellets having fine double structures in which UO2+x powder having <=3m<2>/g specific surface area value (BET) is used as the raw material are first presintered for <=1 hours in a presintering region 2 in a gaseous H2 or H2+N2 atmosphere at 1,300-1,600 deg.C treatment temp. The treatment is then progressed to the prescribed sintering stage by the combination of <=20 hours treatment time, 1,300-1,600 deg.C treatment temp. and the oxygen partial pressure at the treatment temp. of the prescribed range in the sintering region 2 of the gaseous mixture atmosphere composed of the air and CO2. Further, the 3-stage continuous treatment to execute the reduction treatment for <=1 hours in the reduction region 6 of the gaseous H2 or H2+N2 atmosphere is executed. The molding and processing are enabled in this way even in case of the raw material powder with which the grown grains of the crystal grains relatively hardly grow.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は発電用等の原子炉に用いられる酸化物核燃料
体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide nuclear fuel assembly used in nuclear reactors for power generation and the like.

[従来の技術] 従来のUO□ペレットにおいては、一般的にU O2+
Xの粉末をプレスしてクリーンペレットと称する成形体
を、処理温度1700℃以上て若干加湿された水素ガス
気流中において8時間以上加熱焼結させており、その密
度は95%TD(理論密度。
[Prior art] In conventional UO□ pellets, generally UO2+
The powder of X is pressed to form a compact called a clean pellet, which is heated and sintered in a slightly humidified hydrogen gas stream at a processing temperature of 1,700°C or higher for 8 hours or more, and its density is 95% TD (theoretical density).

Theoretical DensiL)、平均結晶粒
径は数gm程度て、結晶粒の大きさのペレット半径方向
分布はほぼ−様であり、酸素対ウラン金属原子比0/U
比は2.00の化学量論的組成を有する。
Theoretical DensiL), the average crystal grain size is about several gm, the grain size distribution in the pellet radial direction is almost -like, and the oxygen to uranium metal atomic ratio is 0/U.
The ratio has a stoichiometry of 2.00.

また、1700℃の長時間再加熱における熱的寸法安定
性についても、緩やかに密度上昇することが知られてい
る。
It is also known that the thermal dimensional stability during long-term reheating at 1700° C. causes a gradual increase in density.

この出願と同一の出願人による、特願昭62−1799
85号に開示されているように比較的焼結し易いUO2
+8の粉末を使用して、比較的高圧てプレスしてクリー
ンペレットとし、処理温度1400〜1600℃におい
てH2ガス雰囲気で予備焼結し、更に同一温度において
CO2ガス雰囲気て焼結を進行させ、次に再び同一温度
においてH2ガス雰囲気て還元処理を施すと、その結果
中心部が大粒径領域、外周部が小粒径領域の2重微細構
造を有する酸化物核燃料ペレットか得られる。
Patent application No. 62-1799 filed by the same applicant as this application
UO2 which is relatively easy to sinter as disclosed in No. 85
+8 powder is pressed under relatively high pressure to form clean pellets, pre-sintered in an H2 gas atmosphere at a processing temperature of 1400 to 1600°C, further sintered at the same temperature in a CO2 gas atmosphere, and then When the reduction treatment is again carried out at the same temperature in an H2 gas atmosphere, an oxide nuclear fuel pellet is obtained which has a double microstructure of a large particle size region in the center and a small particle size region in the outer periphery.

このように中心部の結晶粒径が大きいことにより、核分
裂生成ガス(以下、FPガス)のペレットからの放出か
低減されると共に、外周部の結晶粒径か小さいのてペレ
ット側の塑性変形か容易となることによりペレットと被
覆管の接触の度合か改善され、ペレット・被覆管の機械
的相互作用(以下、P CM I : Pe1let 
CIad MechanicalInteractio
n)が緩和される。
The large crystal grain size in the center reduces the release of fission product gas (hereinafter referred to as FP gas) from the pellet, and the small crystal grain size in the outer periphery reduces plastic deformation on the pellet side. As a result, the degree of contact between the pellet and the cladding tube is improved, and the mechanical interaction between the pellet and the cladding tube (hereinafter referred to as PCM I) is improved.
CIad Mechanical Interaction
n) is relaxed.

しかし、前記特願昭62−179986号に開示されて
いる場合、比較的焼結し易いUO2+うの粉末を使用し
た場合のみ前記の2重微細構造か顕著てあった。
However, in the case disclosed in Japanese Patent Application No. 179986/1986, the double microstructure was noticeable only when UO2+U powder, which is relatively easy to sinter, was used.

ここて、焼結し易い原料粉末とは比表面積値(BET)
か3tn’/gより大きな比較的活性な粉末を言う。
Here, the raw material powder that is easy to sinter is the specific surface area value (BET)
or 3 tn'/g.

「発明が解決しようとする課題] 従来の酸化物核燃料体の製造方法ては、比較的焼結し易
いUO2+8の粉末を使用した場合にのみ顕著な2重微
細構造を有するペレットか得られる。
[Problems to be Solved by the Invention] In the conventional method for producing an oxide nuclear fuel body, pellets having a pronounced double microstructure can be obtained only when UO2+8 powder, which is relatively easy to sinter, is used.

しかし、従来の数1程度のペレット半径方向にほぼ−様
な平均結晶粒径を有するUO2ペレットよりも、更に照
射挙動の観点から、核燃料設計上の裕度ならひに柔軟な
原子炉運転を可能とする大粒径2重微細構造を有する改
良型の大粒径U02ペレットを焼結において、比較的結
晶粒の成長しにくい原料粉末の場合においては成形、加
工を可能にする方法は容易てはなかった。
However, from the perspective of irradiation behavior, nuclear reactor operation is more flexible than the conventional UO2 pellets, which have an average crystal grain size in the radial direction of approximately several 1, if there is a margin in the nuclear fuel design. In the case of sintering improved large-grain size U02 pellets having a large-grain double microstructure, it is difficult to find a method that enables molding and processing in the case of raw material powder in which crystal grains are relatively difficult to grow. There wasn't.

尚、ここで大粒径2重微細構造を有するペレットとは、
ペレットの外周部ては従来と同等の10gm程度の小結
晶粒径領域てあり、かつ中心部ては10gm以上の大結
晶粒径領域から構成されるペレットを言う。
In addition, here, pellets having a large particle size double microstructure are:
The pellet has a small crystal grain size region of about 10 gm on the outer periphery, which is the same as conventional pellets, and a large crystal grain size region of 10 gm or more in the center.

また、焼結の進行しにくい原料粉末とは、比表面積値(
BET)か3rn’/g以下の比較的不活性な粉末を言
う。
In addition, the raw material powder that is difficult to sinter is defined by the specific surface area value (
BET) refers to a relatively inert powder of 3rn'/g or less.

この発明は上記の課題を解決するためになされたもので
、核燃料設計上の裕度ならびに柔軟な原子炉運転を可能
とする大粒径2重微細構造を有する改良型の大粒径UO
2ペレットを焼結において、比較的結晶粒の成長しにく
い原料粉末の場合においても成形、加工を可能にする酸
化物核燃料体の製造方法を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and is an improved large-grain UO having a large-grain double microstructure that allows for greater margin in nuclear fuel design and flexible reactor operation.
An object of the present invention is to provide a method for manufacturing an oxide nuclear fuel body that enables molding and processing even in the case of raw material powder in which crystal grains are relatively difficult to grow by sintering two pellets.

[課題を解決するための手段] この発明の方法は、原料である比較的焼結の進行しにく
い例えば比表面積値(BET)か3ml/g以下である
U O2やつ粉末を用いて粗成形してスラクを造り、造
粒してステアリン酸亜鉛またはポリ・ヒニール・アルコ
ールなとの適当な潤滑剤を添加して、成形を容易にしだ
造粒粉を作る。
[Means for Solving the Problems] The method of the present invention involves rough molding using a raw material, such as UO2 powder, which is relatively difficult to sinter and has a specific surface area value (BET) of 3 ml/g or less. A slurry is prepared, granulated and a suitable lubricant such as zinc stearate or polyhyneal alcohol is added to form a granulated powder that is easily molded.

尚、焼結体密度を設計使用の観点から所定の密度とする
ためには、気孔形成剤として原料粉末に微量の上記の潤
滑剤の他に所定の大きさの気孔を形成する目的で前処理
として、粉砕または整粒を施したシュウ酸アンモニウム
、酒石耐アンモニウム、澱粉、ショ糖などを添加して、
混合ずれは良い。
In addition, in order to set the density of the sintered body to a predetermined density from the viewpoint of design and use, in addition to a small amount of the above-mentioned lubricant as a pore-forming agent, pretreatment is applied to the raw material powder for the purpose of forming pores of a predetermined size. By adding crushed or sized ammonium oxalate, ammonium tartar, starch, sucrose, etc.
Mixing deviation is good.

上記の造粒粉を比較的高い成形圧、例えば41〜ン八□
′以上て押して高富度のクリーンペレットを作る。
The above granulated powder is processed under relatively high molding pressure, e.g.
´ or more to make a clean pellet with high enrichment.

次に、上記のクリーンペレットを、処理温度1300〜
1600℃て、N2ガスまた安全ガスと称するH2+N
2の混合ガス雰囲気で1時間以下予備焼結し、更に同−
温度下て所定の酸素ポテンシャルを確保するためにC0
2ガスに空気を混入し、十分混合した雰囲気または不活
性ガス、例えば最も安価なN2ガス雰囲気てその空気と
CO2またはN2ガスの混合比を[1,00]〜10と
して、20時間以下保持して焼結を進行させ、その後再
び同一・温度下てN2ガスまたは安全ガス(H2とN2
の混合ガス)で1時間以下の還元のための熱処理を施し
ている。
Next, the above clean pellets are treated at a treatment temperature of 1300~
At 1600℃, N2 gas or H2+N, which is called a safety gas,
Pre-sintering for less than 1 hour in the mixed gas atmosphere of 2.
C0 to ensure a specified oxygen potential at lower temperatures.
Mix air with the two gases and hold for 20 hours or less in a sufficiently mixed atmosphere or an inert gas atmosphere, such as the cheapest N2 gas atmosphere, with a mixing ratio of air and CO2 or N2 gas of [1,00] to 10. to proceed with sintering, then use N2 gas or safety gas (H2 and N2) again at the same temperature.
(mixed gas) for less than 1 hour.

尚、木3段処理法て使用する3領域の焼結炉は外熱型と
し、−殻内な外熱炉では+ 5 [10℃程度まて昇温
か可能である。
The three-zone sintering furnace used in the three-stage wood treatment method is an external heating type, and the external heating furnace inside the shell can raise the temperature to about +5[deg.]C.

ここで、3段処理法とは酸化物核燃料ペレットの焼結方
法の−ってあり、焼結雰囲気を3種類としてそれぞれの
領域を焼結炉内に3領域設けて連続処理する場合、およ
びそれぞれの雰囲気焼結炉を設けてハツチ処理する場合
の方法を言う。
Here, the three-stage treatment method refers to a method for sintering oxide nuclear fuel pellets, and includes three types of sintering atmospheres, each with three zones provided in a sintering furnace, and continuous treatment. This refers to a method in which hatch processing is performed using a sintering furnace with a similar atmosphere.

[作用] 耐化物核燃料ベレッ1〜の従来の焼結方法の一つ   
   ゛である、焼結雰囲気を加湿水素として1領域設
けて連続処理する1段処理法と異なり、本発明はCO2
ガスに空気を混入・混合するか、またはN2ガスに空気
を混入・混合することによって焼結雰囲気の酸素ポテン
シャルを確保した3段処理法であるのて、得られるUO
2ペレットの1700℃の長時間再焼結における熱的寸
法安定性については従来の水素ガス雰囲気焼結の場合と
同様に緩やかな緻密化か生しる。
[Function] One of the conventional sintering methods for refractory nuclear fuel Beret 1~
Unlike the one-stage processing method in which the sintering atmosphere is set up in one region with humidified hydrogen and continuous processing is performed, the present invention uses CO2
Since it is a three-stage processing method that secures the oxygen potential of the sintering atmosphere by mixing and mixing air with gas or N2 gas, the resulting UO
Regarding thermal dimensional stability during long-term resintering of the two pellets at 1700°C, gradual densification occurs as in the case of conventional sintering in a hydrogen gas atmosphere.

また本発明の3段処理法の場合、比較的焼結性の劣る例
えは3m′/g以下の、すなわち焼結における密度上昇
ならびに結晶粒径の成長の進行しにくいウラン酸化物粉
末を原料に用いても改良型の大粒径の2重微細構造を有
する酸化物核燃料ペレットの製造か可能となる。
In addition, in the case of the three-stage processing method of the present invention, uranium oxide powder with a relatively poor sintering property of 3 m'/g or less, that is, uranium oxide powder that is difficult to increase density and grain size during sintering, is used as a raw material. It is also possible to produce oxide nuclear fuel pellets with improved large particle size and double microstructure.

ちなみに、原料粉末として通常の粗成形、造粒、成形圧
4トン八、′のクリーン・ペレットを加湿N2ガス雰囲
気て1750℃,4時間加熱・焼結して得られたUO2
ペレットの密度は95%TD、その平均結晶粒径は約6
gmである。
By the way, UO2 was obtained by heating and sintering clean pellets as raw material powder at 1750°C for 4 hours in a humidified N2 gas atmosphere using normal rough molding, granulation, and molding pressure of 4 tons.
The density of the pellets is 95% TD, and the average grain size is approximately 6
It is gm.

[実施例] 以下、第1図に基づいて、この発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail based on FIG.

第1図は本発明の一実施例であるC O2ガスに空気を
混入・混合させて所定の酸素分圧を確保した3段処理法
で使用される処理温度1300〜1600℃の焼結炉の
概略説明図である。
Figure 1 shows a sintering furnace with a processing temperature of 1,300 to 1,600°C used in an embodiment of the present invention, a three-stage processing method in which air is mixed with CO2 gas to ensure a predetermined oxygen partial pressure. It is a schematic explanatory diagram.

第1図において、まず室温のペレット装荷室1に矢印4
て示した方向てもって処理材であるクリーンペレットか
装荷され、処理温度1300〜] 6 [10℃9処理
時間1時間以下てH2または安全ガス雰囲気予備焼結領
域5において閉気孔の形成の終了する過程まて予備焼結
される。
In Figure 1, first, arrow 4 points to the pellet loading chamber 1 at room temperature.
Clean pellets, which are the processing material, are loaded in the direction shown, and the processing temperature is 1300 ~] 6 [10°C, 9 processing times, 1 hour or less, and the formation of closed pores is completed in the H2 or safe gas atmosphere preliminary sintering area 5. The process is then pre-sintered.

次に、閉気孔の形成の終了した化学量論的組成を有する
低密度のペレットは、N2ガス・カーテンによる堰7を
通過して、所定の酸素分圧を確保した空気とC02の混
合ガス雰囲気焼結領域2において処理時間20時間以下
て所定の焼結過程まて比較的高い酸素ポテンシャル下で
焼結か進行する。
Next, the low-density pellets with a stoichiometric composition in which closed pores have been formed pass through a weir 7 formed by a N2 gas curtain to create a mixed gas atmosphere of air and CO2 that maintains a predetermined oxygen partial pressure. In the sintering zone 2, a predetermined sintering process is carried out under a relatively high oxygen potential for a processing time of 20 hours or less.

ここて所定の焼結過程とは、密度については例えば95
%TDの密度の使用を満足するように上記前処理した気
孔形成材を添加・混合して密度を制御する。
Here, the predetermined sintering process means that the density is, for example, 95
The density is controlled by adding and mixing the above-mentioned pretreated pore-forming material so as to satisfy the usage density of %TD.

次に、照射挙動の観点から好ましい2重微細構造を有す
る酸化物核燃料ベレッ1へか得られるような処理温度、
処理時間ならびに酸素分圧の組合わせでもって所定の焼
結過程とする。
Next, the processing temperature is such that an oxide nuclear fuel beam 1 having a double microstructure which is preferable from the point of view of irradiation behavior is obtained;
A predetermined sintering process is achieved by a combination of treatment time and oxygen partial pressure.

例えば、中心部結晶粒径は23gn+、外周部結晶粒径
は]、1gmの好ましい2重微細構造を有する酸化物核
燃料ペレットを得る場合、処理温度1400℃9処理時
間6時間ならびに酸素分圧0.01気圧の組合わせで良
い。
For example, in order to obtain an oxide nuclear fuel pellet having a preferable double microstructure in which the grain size at the center is 23 gn+ and the grain size at the outer periphery is 1 gm, the treatment temperature is 1400°C, the treatment time is 6 hours, and the oxygen partial pressure is 0. A combination of 0.01 atm is fine.

更に、所定の焼結過程まて進行した超化学量論的組成を
有するペレットは再びN2ガス・カーテンによる堰7を
通過して、H2または安全ガス雰囲気還元領域6におい
て化学量論的組成であることの仕様であるO/U比か1
.99〜2.02を満足するように処理時間1時間以下
て還元処理される。
Further, the pellets having a superstoichiometric composition that have undergone a predetermined sintering process pass again through a weir 7 formed by a N2 gas curtain, and are returned to a stoichiometric composition in an H2 or safe gas atmosphere reduction area 6. The O/U ratio, which is the specification of the thing, is 1.
.. Reduction processing is performed in a processing time of 1 hour or less so as to satisfy the ratio of 99 to 2.02.

そして、冷却兼ペレット取出し室3において所定の酸化
物核燃料ペレットは冷却されて、その後取出されて次の
工程に送られる。
Then, the predetermined oxide nuclear fuel pellets are cooled in the cooling/pellet removal chamber 3, and then taken out and sent to the next process.

所定の酸素分圧を確保するためにCO2ガスに空気を混
入・混合する手段は以下の通りである。
The means for mixing air into CO2 gas to ensure a predetermined oxygen partial pressure is as follows.

C02ガスはCO2のガス・°ボンへ13から供給され
、減圧弁12によって所定の供給圧力に制御され、浮き
子式流量計11によって所定の流量か制御されて供給さ
れる。
C02 gas is supplied to a CO2 gas cylinder from 13, controlled to a predetermined supply pressure by a pressure reducing valve 12, and supplied at a predetermined flow rate by a float type flow meter 11.

一方、空気は大気中のちり等の混入を防止するために、
空気用圧縮916の上流および下流側に空気清浄用フィ
ルタ15を設置して所定の圧力でもって供給され、空気
用のマスフロー・コン1−ローラ14によって所定の流
量に制御されて供給される。
On the other hand, in order to prevent dust from entering the air,
Air cleaning filters 15 are installed upstream and downstream of the air compressor 916 to supply air at a predetermined pressure, and the air mass flow controller 1-roller 14 controls the air flow rate to a predetermined flow rate.

上記のCO2ガスと空気の両者はガス混合タンク9にお
いて一定の供給圧力となり、スタティックミキサーまた
は撹拌器によるガス混合器8において十分混合されて、
焼結炉の空気とCO2混合ガス雰囲気焼結領域2に供給
される。
Both the above CO2 gas and air have a constant supply pressure in the gas mixing tank 9, and are sufficiently mixed in the gas mixer 8 using a static mixer or a stirrer.
The air and CO2 mixed gas atmosphere of the sintering furnace is supplied to the sintering zone 2.

また、上記のCO2ガスの代わりにN2ガスを用いた場
合は、ガス・ボンベ13を中味がN2ガスのものに取換
えるたけてCO2ガスの場合と同様にして焼結は実施さ
れる。
Furthermore, when N2 gas is used instead of the above-mentioned CO2 gas, sintering is carried out in the same manner as in the case of CO2 gas, except that the gas cylinder 13 is replaced with one containing N2 gas.

以下に、第1図の焼結炉を用いて実施した具体例につい
て説明する。
A specific example carried out using the sintering furnace shown in FIG. 1 will be described below.

本発明の実施例によって得られたUO2ペレットは、通
常の粗成形、造粒、成形圧4トン八ffi′のグリーン
ペレットの粉末を原料とし、同等の成形を施したクリー
ンペレットを供したものである。
The UO2 pellets obtained in the examples of the present invention were made from green pellet powder with a normal rough molding, granulation, and molding pressure of 4 tons, 8ffi', and were provided with clean pellets that were subjected to equivalent molding. be.

第2図はCO2ガスに空気を混合させた雰囲気下て焼結
して得られたU02ペレットの気孔率と空気とC02ガ
スの流量比の関係を示した図てあり、また第3図はペレ
ット中心部の結晶粒径と空気とCO2ガスの流量比の関
係を示した図である。
Figure 2 shows the relationship between the porosity of U02 pellets obtained by sintering in an atmosphere containing CO2 gas mixed with air and the flow rate ratio of air and CO2 gas, and Figure 3 shows the relationship between the porosity of U02 pellets obtained by sintering in an atmosphere in which air is mixed with CO2 gas, and Figure 3 FIG. 3 is a diagram showing the relationship between the crystal grain size in the center and the flow rate ratio of air and CO2 gas.

尚、本発明の実施例によって得られたUO2ペレットは
、上記の粉末を原料とし同等の成形を施しグリーンペレ
ットを供したものてあり、N2ガスに空気を混合させた
雰囲気下で焼結して得られたUO2ペレットの気孔率と
空気とN2ガスの流量比の関係は第2図と同等であり、
またペレット中心部の結晶粒径と空気とN2ガスの流量
比の関係は第2図の場合と同様であることを実験て確認
した。
Incidentally, the UO2 pellets obtained in the examples of the present invention are obtained by using the above powder as a raw material and subjecting it to the same molding to provide green pellets, which are sintered in an atmosphere in which air is mixed with N2 gas. The relationship between the porosity of the obtained UO2 pellets and the flow rate ratio of air and N2 gas is the same as in Figure 2,
Furthermore, it was experimentally confirmed that the relationship between the crystal grain size at the center of the pellet and the flow rate ratio of air and N2 gas is the same as that shown in FIG.

第1番目の例として、処理温度1400℃としてH2ガ
ス雰囲気下て1時間予備焼結し、更に同一温度て空気と
CO2の混合ガス下でその流量比を0.05としてその
酸素分圧は0.旧気圧相当とし、この酸素ポテンシャル
下て6時間焼結を進行させ、後に再びH2ガス雰囲気下
で還元処理を施したペレットの密度は97%TD、O/
U比は2.00、また中心部結晶粒径は23gm、外周
部結晶粒径は11gmである。
As a first example, pre-sintering is performed for 1 hour in an H2 gas atmosphere at a processing temperature of 1400°C, and then at the same temperature and under a mixed gas of air and CO2, with a flow rate ratio of 0.05 and an oxygen partial pressure of 0. .. The density of the pellets was 97% TD, O/
The U ratio is 2.00, the crystal grain size at the center is 23 gm, and the crystal grain size at the outer periphery is 11 gm.

ちなみに、上記と同一の加熱条件て空気を混入させずに
CO2ガスのみの場合に得られたUO2ペレットの密度
は95%TD、O/U比は2.00、また中心部結晶粒
径は101、外周部結晶粒径は8gmである。
By the way, the density of the UO2 pellets obtained under the same heating conditions as above when only CO2 gas is used without mixing air is 95% TD, the O/U ratio is 2.00, and the center grain size is 101. , the outer peripheral crystal grain size is 8 gm.

次に、第2番目の例として、処理温度1500℃として
H2ガス雰囲気下で1時間予備焼結し、更に同一温度て
空気とCO2の混合ガス下でその流量比を0.45とし
てその酸素分圧は0.07気圧相当とし、この酸素ポテ
ンシャル下で6時間焼結をを進行させ、後に再びH2ガ
ス雰囲気下て還元処理を施したペレットの密度は97%
TD、O/U比は2 、00、また中心部結晶粒径は3
3Iim、外周部結晶粒径は14川mである。
Next, as a second example, pre-sintering is performed for 1 hour in an H2 gas atmosphere at a treatment temperature of 1500°C, and then the oxygen content is further sintered at the same temperature under a mixed gas of air and CO2 at a flow rate ratio of 0.45. The pressure was set to be equivalent to 0.07 atm, and sintering was allowed to proceed for 6 hours under this oxygen potential. Afterwards, the pellets were reduced again under an H2 gas atmosphere, and the density of the pellets was 97%.
TD, O/U ratio is 2.00, and center grain size is 3.
3 Im, and the outer peripheral crystal grain size is 14 River m.

ちなみに、」1記と同一の加熱条件て空気を混入させず
にCO2ガスのみの場合に得られたU O2ペレツトの
密度は96%TD、O/U比ば2.00、また中心部結
晶粒径は16μm、外周部結晶粒径は12ILIIlで
ある。
By the way, the density of the UO2 pellets obtained under the same heating conditions as in Section 1 using only CO2 gas without mixing air was 96% TD, the O/U ratio was 2.00, and the central crystal grain The diameter is 16 μm, and the outer peripheral crystal grain size is 12ILIIl.

上記の各個から明らかなように、C02ガスまたはN2
ガスに空気を混合させて酸素分圧を高めることによって
比較的焼結しにくい粉末を原料とした場合でも、高密度
ならひに大粒径の2重微細構造を有する照射挙動の優れ
たU O2ベレツ1への製造か可能であることがわかる
As is clear from each of the above, C02 gas or N2 gas
Even if the raw material is a powder that is relatively difficult to sinter by mixing air with gas to increase the oxygen partial pressure, U O2 with high density has a double microstructure with large grain size and excellent irradiation behavior. It can be seen that manufacturing to Beretsu 1 is possible.

また軽水炉の場合、ガl〜リニア添加ベレッl−は、そ
のGd2O3の淫加量は約30重量%の固溶限以下の高
々10重量%程度てあり、その焼結挙動は固溶反応を含
むかUO2の場合と同等なので、本発明の実施例による
C02またはN2ガスに空気を混入・混合した3段処理
法の焼結は適用てきる。
In addition, in the case of a light water reactor, the amount of Gd2O3 in the gal-linear doped beret is about 10% by weight, which is below the solid solubility limit of about 30% by weight, and its sintering behavior includes a solid solution reaction. Since this is equivalent to the case of UO2, the three-stage sintering method in which air is mixed with CO2 or N2 gas according to the embodiment of the present invention can be applied.

また、(pH,U)O2ベレツ1へについては全率固溶
体であることから、その焼結挙動はUO2の場合と比較
して大きな差異はない。
Furthermore, since (pH, U) O2 is a solid solution entirely, its sintering behavior is not significantly different from that of UO2.

また、本発明の3段処理法の場合、比較的焼結性の劣る
、すなわち焼結における密度上昇ならひに結晶粒径の成
長の進行しにくいBETの比表面積3IT1′/g以下
のC02゜X粉末を原お1に用いても、改良型の大粒径
の2重微細構造を有する酸化物核燃料ベレッl−か得ら
れる。そのメカニズムについて以下に述へる。
In addition, in the case of the three-stage processing method of the present invention, C02° with a specific surface area of 3IT1'/g or less of BET, which has relatively poor sinterability, that is, increases in density during sintering makes it difficult for crystal grain size to grow. Even when X powder is used as a raw material, an improved large particle size double-layered microstructured oxide nuclear fuel can be obtained. The mechanism will be described below.

まず、N2ガス雰囲気の予備焼結過程において、クリー
ンベレッ1〜は還元処理されるとともに約90%TDま
て焼結か進み、閉気孔の形成かほぼ終了する。
First, in the preliminary sintering process in an N2 gas atmosphere, the clean bellets 1 to 1 are subjected to reduction treatment and sintering progresses to about 90% TD, and the formation of closed pores is almost completed.

閉気孔内はN2ガスか支配的であるために、前述したよ
うに1700℃の長時間の再焼結において閉気孔内の圧
力」−昇を伴なわずに緩やかな緻密化か行われる。
Since the inside of the closed pores is dominated by N2 gas, gradual densification is performed without an increase in the pressure inside the closed pores during the long-term resintering at 1700° C. as described above.

次に、CO2ガスに空気を混入・混合させてCO。ガス
のみの場合よりも酸素分圧を高くした雰囲気下ての焼結
においては、初期は化学量論的組成を有した低密度の焼
結体であるか、高い酸素分圧を確保した雰囲気から焼結
体への供給は比較的緩やかであり、焼結体外周部におい
ては結晶格子間に酸素か侵入する間かなく中心部へ移動
して、中心部側において外周側と比較して酸素は格子間
原子として存在し易くなり、中心部側てば超化学量論的
組成てもって焼結か促進されて進行する。
Next, CO2 gas is mixed with air to produce CO. When sintering in an atmosphere with a higher oxygen partial pressure than in the case of only gas, the initial stage is a low-density sintered body with a stoichiometric composition, or the sintered body is sintered in an atmosphere with a high oxygen partial pressure. The supply to the sintered body is relatively slow; at the outer periphery of the sintered body, oxygen enters between the crystal lattices and immediately moves to the center. They tend to exist as interstitial atoms, and the superstoichiometric composition on the central side promotes sintering.

ここて、第4図にM、H,RANDとO,KlIBAS
t’:HEWSKIの著したThe Thermoch
emical Properties ofUrani
um Compounds″、01iver and 
Boyd、Edinburgh。
Here, in Figure 4, M, H, RAND and O, KlIBAS.
t': The Thermoch written by HEWSKI
chemical properties of Urani
um Compounds'', 01iver and
Boyd, Edinburgh.

1963に示されているU3O8およびC409のG 
i b b sの標準生成エネルギーから求まる平衡酸
素分圧と温度の関係を示すとともに、本発明の実施例に
おける焼結か可能な空気とCO2の混合ガスの酸素分圧
上限のレベルとその範囲を所定範囲として斜線部て示す
G of U3O8 and C409 shown in 1963
It shows the relationship between the equilibrium oxygen partial pressure found from the standard production energy of i b b s and temperature, and also shows the upper limit level and range of the oxygen partial pressure of the mixed gas of air and CO2 that can be sintered in the embodiment of the present invention. The predetermined range is indicated by diagonal lines.

尚、M、Il、RANDらの示した標準生成エネルギー
の温度範囲は1122℃まてであるのて、高温側は外挿
して破線部て示すか、本発明の空気と002の混合ガス
の酸素分圧の上限レベルはU3O8の平衡酸素分圧を」
二回っているか、焼結体は形状を損なうことかないのは
この実験によって確かめられている。
In addition, since the temperature range of the standard energy of formation shown by M, Il, RAND et al. is up to 1122°C, the high temperature side is extrapolated and shown by the broken line, or the oxygen of the mixed gas of air and 002 of the present invention is The upper limit level of partial pressure is the equilibrium oxygen partial pressure of U3O8.
It was confirmed through this experiment that the sintered body did not lose its shape even though it was rotated twice.

これは木実流側の焼結において、1300〜]、 50
 [1’Cの加熱下ての第4図に示した酸素分圧範囲で
は、20時間以下の処理時間ては焼結体は平衡状態であ
るU、O,まて耐化反応は進行しないからであると考え
られる。
This is 1300~], 50 in sintering on the wood grain side.
[In the oxygen partial pressure range shown in Figure 4 under heating at 1'C, the sintered body is in an equilibrium state of U, O, and the resistance reaction does not proceed if the treatment time is 20 hours or less. It is thought that.

次の、N2ガス雰囲気下での還元処理過程においては高
密度の焼結体であるために、還元作用はペレットの中心
部側て過剰酸素の遊離か遅れる。
In the next reduction treatment process under an N2 gas atmosphere, the reduction action is delayed in the release of excess oxygen toward the center of the pellet because the pellet is a high-density sintered body.

一方、外周部の過剰酸素は比較的速やかに遊離される。On the other hand, excess oxygen in the outer periphery is liberated relatively quickly.

」−述のペレットのt径方向の過剰酸素の分布に対応し
て、ペレットの中心部は外局側に比較して結晶粒の成長
か進むことになる。
'' - Corresponding to the distribution of excess oxygen in the t-radial direction of the pellet, crystal grain growth progresses in the center of the pellet compared to the outer side.

その結果、比較的焼結のしにくい粉末を原料とした場合
においても、中心部か大結晶粒径領域、外周部か小結晶
粒径領域の2重微細構造の酸化物核燃料ペレットか得ら
れる。
As a result, even when a powder that is relatively difficult to sinter is used as a raw material, oxide nuclear fuel pellets having a double microstructure with a large grain size region in the center and a small grain size region in the outer periphery can be obtained.

また、N2ガスに空気を混入・混合させて酸素分圧を制
御して焼結雰囲気の酸素ポテンシャルを確保して、焼結
の進行を促進させて大粒径の2重微細構造を有する酸化
物核燃料ペレットか得られるメカニズムについても、上
記のCO2ガスに空気を混入・混合させた場合と同様で
ある。
In addition, by mixing air with N2 gas and controlling the oxygen partial pressure, the oxygen potential of the sintering atmosphere is secured, promoting the progress of sintering, and producing an oxide with a double microstructure with large grain size. The mechanism by which nuclear fuel pellets are obtained is also the same as in the case where air is mixed with CO2 gas.

このように中心部の結晶粒径か大きいことによりFPガ
スのペレットからの放出か低減されると共に、外周部の
結晶粒径か小さいことによりペレット外周と被覆管との
接触状況が改善され、PCMIか緩和される。
In this way, the large crystal grain size at the center reduces the release of FP gas from the pellet, and the small crystal grain size at the outer periphery improves the contact situation between the pellet outer periphery and the cladding tube, resulting in PCMI or be relieved.

[発明の効果] 本発明の002ガスまたはN2ガスに空気を混入・混合
させて所定の酸素分圧を確保した3段処理法によって得
られた酸化物核燃料体の1700℃の長時間の再焼結に
おける熱的寸法安定性は従来の1700℃以上の加湿H
2ガス雰囲気焼結て得られた酸化物核燃料ペレットの場
合と同様に緩やかな緻密化を生しるのて、酸化物核燃料
ベレッ1〜の照射における体積増大であるスウェリング
を緩和する。
[Effects of the invention] Long-term reburning at 1700°C of an oxide nuclear fuel assembly obtained by the three-stage treatment method in which air is mixed with 002 gas or N2 gas of the present invention to ensure a predetermined oxygen partial pressure. Thermal dimensional stability at 1,700°C or higher
As in the case of the oxide nuclear fuel pellets obtained by sintering in a two-gas atmosphere, gradual densification is produced and swelling, which is the volume increase during irradiation of the oxide nuclear fuel pellets 1 to 1, is alleviated.

そして、本発明によって得られた酸化物核燃料ペレット
の化学量論的組成については、仕様であるO/U比か1
.99〜2.02を満足し、製品としてのばらつきも小
さい。その上、本発明によって得られた耐化物核燃料ペ
レットの微細構造については、焼結性の劣るBETの比
表面積3m’/g以下のUO2゜つ粉末を原料とした場
合においても大結晶粒径の2重微細構造を有している。
Regarding the stoichiometric composition of the oxide nuclear fuel pellets obtained by the present invention, the O/U ratio, which is the specification, is 1.
.. 99 to 2.02, and the variation as a product is small. Furthermore, regarding the fine structure of the retardant nuclear fuel pellets obtained by the present invention, even when the raw material is UO2° powder with a specific surface area of 3 m'/g or less of BET, which has poor sinterability, it has a large crystal grain size. It has a double fine structure.

この2重微細構造は酸化物核燃料ベレ・ントの中心部の
大結晶粒径領域と外周部の小結晶粒径領域から構成され
ている。
This double microstructure consists of a large grain size region at the center of the oxide nuclear fuel beam and a small grain size region at the outer periphery.

この2重微細構造の優れた特性は、酸化物核燃料ペレッ
トからのFPガス放出の低減の観点からペレットの照射
温度か比較的高い中心部側は結晶粒径が大きい事がらF
Pガスの拡散ならびに移動が遅れるのて、ペレットのF
Pガス保有能力が向」ニする。これはFPガス放出に伴
う燃料棒の内圧上昇を抑えるのて被覆管の変形を防ぐと
ともにペレットと被覆管のギャップの熱伝導率の低下を
も防ぐ。
The excellent characteristics of this double microstructure are due to the fact that the crystal grain size is larger in the central part where the irradiation temperature of the pellet is relatively high, from the viewpoint of reducing FP gas release from oxide nuclear fuel pellets.
Because the diffusion and movement of P gas is delayed, the F of the pellet is
P gas holding capacity will improve. This suppresses the increase in the internal pressure of the fuel rod due to the release of FP gas, thereby preventing deformation of the cladding tube, and also preventing a decrease in thermal conductivity in the gap between the pellet and the cladding tube.

また、2重微細構造の優れた特性は、PCMIの観点か
らも酸化物核燃料ペレットの外周部は結晶粒径か小さい
ことからペレット側は塑性変形し易いのて、原子炉の出
力変動時における被覆管の受ける応力は低減され被覆管
の変形量も小さくなるのて、その結果燃料棒の破損も防
ぐ。以上のように2重微細構造の大結晶粒径の酸化物核
燃料ペレットの優れた特性は好ましい照射挙動をするの
て、原子力発電等における経済性向上を目的とした高燃
焼度化、負荷追従運転および出力分布規制の緩和等を実
現するのに、裕度をもった燃料設計ならびに原子炉の運
転が可能になる。
In addition, the excellent characteristics of the double microstructure are also due to the fact that from the viewpoint of PCMI, the grain size of the outer periphery of oxide nuclear fuel pellets is small, so the pellet side is easily plastically deformed, so it is necessary to cover the outer periphery of the oxide nuclear fuel pellet during fluctuations in reactor output. The stress exerted on the tube is reduced and the amount of deformation of the cladding tube is also reduced, thereby preventing damage to the fuel rods. As mentioned above, the excellent properties of oxide nuclear fuel pellets with a double microstructure and large grain size result in favorable irradiation behavior, which can be used to increase burnup and load following operation for the purpose of improving economic efficiency in nuclear power generation, etc. This makes it possible to design fuels and operate nuclear reactors with margins in order to ease power distribution regulations.

また、本発明の3段処理法の焼結温度か従来の水素焼結
温度と比較して、低温度であるので設備費ならびに運転
費はコスト低減される。
Furthermore, since the sintering temperature of the three-stage treatment method of the present invention is lower than the conventional hydrogen sintering temperature, equipment costs and operating costs are reduced.

更にまた、本発明の3段処理法の雰囲気制御に用いる空
気は大気から取入れ、またN2ガスはCo2ガスよりも
更に安価てあり、運転費のコスト低減か可能である。
Furthermore, the air used for atmosphere control in the three-stage treatment method of the present invention is taken from the atmosphere, and N2 gas is cheaper than Co2 gas, making it possible to reduce operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるCO2ガスに空気を混
入・混合させて所定の酸素分圧を確保した3段処理法て
使用される処理温度1300〜1600℃の焼結炉の概
略説明図、第2図はCO2ガスに空気を混合させた雰囲
気下で焼結して得られたUO2ペレットの気孔率と空気
と002ガスの流量比の関係を示した図、第3図はペレ
ット中心部の結晶粒径と空気と002ガスの流量比の関
係を示した図、第4図は本発明の所定範囲(斜線部)で
ある酸素分圧と焼結温度の関係と共にU3O8およびU
4O9のGibbsの標準生成エネルギーから求まる平
衡酸素分圧と温度の関係を示す図である。 図中。 ■ ペレット装荷室 2 空気とCO2混合ガスまたは 空気とN2混合ガス雰囲気焼結領域 3 冷却兼ペレット取出し室 5 N2ガスまたはN2とN2混合ガス雰囲気予備焼結
領域 6 N2ガスまたはN2とN2混合ガス雰囲気還元領域 7壜 8 ガス混合器 9 ガス混合タンク 10:弁 11  浮き子犬流量λ1 ]2 減圧弁 13:ガス・ホンへ 14:空気用マスフロー・コントローラ15:空気用済
n1用フィルタ 16:空気用圧縮機 代理人 弁理士 1)北 嵩 晴
Figure 1 is a schematic diagram of a sintering furnace with a processing temperature of 1,300 to 1,600°C, which is used in an embodiment of the present invention, a three-stage processing method in which air is mixed with CO2 gas to ensure a predetermined oxygen partial pressure. Explanatory diagram, Figure 2 is a diagram showing the relationship between the porosity of UO2 pellets obtained by sintering in an atmosphere in which air is mixed with CO2 gas and the flow rate ratio of air and 002 gas, and Figure 3 is a diagram showing the relationship between the flow rate ratio of air and 002 gas. Figure 4 shows the relationship between the crystal grain size in the center and the flow rate ratio of air and 002 gas.
FIG. 2 is a diagram showing the relationship between the equilibrium oxygen partial pressure and temperature, which can be found from the Gibbs standard energy of formation of 4O9. In the figure. ■ Pellet loading chamber 2 Air and CO2 mixed gas or air and N2 mixed gas atmosphere Sintering area 3 Cooling and pellet removal chamber 5 N2 gas or N2 and N2 mixed gas atmosphere Pre-sintering area 6 N2 gas or N2 and N2 mixed gas atmosphere Reduction area 7 Bottle 8 Gas mixer 9 Gas mixing tank 10: Valve 11 Float flow rate λ1 ] 2 Pressure reducing valve 13: Gas phone 14: Mass flow controller for air 15: Filter for used air n1 16: Compression for air Machine Agent Patent Attorney 1) Haru Kitatake

Claims (5)

【特許請求の範囲】[Claims] (1)比表面積値(BET)3m^2/g以下のUO_
2_+_X粉末を原料とした2重微細構造を有する酸化
物核燃料ペレットを、処理温度1300〜1600℃で
H_2またはH_2+N_2ガス雰囲気下で1時間以下
の予備焼結をし、次に空気とCO_2混合ガス雰囲気に
おいて20時間以下の処理時間、1300〜1600℃
の処理温度及び所定範囲の処理温度における酸素分圧の
組合わせで所定の焼結過程まで進行させ、更にその後、
H_2またはH_2+N_2ガス雰囲気下で1時間以下
の還元処理を施すことによる3段連続処理を含むことを
特徴とする酸化物核燃料体の製造方法。
(1) UO_ with a specific surface area value (BET) of 3 m^2/g or less
Oxide nuclear fuel pellets with a double microstructure made from 2_+_X powder are pre-sintered at a processing temperature of 1300 to 1600°C in an H_2 or H_2+N_2 gas atmosphere for 1 hour or less, and then sintered in an air and CO_2 mixed gas atmosphere. Processing time of 20 hours or less, 1300-1600°C
The sintering process is progressed to a predetermined sintering process using a combination of processing temperature and oxygen partial pressure at a predetermined range of processing temperatures, and then,
A method for producing an oxide nuclear fuel assembly, comprising a three-stage continuous process of performing a reduction treatment for one hour or less in an H_2 or H_2+N_2 gas atmosphere.
(2)比表面積値(BET)3m^2/g以下のUO_
2_+_X粉末を原料とした2重微細構造を有する酸化
物核燃料ペレットを、処理温度1300〜1600℃で
H_2またはH_2+N_2ガス雰囲気下で1時間以下
の予備焼結をし、次に空気とN_2混合ガス雰囲気にお
いて20時間以下の処理時間、1300〜1600℃の
処理温度及び所定範囲の処理温度における酸素分圧の組
合わせで所定の焼結過程まで進行させ、更にその後、H
_2またはH_2+N_2ガス雰囲気下で1時間以下の
還元処理を施すことによる3段連続処理を含むことを特
徴とする酸化物核燃料体の製造方法。
(2) UO_ with a specific surface area value (BET) of 3 m^2/g or less
Oxide nuclear fuel pellets with a double microstructure made from 2_+_X powder are pre-sintered at a processing temperature of 1300 to 1600°C in an H_2 or H_2+N_2 gas atmosphere for 1 hour or less, and then sintered in an air and N_2 mixed gas atmosphere. The sintering process is progressed to a predetermined sintering process using a combination of a treatment time of 20 hours or less, a treatment temperature of 1300 to 1600°C, and an oxygen partial pressure at a treatment temperature in a predetermined range.
A method for producing an oxide nuclear fuel assembly, comprising three consecutive stages of reduction treatment in an atmosphere of _2 or H_2+N_2 gas for one hour or less.
(3)比表面積値(BET)3m^2/g以下のUO_
2_+_X粉末を原料とした2重微細構造を有する酸化
物核燃料ペレットは、粉砕または製粒を施したシュウ酸
アンモニウム、酒石酸アンモニウム、澱粉、ショ糖また
はナフタリン、及び潤滑剤としても作用するステアリン
酸亜鉛またはポリ・ビニール・アルコールを気孔形成剤
として使用したことを特徴とする請求項(1)または請
求項(2)に記載の酸化物核燃料体の製造方法。
(3) UO_ with a specific surface area value (BET) of 3 m^2/g or less
Oxide nuclear fuel pellets with a dual microstructure made from 2_+_X powder are made of ground or granulated ammonium oxalate, ammonium tartrate, starch, sucrose or naphthalene, and zinc stearate or zinc stearate, which also acts as a lubricant. The method for producing an oxide nuclear fuel assembly according to claim (1) or claim (2), characterized in that polyvinyl alcohol is used as a pore-forming agent.
(4)酸化物核燃料ペレットとしてUO_2ペレットま
たは(Pu、U)O_2または(Gd、U)O_2ペレ
ットを用いることを特徴とする請求項(1)乃至請求項
(3)のいずれか1つに記載の酸化物核燃料体の製造方
法。
(4) According to any one of claims (1) to (3), wherein UO_2 pellets, (Pu, U)O_2 or (Gd, U)O_2 pellets are used as the oxide nuclear fuel pellets. A method for producing an oxide nuclear fuel body.
(5)焼結雰囲気として所定範囲の酸素分圧を確保する
ために空気をCO_2ガスもしくはN_2ガスにその混
合比を0.001〜10として混合するか、またはCO
_2ガスもしくはN_2ガスに変えて不活性ガスを使用
したことを特徴とする請求項(1)乃至請求項(4)の
いずれか1つに記載の酸化物核燃料体の製造方法。
(5) To ensure an oxygen partial pressure within a predetermined range as a sintering atmosphere, air is mixed with CO_2 gas or N_2 gas at a mixing ratio of 0.001 to 10, or CO
The method for producing an oxide nuclear fuel assembly according to any one of claims (1) to (4), characterized in that an inert gas is used instead of the _2 gas or the N_2 gas.
JP63134299A 1988-05-31 1988-05-31 Method for producing oxide nuclear fuel body having double microstructure Expired - Lifetime JP2701043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63134299A JP2701043B2 (en) 1988-05-31 1988-05-31 Method for producing oxide nuclear fuel body having double microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134299A JP2701043B2 (en) 1988-05-31 1988-05-31 Method for producing oxide nuclear fuel body having double microstructure

Publications (2)

Publication Number Publication Date
JPH01304391A true JPH01304391A (en) 1989-12-07
JP2701043B2 JP2701043B2 (en) 1998-01-21

Family

ID=15125039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134299A Expired - Lifetime JP2701043B2 (en) 1988-05-31 1988-05-31 Method for producing oxide nuclear fuel body having double microstructure

Country Status (1)

Country Link
JP (1) JP2701043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166800A (en) * 1990-10-29 1992-06-12 Nuclear Fuel Ind Ltd Fabrication method for sintered nuclear fuel and its sintering furnace
JP2006234753A (en) * 2005-02-28 2006-09-07 Global Nuclear Fuel-Japan Co Ltd Manufacturing method of nuclear fuel pellet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375306A (en) * 1960-04-29 1968-03-26 Atomic Energy Authority Uk Method of producing dense,sintered bodies of uo2 or uo2-puo2 mixtures
JPS50111499A (en) * 1974-02-16 1975-09-02
JPS50121696A (en) * 1974-02-21 1975-09-23
JPS5489195A (en) * 1977-12-26 1979-07-14 Nippon Nuclear Fuels Preparation of ceramic nuclear fuel
JPS5882189A (en) * 1981-10-26 1983-05-17 シーメンス、アクチエンゲゼルシヤフト Method of making oxide nuclear fuel sintering material
JPS58180985A (en) * 1982-03-22 1983-10-22 ゼネラル・エレクトリツク・カンパニイ Nuclear fuel pellet and manufacture therefor
JPS6130235A (en) * 1984-07-23 1986-02-12 Nec Home Electronics Ltd Method and device for combining two substances
JPS62199700U (en) * 1986-06-10 1987-12-19

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375306A (en) * 1960-04-29 1968-03-26 Atomic Energy Authority Uk Method of producing dense,sintered bodies of uo2 or uo2-puo2 mixtures
JPS50111499A (en) * 1974-02-16 1975-09-02
JPS50121696A (en) * 1974-02-21 1975-09-23
JPS5489195A (en) * 1977-12-26 1979-07-14 Nippon Nuclear Fuels Preparation of ceramic nuclear fuel
JPS5882189A (en) * 1981-10-26 1983-05-17 シーメンス、アクチエンゲゼルシヤフト Method of making oxide nuclear fuel sintering material
JPS58180985A (en) * 1982-03-22 1983-10-22 ゼネラル・エレクトリツク・カンパニイ Nuclear fuel pellet and manufacture therefor
JPS6130235A (en) * 1984-07-23 1986-02-12 Nec Home Electronics Ltd Method and device for combining two substances
JPS62199700U (en) * 1986-06-10 1987-12-19

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166800A (en) * 1990-10-29 1992-06-12 Nuclear Fuel Ind Ltd Fabrication method for sintered nuclear fuel and its sintering furnace
JP2006234753A (en) * 2005-02-28 2006-09-07 Global Nuclear Fuel-Japan Co Ltd Manufacturing method of nuclear fuel pellet
JP4608337B2 (en) * 2005-02-28 2011-01-12 株式会社グローバル・ニュークリア・フュエル・ジャパン Method for producing nuclear fuel pellets

Also Published As

Publication number Publication date
JP2701043B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
US9190179B2 (en) Method of controlling solubility of additives at and near grain boundaries, and method of manufacturing sintered nuclear fuel pellet having large grain size using the same
JPS6119952B2 (en)
JP2018505394A (en) Method for producing pellets of at least one metal oxide
US6251309B1 (en) Method of manufacturing large-grained uranium dioxide fuel pellets containing U3O8
US9653188B2 (en) Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same
CN1133176C (en) Method for preparing Gd2O3-UO2 flammable poison fuel core block by using U3O8 powder
JPH01304391A (en) Production of oxide nuclear fuel body
JP4099529B2 (en) Nuclear fuel pellet and manufacturing method thereof
KR101436499B1 (en) Fabrication method of burnable absorber nuclear fuel pellet using rapid sintering, and the burnable absorber nuclear fuel pellet thereby
KR100521638B1 (en) Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method
JP2790548B2 (en) Manufacturing method of nuclear fuel sintered body
US4885147A (en) Process for preparing a large-grained UO2 fuel
JP2701049B2 (en) Method for producing oxide nuclear fuel body by air sintering
JP2588947B2 (en) Manufacturing method of oxide nuclear fuel sintered body
KR100450711B1 (en) Method of manufacturing nuclear fuel pellet consisting of duplex grains
JP3051388B1 (en) Manufacturing method of nuclear fuel sintered body
JPH0761820A (en) Production of nuclear fuel pellet
JP3172732B2 (en) Manufacturing method of ceramic pellets for nuclear fuel
JP4330391B2 (en) Method for producing nuclear fuel pellets and nuclear fuel pellets produced by the method
JPH0545484A (en) Uranium dioxide powder for atomic fuel and manufacture thereof
JP4608337B2 (en) Method for producing nuclear fuel pellets
JPH0755975A (en) Producing nuclear fuel pellet
RU2396611C1 (en) Method of preparing nuclear fuel pellets
KR100569589B1 (en) Method for manufacturing nuclear fuel pellet
Chotard et al. Fabrication, Characteristics and in-Pile Performance of UO2 Pellets Prepared from Dry Route Powder