JPH04166800A - Fabrication method for sintered nuclear fuel and its sintering furnace - Google Patents

Fabrication method for sintered nuclear fuel and its sintering furnace

Info

Publication number
JPH04166800A
JPH04166800A JP2293076A JP29307690A JPH04166800A JP H04166800 A JPH04166800 A JP H04166800A JP 2293076 A JP2293076 A JP 2293076A JP 29307690 A JP29307690 A JP 29307690A JP H04166800 A JPH04166800 A JP H04166800A
Authority
JP
Japan
Prior art keywords
gas
sintering
nuclear fuel
atmosphere
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2293076A
Other languages
Japanese (ja)
Other versions
JP2696268B2 (en
Inventor
Kazutoshi Tokai
和俊 渡海
Kiyoshi Kasai
清 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2293076A priority Critical patent/JP2696268B2/en
Publication of JPH04166800A publication Critical patent/JPH04166800A/en
Application granted granted Critical
Publication of JP2696268B2 publication Critical patent/JP2696268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To omit necessity of using expensive CO2 gas, attain lowering cost of materials and prevent complication of the equipment by using N2 gas of industrial purity for main atmosphere gas in sintering in oxidation atmosphere. CONSTITUTION:To sinter pellets with using this sintering furnace, the forming material is heated firstly in a preliminary heating part 1 for 1 to 6 hours in an atmosphere of 150 deg.C to properly disperse the inside oxigen density. Then it is heated at temperature of 1,100 deg.C to 1,300 deg.C in an atmosphere of N2 or N2/air added with proper amount of H2O in a sintering part 2. The gas used here is N2 gas of industrial purity and to the use of N2 gas instead of CO2 gas enables simplifying the equipment to be compact.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は核燃料体を1100℃〜1300℃の低温焼結
法において製造する核燃料焼結体の製造法及びその焼結
炉に関し、詳しくは、酸化雰囲気保持のための主ガスと
してN2を用いてコストダウンを図った核燃料焼結体の
製造法及びその焼結炉に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a nuclear fuel sintered body by a low-temperature sintering method of 1100°C to 1300°C, and a sintering furnace thereof. The present invention relates to a method for manufacturing a nuclear fuel sintered body that uses N2 as the main gas for maintaining an oxidizing atmosphere to reduce costs, and a sintering furnace for the same.

(従来の技術) 低温焼結法は、1600℃〜1750℃で行われる通常
の核燃料体焼結に比べ、1100℃〜1300℃の比較
的低温にて焼結を行えるようにしたものであり、−般に
、酸化性雰囲気での焼結と還元加熱の2段階焼結による
ものが知られている。
(Prior Art) The low-temperature sintering method allows sintering to be performed at a relatively low temperature of 1100°C to 1300°C, compared to normal nuclear fuel body sintering which is performed at 1600°C to 1750°C. - In general, two-stage sintering is known: sintering in an oxidizing atmosphere and reductive heating.

そして、この低温焼結法においては、特公昭60−54
635号及び特公昭61−19952号各公報にて具体
的な製造方法が開示されており、これらは何れもC02
雰囲気で焼結を行い、のち還元性雰囲気で還元加熱を行
うことを基本としている。。
In this low-temperature sintering method,
635 and Japanese Patent Publication No. 61-19952, specific manufacturing methods are disclosed, and both of these are C02
The basic method is to perform sintering in an atmosphere and then perform reductive heating in a reducing atmosphere. .

一方、上記低温焼結法を実施する装置としては、本願出
願人による特開昭64−91094号公報に記載の焼結
炉が公知であり、この焼結炉は予備焼結部と本焼結部と
還元部とを連続して備え、更に各部の境界にN、ガス又
はCO□ガスをパージガスとするガスカーテン部を有す
るもので、本焼結部はCO□を主ガスとする1000−
1400℃の加熱ゾーンである。
On the other hand, as an apparatus for carrying out the above-mentioned low-temperature sintering method, a sintering furnace described in Japanese Patent Application Laid-Open No. 64-91094 by the applicant of the present invention is known, and this sintering furnace has a preliminary sintering section and a main sintering section. The sintering section has a continuous sintering section and a reducing section, and further has a gas curtain section at the boundary between each section that uses N, gas, or CO□ gas as a purge gas.The main sintering section has a 1000-
This is a heating zone of 1400°C.

しかしながら、上記の製造法及び装置では、何れも焼結
において比較的高価なCO2を雰囲気主ガスとして用い
ることから、原料的にコスト高を招くと共に、CO2は
加圧(30kg/cIlt)により固体となるため設備
的にも困難性があり、かつCO□固体からのガス化を安
定的に行うことも難しいという問題がある。
However, in the above manufacturing method and apparatus, relatively expensive CO2 is used as the main atmosphere gas during sintering, which increases the cost of raw materials, and CO2 becomes solid under pressure (30 kg/cIlt). Therefore, there is a problem in that it is difficult in terms of equipment, and it is also difficult to stably gasify CO□ solid.

また、焼結ガスとしてN2やAirを一部用いる製造方
法として特開平1−304391号公報に記載のものが
あるが、本焼結に1300℃〜1600℃の温度を必要
とする高温の焼結法であって、省エネルギー低コストの
低温焼結法ではなく、しかも焼結前に1300℃〜16
00℃での予備焼結や酸素雰囲気中の酸素分圧のコント
ロール等を必要とするなど実用の面で改良の余地が大き
い。
In addition, there is a manufacturing method described in JP-A-1-304391 that partially uses N2 or Air as the sintering gas, but high-temperature sintering requires a temperature of 1300°C to 1600°C for main sintering. This method is not an energy-saving, low-cost, low-temperature sintering method;
There is a lot of room for improvement in practical terms, such as requiring preliminary sintering at 00°C and controlling the oxygen partial pressure in the oxygen atmosphere.

(発明が解決しようとする課題) ところで、通常酸化雰囲気を保持するためにCO□を主
ガスとして用いることは前記した通りであるが、これは
雰囲気の酸素濃度をCOド−ecO+ ’AO2の平衡
条件により一定に保ちやすくするためであった。
(Problem to be Solved by the Invention) By the way, as mentioned above, CO□ is normally used as the main gas to maintain an oxidizing atmosphere. This was to make it easier to maintain a constant value depending on the conditions.

一方、前記特公昭61−19952号公報に代表される
UO□にU3O8を添加する低温焼結法、あるいは本願
出願人の出願による特開平2−95298号公報に記載
(7)LlOz ニUOz−x  (但しX=0.25
〜1.0)を25〜45重量%添加する低温焼結法が提
案されているが、特ににこれらの方法によると、UO2
゜8から粒径増加に必要なU、0.に変化するに必要な
酸素は、これら酸化ウラン内部から供給されるために、
焼結雰囲気中の酸素濃度はそれほど重要でないことが、
また更に上記酸化物を添加しないUO,だけの焼結にお
いても、同様であることが判明した。
On the other hand, there is a low-temperature sintering method in which U3O8 is added to UO□ as typified by the above-mentioned Japanese Patent Publication No. 19952/1982, or a method described in Japanese Patent Application Laid-open No. 2-95298 filed by the applicant of the present application (7) LlOz niUOz-x (However, X=0.25
Low-temperature sintering methods have been proposed in which 25 to 45% by weight of UO2
U required for particle size increase from ゜8, 0. Because the oxygen necessary for the change to uranium oxide is supplied from within these uranium oxides,
The oxygen concentration in the sintering atmosphere is not very important.
Furthermore, it was found that the same effect was obtained when sintering only UO without adding the above oxide.

即ち、上記焼結雰囲気は少なくとも還元雰囲気でないよ
うな不活性雰囲気であればよく、また酸素濃度について
は過度の酸化が生じるといわれている400ppm以下
であればよい。
That is, the sintering atmosphere may be at least an inert atmosphere that is not a reducing atmosphere, and the oxygen concentration may be 400 ppm or less, which is said to cause excessive oxidation.

本発明はこの事実の掌握に基づくもので、低温2段階酸
化焼結法の前段の焼結ガスにN2を用いることにより、
核燃料焼結体製造コストの低廉化及び設備の簡略化なら
びにコンパクト化を目的とするものである。
The present invention is based on understanding this fact, and by using N2 as the sintering gas in the first stage of the low-temperature two-stage oxidation sintering method,
The purpose is to reduce the manufacturing cost of nuclear fuel sintered bodies and to simplify and downsize the equipment.

(課題を解決するための手段) 即ち、上記目的に適合する本発明核燃料焼結体の製造法
の特徴は、核燃料ペレ、2トを焼結炉に入れ、処理温度
1100℃〜1300℃にて酸化雰囲気焼結を行った後
、更に同等範囲の処理温度にて還元加熱を行う核燃料焼
結体の低温焼結法において、上記酸化雰囲気焼結におけ
る雰囲気の主ガスとして工業純度のN2ガスを用いるこ
とにある。
(Means for Solving the Problems) That is, the feature of the method for manufacturing the nuclear fuel sintered body of the present invention that meets the above-mentioned purpose is that two nuclear fuel pellets are placed in a sintering furnace and the processing temperature is 1100°C to 1300°C. In a low-temperature sintering method for nuclear fuel sintered bodies in which sintering in an oxidizing atmosphere is followed by reductive heating at a treatment temperature in the same range, industrial-purity N2 gas is used as the main gas in the atmosphere in the sintering in an oxidizing atmosphere. There is a particular thing.

この場合、N2ガスに酸素濃度調整のために空気を適量
添加してもよく、また、還元加熱の還元ガスとして、N
2、又はN2とN2の混合ガスを用い、この還元ガスに
820を体積比として0.01%以上添加するようにし
てもよい。更に、上記製造法においては、核燃料ベレッ
トとして母材UO2,Xに25〜45重量%の002.
yを添加したもの(但し、X <0.25≦y≦1.O
)を用いるのが好適である。
In this case, an appropriate amount of air may be added to the N2 gas to adjust the oxygen concentration, and N2 gas may be used as a reducing gas for reduction heating.
2, or a mixed gas of N2 and N2, and 0.01% or more of 820 may be added to this reducing gas as a volume ratio. Furthermore, in the above manufacturing method, 25 to 45% by weight of 002.
Added y (however, X <0.25≦y≦1.O
) is preferably used.

一方、上記製造方法を実施する本発明の焼結炉は、前部
が予備加熱部、中間部が本焼結部、後部が還元部であっ
て各部が連続してつらなり、かつ各部境界にN2ガスカ
ーテン領域を介在せしめた核燃料体の焼結炉において、
上記予備加熱部はN2又はNz/Airを雰囲気主ガス
とする加熱ゾーンであり、上記本焼結部はN2又はNz
/Airを雰囲気主ガスとする1100℃〜1300℃
の加熱ゾーンであり、上記還元部はN2又はH2/N2
雰囲気主ガスに8.0を添加した1100℃〜1300
℃の加熱ゾーンであることを特徴とする。
On the other hand, the sintering furnace of the present invention for carrying out the above manufacturing method has a preheating section in the front section, a main sintering section in the middle section, and a reduction section in the rear section, each section being connected continuously, and N2 at the boundary between each section. In a nuclear fuel assembly sintering furnace with a gas curtain region,
The preheating section is a heating zone where the main atmosphere gas is N2 or Nz/Air, and the main sintering section is a heating zone where the main gas is N2 or Nz/Air.
1100℃~1300℃ with /Air as the main atmosphere gas
heating zone, and the reduction section is N2 or H2/N2
Atmosphere: 1100°C to 1300°C with 8.0 added to the main gas
It is characterized by a heating zone of ℃.

(作用) 上記本発明焼結炉を用いて本発明製造法により核燃料焼
結体を製造する際には、まず、予備加熱部は、入口の0
□が高くなりすぎないように、Airから混入する02
をN2により追い出すためのガス置換部の役割と、望ま
しくは150℃以下に温度を保持することにより、添加
した場合のU3O8と母材N02中の酸素を平衡に保つ
という本来の作用をはたし、のち焼結過程へ移行するこ
とによりN40.形成への酸素の拡散をペレット内で均
一にすることを可能とする。
(Function) When producing a nuclear fuel sintered body by the production method of the present invention using the above-mentioned sintering furnace of the present invention, first, the preheating section is
02 mixed from Air to prevent □ from becoming too high
The role of the gas replacement part is to expel the N2 with N2, and by keeping the temperature preferably below 150°C, it fulfills its original function of keeping the added U3O8 and the oxygen in the base material N02 in equilibrium. , and then proceed to the sintering process to reduce N40. This allows the diffusion of oxygen into the formation to be uniform within the pellet.

次に、本焼結部は主ガスとしてN2ガスを有し、酸素濃
度調整のためのAirの添加量は、N、ガスの純度及び
還元領域からのN2の流入量によって400ppan以
下の範囲で加減調整する(N2ガスは不純物が大部分0
□なのでその純度は02含有割合と見なしてよい)。ま
た、本焼結部におけるN2主ガスの流れは該本焼活部全
域にわたり均質に流れ込み、一部はその入口側のN2カ
ーテン、残りは還元部入口のN2カーテンにより排出さ
れる。従って雰囲気中の酸素濃度は還元部入口のN2カ
ーテン部を除き均一となる。
Next, the main sintering part has N2 gas as the main gas, and the amount of Air added to adjust the oxygen concentration can be adjusted within a range of 400 ppan or less depending on the purity of the N and gas and the amount of N2 flowing from the reduction region. Adjust (N2 gas has almost no impurities.
□ Therefore, its purity can be considered as the 02 content ratio). Further, the flow of the main N2 gas in the main sintering section flows homogeneously over the entire area of the main sintering section, and part of the main gas is discharged through the N2 curtain at the entrance side of the main sintering section, and the rest through the N2 curtain at the entrance of the reduction section. Therefore, the oxygen concentration in the atmosphere becomes uniform except for the N2 curtain section at the entrance of the reducing section.

なお、雰囲気の主ガスとしてN2を用いる場合、粉末成
型性改良用の潤滑剤として炭水化物を用いると潤滑剤の
分解によって生じる多量のカーボンヲ介シテノ反応、U
 + C= UC、IJC+ %N2 = IN +C
により、窒化物が形成される恐れがあるが、これは後に
続く還元加熱時に、適当量の8.0を供給することによ
り窒素を取り除くことが可能であることが判明した。
In addition, when N2 is used as the main gas in the atmosphere, if a carbohydrate is used as a lubricant to improve powder moldability, a large amount of carbon-mediated reaction occurs due to the decomposition of the lubricant.
+C=UC,IJC+%N2=IN+C
However, it has been found that nitrogen can be removed by supplying an appropriate amount of 8.0 during the subsequent reduction heating.

(実施例) 以下、添付図面を参照して本発明核燃料焼結体の製造法
及びその焼結炉の実施例を説明する。
(Embodiments) Hereinafter, embodiments of the method for producing a nuclear fuel sintered body of the present invention and its sintering furnace will be described with reference to the accompanying drawings.

第1図は本発明に係る焼結炉の1例であり、図示左方か
ら右方に核燃料ペレットが運搬される。
FIG. 1 shows an example of a sintering furnace according to the present invention, in which nuclear fuel pellets are transported from the left to the right in the figure.

図において、(1)は炉前部に設けられた予備加熱部、
(2)は炉中間部の本焼結部、(3)が後部に設けられ
た還元部であり、これら各部境界にはN2ガスカーテン
部(4)、 (51が設けられている。
In the figure, (1) is a preheating section provided at the front of the furnace;
(2) is the main sintering section in the middle of the furnace, (3) is the reduction section provided at the rear, and N2 gas curtain sections (4) and (51) are provided at the boundaries of these sections.

ここで上記予備加熱部(11はN2又はNz/Airを
雰囲気主ガスとする150℃前後の加熱ゾーンであり、
上記本焼結部(2)は同じ<N2又はNZ/^irを雰
囲気主ガスとする1100℃〜1300℃の加熱ゾーン
であり、また上記還元部(3)はN2又はN2/NZ雰
囲気主ガスにH2Oを添加した1100℃〜1300℃
の加熱ゾーンである。
Here, the preheating part (11 is a heating zone of around 150°C with N2 or Nz/Air as the main gas in the atmosphere,
The above-mentioned main sintering section (2) is a heating zone of 1100 to 1300 °C with the same <N2 or NZ/^ir as the main gas atmosphere, and the above-mentioned reduction section (3) is a heating zone with the main gas atmosphere being N2 or N2/NZ. 1100℃~1300℃ with H2O added
heating zone.

そこで今、上記炉を使用してペレ・7トを焼結するに際
しては、先ず、予備加熱部+11において150℃の上
記雰囲気中にて1時間〜6時間加熱することにより成型
体内の酸素濃度を適切に分散させた後、本焼結部(2)
においてN2又はNz/Air雰囲気、1100℃〜1
300℃で1〜4時間加熱し、還元部(3)においてN
2又はN2/NZ雰囲気に)120を適量添加し、11
00℃〜1300℃で加熱する。なお、ここで使用する
N2ガスは工業純度のN2ガスである。
Therefore, when sintering pellets using the above furnace, first, the oxygen concentration in the molded body is reduced by heating it in the above atmosphere at 150°C for 1 to 6 hours in the preheating section +11. After proper dispersion, the main sintered part (2)
at N2 or Nz/Air atmosphere, 1100℃~1
Heating at 300°C for 1 to 4 hours and reducing N in the reduction section (3).
2 or N2/NZ atmosphere) by adding an appropriate amount of 120,
Heat at 00°C to 1300°C. Note that the N2 gas used here is of industrial purity.

次に、上記本発明焼結炉を用い、本発明製法により燃料
ペレットを焼結した実例を示す。
Next, an example will be shown in which fuel pellets were sintered by the production method of the present invention using the above-mentioned sintering furnace of the present invention.

(例) 0/U =2.09のUO□粉末に、410℃空気中加
熱によって得たU、O,(粒度−120mesh)を3
5重量%添加混合した後、金型潤滑法により密度5.8
g/catの成型体を得た。
(Example) 3 U, O, (particle size -120 mesh) obtained by heating in air at 410°C was added to UO□ powder with 0/U = 2.09.
After adding 5% by weight and mixing, the density was 5.8 using the mold lubrication method.
A molded body of g/cat was obtained.

これを前記連続焼結炉にて、20cm/Ilrで装荷し
た。
This was loaded in the continuous sintering furnace at 20 cm/Ilr.

予備加熱温度設定値は150℃、滞在時間1.58r。Preheating temperature setting value is 150°C, residence time 1.58r.

雰囲気はN2ガス。本焼結は昇温速度250℃/llr
で1150℃で3Hr保持、雰囲気はNz 十Airで
酸素濃度は50〜70ppm 、還元は1150℃で1
.5)1r保持、雰囲気はアンモニアの分解によって得
た3 82 十NZと0゜2体積%のH,0゜ 以上の条件により、密度95.3%の試料を得た。
The atmosphere is N2 gas. Main sintering has a heating rate of 250℃/llr
The temperature was maintained at 1150℃ for 3 hours, the atmosphere was Nz 10 air, the oxygen concentration was 50-70ppm, and the reduction was carried out at 1150℃ for 1 hour.
.. 5) A sample with a density of 95.3% was obtained under conditions of holding at 1r, atmosphere of 3 82 10 NZ obtained by decomposing ammonia, 0° and 2% by volume of H, and 0° or more.

その金相は第2図に示す通りであり、第3図に示すCO
□焼結のものと差異はない。また、上記試料におけるC
およびNの量も、第1表に示すように特に問題となるも
のではない。
The gold phase is as shown in Figure 2, and the CO as shown in Figure 3.
□There is no difference from the sintered one. In addition, C in the above sample
As shown in Table 1, the amount of N also does not pose any particular problem.

第   1   表 (発明の効果) 以上説明したように、本発明核燃料焼結体の製造方法は
焼結を1100〜1300℃の低温にて行う省エネルギ
ーな低温焼結法において、焼結時の雰囲気主ガスとして
工業純度のN2ガスを用いたものであり、従来用いてい
た高価なCO□ガスを使用する必要をなくして原料的な
コストダウンを達成すると共に、加圧により固体となる
COzの複雑な設備と困難なガス化安定性を排除して、
液体化可能なN2にて設備の簡略化及びコンパクト化な
らびにガスの安定供給を可能ならしめたものである。
Table 1 (Effects of the Invention) As explained above, the method for producing the nuclear fuel sintered body of the present invention uses an energy-saving low-temperature sintering method in which sintering is performed at a low temperature of 1100 to 1300°C, and the atmosphere during sintering is mainly It uses industrial-purity N2 gas as the gas, eliminating the need to use the expensive CO□ gas that was previously used, reducing raw material costs, and reducing the complexity of COz, which becomes solid under pressure. Eliminating equipment and difficult gasification stability,
This makes it possible to simplify and downsize the equipment and provide a stable supply of gas using N2, which can be liquefied.

また、本発明焼結炉は、予備加熱部、本焼結部、還元部
、及びその境界にN2ガスカーテン部を備えた連続炉に
おいて、予備加熱炉及び本焼結部の雰囲気としてN2又
はN7Airガスを用い還元部の雰囲気としてN2又は
llz/ Nz+820を用いた低温焼結炉であり、上
記本発明方法を達成するに最も効果を発揮すると共に、
C0gガスの代わりにN2ガスを用いたことにより前述
のように設備を簡略でコンパクトにすることが可能で、
しかも製造された焼結体はCO□を用いたものと同等の
金相を有し、かつ、炭素・窒素量も変わることがない等
、省エネルギー、コストダウンが重視される今日におい
てその有用性は極めて大きいものである。
In addition, the sintering furnace of the present invention is a continuous furnace equipped with a preheating section, a main sintering section, a reducing section, and an N2 gas curtain section at the boundary thereof, and the atmosphere of the preheating furnace and main sintering section is N2 or N7 Air. This is a low-temperature sintering furnace that uses gas and N2 or llz/Nz+820 as the atmosphere in the reduction section, and is most effective in achieving the method of the present invention described above.
By using N2 gas instead of C0g gas, the equipment can be made simpler and more compact as mentioned above.
Moreover, the manufactured sintered body has a metal phase equivalent to that using CO□, and the amount of carbon and nitrogen does not change, making its usefulness in today's world where energy conservation and cost reduction are emphasized. It is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明焼結炉の一実施例を示す概要図、第2図
は本発明製造法により得た核燃料焼結体の金相を拡大率
210倍で写した顕微鏡写真、第3図は従来のCO□焼
結により得られた核燃料焼結体の金相を拡大率210倍
で写した顕微鏡写真である。 (1)・・・予備加熱部、 (2)・・・本焼結部、 (3)・・・還元部、 (4)、 (5)・・・N2ガスカーテン部。 第1図 平成3年 3月 1日 特許庁長官 植 松   敏 殿 ■、事件の表示 平成2年特許願第293076号 2、発明の名称 核燃料焼結体の製造法及びその焼結炉 3、補正をする者 事件との関係  特許出願人 住所 東京都港区西新橋3丁目23番5号名称    
原子燃料工業株式会社 代表者 清 水 俊− 4、代理人
Fig. 1 is a schematic diagram showing an embodiment of the sintering furnace of the present invention, Fig. 2 is a micrograph showing the gold phase of the nuclear fuel sintered body obtained by the production method of the present invention at a magnification of 210 times, and Fig. 3 is a micrograph showing the gold phase of a nuclear fuel sintered body obtained by conventional CO□ sintering at a magnification of 210 times. (1) Preheating section, (2) Main sintering section, (3) Reduction section, (4), (5) N2 gas curtain section. Figure 1 March 1, 1991 Mr. Satoshi Uematsu, Commissioner of the Japan Patent Office ■, Indication of the case, 1990 Patent Application No. 293076 2, Title of invention, Method for manufacturing nuclear fuel sintered bodies and sintering furnace 3, Amendment Relationship with the case of a person who does the following Patent applicant address: 3-23-5 Nishi-Shinbashi, Minato-ku, Tokyo Name
Nuclear Fuel Industry Co., Ltd. Representative Shun Shimizu-4, Agent

Claims (1)

【特許請求の範囲】 1、核燃料ペレットを焼結炉に入れ、処理温度1100
℃〜1300℃にて酸化雰囲気焼結を行った後、更に同
等範囲の処理温度にて還元加熱を行う核燃料焼結体の低
温焼結法において、上記酸化雰囲気焼結における雰囲気
の主ガスとして工業純度のN_2ガスを用いることを特
徴とする核燃料焼結体の製造法。 2、請求項1に記載の製造法において、N_2ガスに酸
素濃度調整のために空気を適量添加する核燃料焼結体の
製造法。 3、請求項1又は2に記載の製造法において、還元加熱
の還元ガスとて、H_2、又はH_2とN_2の混合ガ
スを用い、この還元ガスにH_2Oを体積比として0.
01%以上添加する核燃料焼結体の製造法。 4、請求項1、2又は3記載の製造法において、上記核
燃料ペレットとして、母材UO_2_+_x(但しx<
0.25)に25〜45重量%のUO_2_+_y(但
し0.25≦y≦1.0)を添加して用いる核燃料焼結
体の製造法。 5、前部が予備加熱部、中間部が本焼結部、後部が還元
部であって各部が連続してつらなり、かつ各部境界にN
_2ガスカーテン領域を介在せしめた核燃料体の焼結炉
において、上記予備加熱部はN_2又はN_2/Air
を雰囲気主ガスとする加熱ゾーンであり、上記本焼結部
はN_2又はN_2/Airを雰囲気主ガスとする11
00℃〜1300℃の加熱ゾーンであり、上記還元部は
H_2又はH_2/N_2雰囲気主ガスにH_2Oを添
加した1100℃〜1300℃の加熱ゾーンであること
を特徴とする核燃料焼結体の焼結炉。
[Claims] 1. Nuclear fuel pellets are placed in a sintering furnace and the treatment temperature is 1100.
In a low-temperature sintering method for nuclear fuel sintered bodies in which sintering is performed in an oxidizing atmosphere at a temperature of 1,300°C to 1,300°C, and then reductive heating is performed at a treatment temperature in the same range, industrial A method for producing a nuclear fuel sintered body, characterized by using pure N_2 gas. 2. The method for producing a nuclear fuel sintered body according to claim 1, wherein an appropriate amount of air is added to the N_2 gas to adjust the oxygen concentration. 3. In the manufacturing method according to claim 1 or 2, H_2 or a mixed gas of H_2 and N_2 is used as the reducing gas for the reduction heating, and the volume ratio of H_2O to this reducing gas is 0.
A method for producing a nuclear fuel sintered body containing 0.01% or more. 4. In the manufacturing method according to claim 1, 2 or 3, the nuclear fuel pellet is a base material UO_2_+_x (where x<
0.25) by adding 25 to 45% by weight of UO_2_+_y (0.25≦y≦1.0). 5. The front part is the preheating part, the middle part is the main sintering part, and the rear part is the reduction part, and each part is connected continuously, and there is an N at the boundary of each part.
_2 In the sintering furnace of a nuclear fuel assembly with a gas curtain region, the preheating section is N_2 or N_2/Air.
The main sintering zone is a heating zone in which the main atmosphere gas is N_2 or N_2/Air.
Sintering of a nuclear fuel sintered body, characterized in that the heating zone is a heating zone of 00°C to 1300°C, and the reducing section is a heating zone of 1100°C to 1300°C in which H_2O is added to the main gas in an H_2 or H_2/N_2 atmosphere. Furnace.
JP2293076A 1990-10-29 1990-10-29 Method for producing nuclear fuel sintered body and its sintering furnace Expired - Fee Related JP2696268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293076A JP2696268B2 (en) 1990-10-29 1990-10-29 Method for producing nuclear fuel sintered body and its sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293076A JP2696268B2 (en) 1990-10-29 1990-10-29 Method for producing nuclear fuel sintered body and its sintering furnace

Publications (2)

Publication Number Publication Date
JPH04166800A true JPH04166800A (en) 1992-06-12
JP2696268B2 JP2696268B2 (en) 1998-01-14

Family

ID=17790141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293076A Expired - Fee Related JP2696268B2 (en) 1990-10-29 1990-10-29 Method for producing nuclear fuel sintered body and its sintering furnace

Country Status (1)

Country Link
JP (1) JP2696268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878313B2 (en) 2001-10-02 2005-04-12 Nuclear Fuel Industries, Ltd. Method of fabricating sintered nuclear fuel compact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491094A (en) * 1987-10-01 1989-04-10 Nuclear Fuel Ind Ltd Sintering furnace for oxide nuclear fuel assembly
JPH01304391A (en) * 1988-05-31 1989-12-07 Mitsubishi Atom Power Ind Inc Production of oxide nuclear fuel body
JPH0295298A (en) * 1988-09-30 1990-04-06 Nuclear Fuel Ind Ltd Manufacture of oxide nuclear fuel sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491094A (en) * 1987-10-01 1989-04-10 Nuclear Fuel Ind Ltd Sintering furnace for oxide nuclear fuel assembly
JPH01304391A (en) * 1988-05-31 1989-12-07 Mitsubishi Atom Power Ind Inc Production of oxide nuclear fuel body
JPH0295298A (en) * 1988-09-30 1990-04-06 Nuclear Fuel Ind Ltd Manufacture of oxide nuclear fuel sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878313B2 (en) 2001-10-02 2005-04-12 Nuclear Fuel Industries, Ltd. Method of fabricating sintered nuclear fuel compact
DE10239769B4 (en) * 2001-10-02 2005-08-25 Nuclear Fuel Industries, Ltd. Process for producing a sintered nuclear fuel compact

Also Published As

Publication number Publication date
JP2696268B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US3872022A (en) Sintering uranium oxide in the reaction products of hydrogen-carbon dioxide mixtures
US4348339A (en) Method for manufacturing oxidic nuclear fuel bodies
US3953556A (en) Method of preparing uranium nitride or uranium carbonitride bodies
US3930787A (en) Sintering furnace with hydrogen carbon dioxide atmosphere
US3927154A (en) Process for preparing sintered uranium dioxide nuclear fuel
DK0447388T3 (en) Process for the preparation of fine-grained, sintering active nitride and carbon nitride powders of titanium
US3073695A (en) Method for producing iron powder having low carbon and oxygen contents
JPH04166800A (en) Fabrication method for sintered nuclear fuel and its sintering furnace
JP3976716B2 (en) Method for producing sintered nuclear fuel containing tungsten metal mesh
JP2813926B2 (en) Uranium dioxide powder for nuclear fuel and method for producing the same
JP2588947B2 (en) Manufacturing method of oxide nuclear fuel sintered body
JPH0636065B2 (en) Sintering furnace for oxide nuclear fuel
JP2790548B2 (en) Manufacturing method of nuclear fuel sintered body
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
JP3593515B2 (en) Manufacturing method of nuclear fuel sintered body
JPS62274003A (en) Sintering of powder material
EP0232246A3 (en) Process for manufacturing iron powder suitable for powder metallurgy by means of reduction of fine iron oxide powders with hot gases
JP2701049B2 (en) Method for producing oxide nuclear fuel body by air sintering
JP3172732B2 (en) Manufacturing method of ceramic pellets for nuclear fuel
EP0411299A1 (en) Process for passivating uranium oxides to control oxidation
JPH05100068A (en) Manufacture of nuclear fuel sintered pellet
JP3051388B1 (en) Manufacturing method of nuclear fuel sintered body
JP3091555B2 (en) Manufacturing method of nuclear fuel assembly
JPH0862363A (en) Manufacture of mox pellet
JPH0545483A (en) Regulating method for density of nuclear fuel pellet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees