JPH01302884A - Wavelength-stabilized laser apparatus - Google Patents

Wavelength-stabilized laser apparatus

Info

Publication number
JPH01302884A
JPH01302884A JP63133330A JP13333088A JPH01302884A JP H01302884 A JPH01302884 A JP H01302884A JP 63133330 A JP63133330 A JP 63133330A JP 13333088 A JP13333088 A JP 13333088A JP H01302884 A JPH01302884 A JP H01302884A
Authority
JP
Japan
Prior art keywords
wavelength
laser
laser beam
etalon
airtight chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63133330A
Other languages
Japanese (ja)
Other versions
JP2517066B2 (en
Inventor
Koichi Wani
和邇 浩一
Yoshiro Ogata
尾形 芳郎
Yasuhiro Shimada
恭博 嶋田
Hideto Kawahara
河原 英仁
Tadaaki Miki
三木 忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63133330A priority Critical patent/JP2517066B2/en
Priority to CA000578540A priority patent/CA1302548C/en
Priority to EP88115902A priority patent/EP0310000B1/en
Priority to DE3889831T priority patent/DE3889831T2/en
Publication of JPH01302884A publication Critical patent/JPH01302884A/en
Priority to US07/499,206 priority patent/US4991178A/en
Application granted granted Critical
Publication of JP2517066B2 publication Critical patent/JP2517066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain an apparatus which can stably restrict a center wavelength to a definite value by a method wherein a wavelength detection means is constituted in such a way that it detects the center wavelength of a laser beam by using a Fabry-Perot etalon installed inside an airtight chamber. CONSTITUTION:Means 13, 7 to 10 used to control a selection wavelength of a wavelength selection element 4 and a means 12 used to detect an oscillation wavelength of a laser beam are built in a laser apparatus which is provided with a laser medium and an optical resonator composed of a total reflector 2 and an output mirror 3 and which can select a specific oscillation wavelength within a gain bandwidth of the laser medium by installing the single or two or more wavelength selection elements 4. The wavelength detection means 12 detects a center wavelength of the laser beam by using a Fabry-Perot etalon 14 installed inside an airtight chamber 15. By this setup, a refractive index between gaps of the air-space etalon 14 inside the airtight chamber 15 can be kept definite; as a result, a wavelength detector which is not affected by an ambient temperature and an atmospheric pressure can be constituted; accordingly, the center wavelength can be restricted to a definite value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は投影露光装置の光源に用いるレーザ装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laser device used as a light source of a projection exposure apparatus.

従来の技術 近年、LSIのパターンの微細化に伴い、パターン露光
用光源が短波長化する傾向にある。このような光源の一
つに高圧水銀ランプがあり、そのg線(436nm)あ
るいはi線(3esnm)がLSI製造工程で用いられ
てきた。さらにパターンを微細化したいわゆる超LSI
においては、よシ短波長の光源が要求され、この要求に
応えるものとしてレーザ光源、たとえばエキシマレーザ
が注目されている。エキシマレーザはレーザ媒質として
クリプトン、キセノンなどの希ガスとふっ素。
2. Description of the Related Art In recent years, with the miniaturization of LSI patterns, there has been a tendency for light sources for pattern exposure to have shorter wavelengths. One such light source is a high-pressure mercury lamp, whose g-line (436 nm) or i-line (3 esnm) has been used in the LSI manufacturing process. So-called ultra-LSI with even finer patterns
, a light source with a much shorter wavelength is required, and laser light sources such as excimer lasers are attracting attention as a device that meets this requirement. Excimer lasers use rare gases such as krypton and xenon and fluorine as laser media.

塩素などのハロゲンガスを組み合わせることにより35
3nmから193nmの間のいくつかの波長でLSIパ
ターンの露光に十分な出力を有する発振線を得ることが
できる。
35 by combining halogen gas such as chlorine.
It is possible to obtain oscillation lines with sufficient output for exposure of LSI patterns at several wavelengths between 3 nm and 193 nm.

これらエキシマレーザの利得バンド幅は約1nmと広く
、光共振器と組み合わせて発振させた場合、発振線が0
.51m程度の線幅(半値全幅)を持つ。
The gain bandwidth of these excimer lasers is as wide as approximately 1 nm, and when oscillated in combination with an optical resonator, the oscillation line is 0.
.. It has a line width (full width at half maximum) of approximately 51 m.

このように比較的広い線幅を持つレーザ光を露光用光源
として用いた場合、ランプ光源の場合と同様、露光光学
系に色収差を補正した結像光学系を採用する必要がある
。ところが、波長が350nm以下の紫外域では、結像
光学系に用いるレンズの光学材料の選択の幅が限られ、
色収差補正が困難となる。したがって、波長350 n
m以下のレーザ光源を露光装置に用いる場合、レーザ発
振線の線幅をαoosnm程度にまで単色化し、またそ
の中心波長を一定の値に拘束することにより、色収差補
正しない結像光学系が利用可能となり、露光装置の光学
系の簡略化、ひいては露光装置全体の小型化、価格の低
減を実現できる。
When a laser beam having such a relatively wide line width is used as an exposure light source, as in the case of a lamp light source, it is necessary to employ an imaging optical system corrected for chromatic aberration in the exposure optical system. However, in the ultraviolet region where the wavelength is 350 nm or less, the range of choices for optical materials for lenses used in the imaging optical system is limited.
It becomes difficult to correct chromatic aberration. Therefore, the wavelength is 350 n
When using a laser light source with a wavelength of less than m in an exposure device, an imaging optical system that does not correct chromatic aberration can be used by making the line width of the laser oscillation line monochromatic to about αoosnm and restricting its center wavelength to a constant value. Therefore, the optical system of the exposure apparatus can be simplified, and the entire exposure apparatus can be made smaller and its price can be reduced.

本発明者らはすでに、上記目的を達成するレーザ装置の
一構成を提案した。すなわち、本体内部にレーザの中心
波長を安定化する手段を組み込んで、発振波長を任意の
値に設定かつ拘束できる波長可変レーザ装置である。こ
のようなレーザ装置を実現するためには、レーザの発振
波長を精密に検出し制御する方法が必要になる。レーザ
の発振波長を検出する方法についてもいくつかの提案が
ある。たとえば特願昭62−242378号においては
、レーザ光をファプリ・ペロー干渉計に入射し、作られ
る干渉縞の位置からレーザの発振波長を読み取る方法が
述べられている。
The present inventors have already proposed a configuration of a laser device that achieves the above object. In other words, it is a wavelength tunable laser device in which means for stabilizing the center wavelength of the laser is built into the main body, and the oscillation wavelength can be set and constrained to an arbitrary value. In order to realize such a laser device, a method for precisely detecting and controlling the laser oscillation wavelength is required. There are also several proposals regarding methods of detecting the oscillation wavelength of a laser. For example, Japanese Patent Application No. 62-242378 describes a method in which a laser beam is incident on a Fabry-Perot interferometer and the oscillation wavelength of the laser is read from the position of interference fringes formed.

ファプリ・ペロー干渉計は、大型のグレーティング分光
器と同等の分解能をきわめて小規模な装置で実現できる
ので、本発明者らが提案している、中心波長を安定化す
る機構を内蔵したレーザ装置に最適の波長検出器の一つ
である。
The Fapry-Perot interferometer can achieve the same resolution as a large grating spectrometer with an extremely small-scale device, so it can be used as a laser device with a built-in mechanism to stabilize the center wavelength, as proposed by the present inventors. It is one of the best wavelength detectors.

発明が解決しようとする課題 ところがファプリ・ペロー干渉計は、入射したレーザ光
の波長が一定値に保たれていても、周囲の気圧、気温の
変化によって異なる位置に干渉縞を作るという欠点を持
つ。第3図はファプリ・ペロー干渉計による波長検出の
原理を示す図である。
Problems to be Solved by the Invention However, the Fapry-Perot interferometer has the disadvantage that even if the wavelength of the incident laser light is kept constant, interference fringes are created at different positions depending on changes in the surrounding air pressure and temperature. . FIG. 3 is a diagram showing the principle of wavelength detection using a Fabry-Perot interferometer.

ここでファプリ・ペロー干渉計としては、2枚の平行平
板の石英ガラスを微小なギャップを保って対向させたい
わゆるエアスペースエタロン14を採用している。エア
スペースエタロン14にレーザ光が入射すると、レンズ
16によってフリンジ17とよばれる干渉縞が投影され
る。フリンジ17の位置をたとえばリニアイメージセン
サ18&などで読み取ることによって、レーザ光の相対
波長を知ることができる。
Here, the Fabry-Perot interferometer employs a so-called air space etalon 14 in which two parallel flat plates of quartz glass are opposed with a small gap maintained therebetween. When a laser beam is incident on the air space etalon 14, an interference pattern called a fringe 17 is projected by the lens 16. By reading the position of the fringe 17 using, for example, a linear image sensor 18&, the relative wavelength of the laser beam can be determined.

このような構成の波長検出器において、気圧または気温
が変化してエアスペースエタロン14のギャップ間の屈
折率が変わると、フリンジの径は172Lのように変化
する。その結果、レーザ光の波長が変化していないのに
もかかわらず、あたかも変化があったかのような誤った
信号を出力してしまい、レーザ光の中心波長が変動する
という問題がある。
In a wavelength detector having such a configuration, when the refractive index between the gaps of the air space etalon 14 changes due to a change in atmospheric pressure or temperature, the diameter of the fringe changes as shown in 172L. As a result, even though the wavelength of the laser beam has not changed, an erroneous signal is output as if there had been a change, resulting in a problem that the center wavelength of the laser beam fluctuates.

エアスペースエタロンに変わるものとして、たとえば単
体の石英板を平行平面に仕上げたソリッドエタロンと呼
ばれるものがある。しかし、ソリッドエタロンも材料の
屈折率が温度によって変化を受けるため、エアスペース
エタロンと同様の欠点は逃れられない。温度あるいは気
圧を一定にする機構を設けて屈折率の変動をなくすこと
は可能であるが、装置が大型になシフアプリ・ペロー干
渉計が持つコンパクト性を活かせなくなる。
An alternative to the air space etalon is a solid etalon, which is made of a single quartz plate with parallel planes. However, solid etalons also suffer from the same drawbacks as air space etalons because the refractive index of the material changes with temperature. Although it is possible to eliminate fluctuations in the refractive index by providing a mechanism to keep the temperature or pressure constant, the device would be large and the compactness of the Schiff App-Perot interferometer would not be utilized.

結局、従来の7アプリ・ペロー干渉計による波長制御方
法においては、レーザ光の中心波長を一定の値に拘束す
ることが困難であるという問題点があった。本発明はこ
のような問題点を解決するためなされたもので、中心波
長を一定値に安定に拘束できる波長安定化レーザを提供
するものである。
In the end, the conventional wavelength control method using a 7-application-Perot interferometer has a problem in that it is difficult to constrain the center wavelength of the laser beam to a constant value. The present invention was made to solve these problems, and provides a wavelength-stabilized laser that can stably constrain the center wavelength to a constant value.

課題を解決するための手段 レーザ媒質と、全反射鏡および出力鏡とからなる光共振
器を具備し、単一または複数の波長選択素子を光共振器
中においてレーザ媒質の利得バンド幅内で特定の発振波
長を選択できるレーザ装置において、波長選択素子の選
択波長を制御する手段、およびレーザ光の発振波長を検
出する手段をレーザ装置内に内蔵したものであって、前
記波長検出手段が気密室内に設置されたファブリ・ペロ
ーエタロンによってレーザ光の中心波長を検出するよう
に構成されたものである。
Means for Solving the Problem Equipped with an optical resonator consisting of a laser medium, a total reflection mirror and an output mirror, and specifying a single or multiple wavelength selection elements within the gain bandwidth of the laser medium in the optical resonator. A laser device capable of selecting the oscillation wavelength of the wavelength selection element has a built-in means for controlling the selected wavelength of the wavelength selection element and a means for detecting the oscillation wavelength of the laser beam, and the wavelength detection means is installed in an airtight chamber. It is configured to detect the center wavelength of the laser beam using a Fabry-Perot etalon installed at the center.

作用 この構成により、レーザ光の中心波長を一定値に安定に
拘束できることとなる。
Effect: With this configuration, the center wavelength of the laser beam can be stably constrained to a constant value.

一実施例 第1図は本発明の一実施例である波長安定化レーザ装置
の構成図である。第1図において本発明の実施例の波長
安定化レーザ装置は希ガスとハロゲンガスの混合気体を
レーザ媒質とする放電管1と、全反射鏡2および出力鏡
3からなる光共振器により、紫外域でレーザ発振する。
Embodiment FIG. 1 is a block diagram of a wavelength stabilized laser device which is an embodiment of the present invention. In FIG. 1, the wavelength stabilized laser device according to the embodiment of the present invention uses a discharge tube 1 which uses a mixture of rare gas and halogen gas as a laser medium, an optical resonator consisting of a total reflection mirror 2 and an output mirror 3 to generate ultraviolet light. Laser oscillation occurs in the area.

光共振器の光軸上には波長選択素子であるエアスペース
エタロン4.グレーティング6が置かれている。エアス
ペースエタロン4はレーザ波長において、適当な反射率
を持つ2枚の平行平面石英板を微小なギャップを保って
向き合わせたファプリ・ベローエタロンの一種であり、
気密容器θ中に設置されている。気密容器6には高圧空
気源7および低圧空気源8がそれぞれパルプ9,1oを
介して接続されており、エアスペースエタロ/4のギャ
ップ間およびグレーティング5周囲の気圧を変化させる
ことができる。また半透過鏡11によって取り出された
サンプルビームは、波長検出器12に導かれる。波長検
出器12はサンプルビームの中心波長に相当する信号を
比較器13に出力する。比較器13は波長検出器12か
ら送られた信号を基準信号と比較し、その偏差量に応じ
てパルプ9またはパルプ10を開閉する信号を出力する
On the optical axis of the optical resonator, there is an air space etalon 4, which is a wavelength selection element. Grating 6 is placed. The air space etalon 4 is a type of Fabry-Berrot etalon in which two parallel plane quartz plates with appropriate reflectance are faced with a small gap at the laser wavelength.
It is installed in an airtight container θ. A high pressure air source 7 and a low pressure air source 8 are connected to the airtight container 6 via pulps 9 and 1o, respectively, and the air pressure between the gaps of the air space etalo/4 and around the grating 5 can be changed. Further, the sample beam extracted by the semi-transmissive mirror 11 is guided to the wavelength detector 12. The wavelength detector 12 outputs a signal corresponding to the center wavelength of the sample beam to the comparator 13. The comparator 13 compares the signal sent from the wavelength detector 12 with a reference signal, and outputs a signal to open or close the pulp 9 or the pulp 10 depending on the amount of deviation.

次に以上のような構成による、本発明の波長安定化レー
ザ装置の動作を説明する。一般にエキシマレーザの利得
バンド幅は第2図乙に示すように11mに及ぶ。これを
第2図すに示すように0.005nm程度に単色化する
場合、透過帯域幅がそれと同程度の波長選択素子を用い
る必要がある。このような波長選択素子は、たとえば実
施例に示したようにファブリペローエタロンとグレーテ
ィングを組み合わせて実現できる。
Next, the operation of the wavelength stabilized laser device of the present invention having the above configuration will be explained. Generally, the gain bandwidth of an excimer laser is 11 m, as shown in Figure 2B. If this is to be made monochromatic to about 0.005 nm as shown in FIG. 2, it is necessary to use a wavelength selection element with a transmission band width of about the same level. Such a wavelength selection element can be realized, for example, by combining a Fabry-Perot etalon and a grating as shown in the embodiment.

このようにして単色化したレーザ光の中心波長は、レー
ザの動作中に変動する場合がある。これは、波長選択素
子の透過中心波長が、温度、気圧等によって変化するた
めである。このような原因によるレーザ光の中心波長の
変動は、波長選択素子周囲の温度および気圧を一定に保
つことにより抑制できるが、レーザ光の一部を吸収する
ことによる波長選択素子自体の温度上昇にょシ、これに
も限界がある。そこで本発明によるレーザ装置では、波
長検出器12を設け、レーザ光の中心波長に相当する波
長信号を得て波長選択素子の選択波長を一定値に保ち、
レーザ光の中心波長を固定する。波長選択素子の選択波
長を一定に保つためには、たとえば第1図の実施例に示
したように、エアスペースエタロン4.6を気密室6内
に設置シ、比較器13からの偏差信号に応じて、高圧空
気源7との間のパルプ9または低圧空気源8との間のパ
ルプ1oを開閉して、気密室6内の気圧を変えることに
よってエアスペースエタロン4のギャップ間の屈折率を
調節すればよい。
The center wavelength of the laser beam made monochromatic in this way may vary during operation of the laser. This is because the transmission center wavelength of the wavelength selection element changes depending on temperature, atmospheric pressure, and the like. Fluctuations in the center wavelength of the laser beam due to such causes can be suppressed by keeping the temperature and air pressure around the wavelength selection element constant, but the temperature increase of the wavelength selection element itself due to absorption of a portion of the laser beam Yes, there is a limit to this too. Therefore, in the laser device according to the present invention, a wavelength detector 12 is provided to obtain a wavelength signal corresponding to the center wavelength of the laser beam to keep the selected wavelength of the wavelength selection element at a constant value.
Fix the center wavelength of the laser beam. In order to keep the selected wavelength of the wavelength selection element constant, for example, as shown in the embodiment shown in FIG. Accordingly, by opening and closing the pulp 9 between the high-pressure air source 7 or the pulp 1o between the low-pressure air source 8 and changing the air pressure inside the airtight chamber 6, the refractive index between the gaps of the air space etalon 4 can be changed. Just adjust it.

波長検出器12では、エアスペースエタロ/14により
レーザ発振のスペクトルを同心円上のフリンジ17に展
開して結像し、フリンジの位置にフォトダイオード18
を置いている。レーザ光の中心波長が変動するとフリン
ジ17の径が変化してフォトダイオード18の出力が低
下するので、比較器13はレーザ光の中心波長が当初の
値に戻りフォトダイオード18の出力が回復するような
信号を発生する。
In the wavelength detector 12, the spectrum of laser oscillation is developed and imaged on a concentric fringe 17 by an air space etalo/14, and a photodiode 18 is placed at the position of the fringe.
is placed. When the center wavelength of the laser beam changes, the diameter of the fringe 17 changes and the output of the photodiode 18 decreases, so the comparator 13 controls the center wavelength of the laser beam to return to its original value and the output of the photodiode 18 to recover. generates a signal.

このような構成の波長検出器でレーザ光の中心波長を一
定の値に保つためには、一定の波長のレーザ光が入射し
たとき常に同じ位置にフリンジパターン17ができなけ
ればならない。しかし、周囲温度や気圧の変化によって
エアスペースエタロン14のギャップ間の屈折率が変わ
ると、一定波長のレーザ光が入射してもフリンジの径が
変動し、波長の変化があったような信号を出力してしま
うことは前述した通シである。
In order to maintain the center wavelength of the laser beam at a constant value in a wavelength detector having such a configuration, a fringe pattern 17 must always be formed at the same position when a laser beam of a constant wavelength is incident. However, if the refractive index between the gaps in the air space etalon 14 changes due to changes in ambient temperature or atmospheric pressure, the diameter of the fringe will change even if a laser beam of a certain wavelength is incident, causing a signal that appears to have changed in wavelength. This is the same as mentioned above.

そこで温度による屈折率の変化が無視できるような材料
が必要となるが、エキシマレーザの発掘波長域ではその
ような材料は見当たらない。しかし、本発明者らは、エ
アスペースエタロンを気密室内に設置すれば、温度変化
の影響を受けることのない波長検出器を構成できること
に想到した。
Therefore, a material whose refractive index changes due to temperature is negligible is needed, but such a material cannot be found in the wavelength range excavated by excimer lasers. However, the present inventors have come up with the idea that by installing the air space etalon in an airtight chamber, it is possible to configure a wavelength detector that is not affected by temperature changes.

第1図には本発明による波長検出器の一実施例を示しで
ある。本実施例においてエアスペースエタロン14ば、
その内部が外部の空気と完全に遮断された気密室15に
収めである。気体の屈折率はその密度だけで決まるので
、気密室16内のエアスペースエタロン14のギャップ
間の屈折率は一定に保たれ、その結果、周囲の温度、気
圧の影響を受けない波長検出器を構成できる。
FIG. 1 shows an embodiment of a wavelength detector according to the present invention. In this embodiment, the air space etalon 14 is
It is housed in an airtight chamber 15 whose interior is completely shut off from outside air. Since the refractive index of a gas is determined only by its density, the refractive index between the gaps of the air space etalon 14 in the hermetic chamber 16 is kept constant, resulting in a wavelength detector that is not affected by the ambient temperature or atmospheric pressure. Can be configured.

本発明による波長検出器は、検出波長が外部的な要因に
よって変化を受けないという特徴を有するので、レーザ
本体内部に組み込んで波長を安定に拘束できる波長安定
化レーザを供給できることになる。また、この波長検出
器は温度や気圧の制御手段を必要としないので、レーザ
装置の小型化。
Since the wavelength detector according to the present invention has the characteristic that the detection wavelength is not affected by external factors, it is possible to provide a wavelength-stabilized laser that can be incorporated into the laser main body to stably constrain the wavelength. Additionally, this wavelength detector does not require temperature or atmospheric pressure control means, making the laser device more compact.

低価格化も実現できる。Lower prices can also be achieved.

なお、第1図に示した波長検出器において、フォトダイ
オードによってフリンジが所定の位置にあるか否かだけ
を判別する例を示したが、リニアイメージセンサなどに
よって、フリンジの形状を読み取るように構成してもよ
い。また、気密室16中に封入する気体は空気以外の、
たとえば希ガス。
Note that in the wavelength detector shown in Figure 1, an example was shown in which a photodiode was used to determine only whether the fringe was in a predetermined position, but it could also be configured to read the shape of the fringe using a linear image sensor or the like. You may. In addition, the gas sealed in the airtight chamber 16 may be other than air.
For example, noble gases.

窒素ガスなどであってもよい。Nitrogen gas or the like may also be used.

また、気体の屈折率が密度だけによって決まるという性
質はあらゆる波長域で成り立つので、本実施例に示した
波長検出器がエキシマレーザ以外の、一般の光源の波長
の検出に利用できることは言うまでもない。
Further, since the property that the refractive index of a gas is determined only by the density holds true in all wavelength ranges, it goes without saying that the wavelength detector shown in this embodiment can be used to detect the wavelength of general light sources other than excimer lasers.

発明の詳細 な説明したように本発明による波長安定化レーザ装置は
、レーザ光の中心波長を一定の値に安定に拘束できると
いう優れた効果を有するレーザ装置を提供することがで
きる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the wavelength stabilized laser device according to the present invention can provide a laser device having the excellent effect of stably constraining the center wavelength of laser light to a constant value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である波長安定化レーザ装置
の構成図、第2図はレーザ光の単色化を説明する図、第
3図は従来の波長検出器の一構成を示す図である。 1・・・・・・放電管、2・・・・・・全反射鏡、3・
・・・・・出力鏡、4・・・・・・エアスペースエタロ
ン、5・・・・・・グレーティング、6・・・・・・気
密容器、7・・・・・・高圧空気源、8・・・・・・低
圧空気源、9.10・・・・・・パルプ、11・・・・
・・半透過鏡、12・・・・・・波長検出器、13・・
・・・・比較器、14・・・・・・エアスペースエタロ
ン、16・・・・・・気密室、16・・・・・・レンズ
、17・・・・・・フリンジ、171L・川・・変化し
たフリンジ、18・・・・・・フォトダイオード、18
2L・・・・・・リニアイメージセンサ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
・−放4c萱 朱14・・−エアχイーχLりrJ5 5−−−グb−クィング +、9−=J長r仁す
Fig. 1 is a diagram showing the configuration of a wavelength stabilized laser device that is an embodiment of the present invention, Fig. 2 is a diagram illustrating monochromatic laser light, and Fig. 3 is a diagram showing the configuration of a conventional wavelength detector. It is. 1...discharge tube, 2...total reflection mirror, 3.
... Output mirror, 4 ... Air space etalon, 5 ... Grating, 6 ... Airtight container, 7 ... High pressure air source, 8 ...Low pressure air source, 9.10...Pulp, 11...
...Semi-transparent mirror, 12...Wavelength detector, 13...
... Comparator, 14 ... Air space etalon, 16 ... Airtight chamber, 16 ... Lens, 17 ... Fringe, 171L・River・・Changed fringe, 18...Photodiode, 18
2L...Linear image sensor. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
- air 4c 萱朱 14...- air χ χ L r J 5 5-- g b- quining +, 9- = J long r jinsu

Claims (1)

【特許請求の範囲】[Claims] レーザ媒質と、全反射鏡および出力鏡とからなる光共振
器を具備し、単一または複数の波長選択素子を光共振器
中においてレーザ媒質の利得バンド幅内で特定の発振波
長を選択できるレーザ装置において、波長選択素子の選
択波長を制御する手段、およびレーザ光の発振波長を検
出する手段をレーザ装置内に内蔵したものであって、前
記波長検出手段が気密室内に設置されたファブリ・ペロ
ーエタロンによってレーザ光の中心波長を検出すること
を特徴とする波長安定化レーザ装置。
A laser that is equipped with an optical resonator consisting of a laser medium, a total reflection mirror, and an output mirror, and that can select a specific oscillation wavelength within the gain bandwidth of the laser medium with a single or multiple wavelength selection elements in the optical resonator. In the apparatus, means for controlling the selected wavelength of the wavelength selection element and means for detecting the oscillation wavelength of the laser beam are built into the laser apparatus, and the wavelength detecting means is installed in an airtight chamber. A wavelength-stabilized laser device characterized by detecting the center wavelength of laser light using an etalon.
JP63133330A 1987-09-28 1988-05-31 Wavelength stabilization laser device Expired - Fee Related JP2517066B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63133330A JP2517066B2 (en) 1988-05-31 1988-05-31 Wavelength stabilization laser device
CA000578540A CA1302548C (en) 1987-09-28 1988-09-27 Laser apparatus
EP88115902A EP0310000B1 (en) 1987-09-28 1988-09-27 Laser apparatus
DE3889831T DE3889831T2 (en) 1987-09-28 1988-09-27 Laser apparatus.
US07/499,206 US4991178A (en) 1987-09-28 1990-03-19 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133330A JP2517066B2 (en) 1988-05-31 1988-05-31 Wavelength stabilization laser device

Publications (2)

Publication Number Publication Date
JPH01302884A true JPH01302884A (en) 1989-12-06
JP2517066B2 JP2517066B2 (en) 1996-07-24

Family

ID=15102194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133330A Expired - Fee Related JP2517066B2 (en) 1987-09-28 1988-05-31 Wavelength stabilization laser device

Country Status (1)

Country Link
JP (1) JP2517066B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216589A (en) * 1985-07-16 1987-01-24 Toshiba Corp Laser device for separating isotope
JPS6484681A (en) * 1987-09-26 1989-03-29 Mitsubishi Electric Corp Laser apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216589A (en) * 1985-07-16 1987-01-24 Toshiba Corp Laser device for separating isotope
JPS6484681A (en) * 1987-09-26 1989-03-29 Mitsubishi Electric Corp Laser apparatus

Also Published As

Publication number Publication date
JP2517066B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US6560254B2 (en) Line-narrowing module for high power laser
KR920009706B1 (en) Laser device
USRE38372E1 (en) Narrow band excimer laser and wavelength detecting apparatus
US6487228B2 (en) Narrow band excimer or molecular fluorine laser with adjustable bandwidth
EP0310000B1 (en) Laser apparatus
JPH1187829A (en) Wavelength standard for excimer laser
US4922290A (en) Semiconductor exposing system having apparatus for correcting change in wavelength of light source
US20020012374A1 (en) Tunable laser with stabilized grating
JPH03238329A (en) Wavelength detecting apparatus
WO2016189722A1 (en) Laser device, and band-narrowing optical system
US6542243B2 (en) Resonator optics monitoring method
IL149675A (en) High power gas discharge laser with helium purged line narrowing unit
EP0383586B1 (en) Laser device
JPH01302884A (en) Wavelength-stabilized laser apparatus
JPH057031A (en) Wavelength detection apparatus
JP2537970B2 (en) Wavelength tunable laser device
US6456361B1 (en) Method and instrument for measuring vacuum ultraviolet light beam, method of producing device and optical exposure apparatus
JP2506944B2 (en) Wavelength tunable laser device
JP2000266605A (en) Wavelength measuring device for ultraviolet laser
JPH01302883A (en) Tunable laser apparatus
JPH0552051B2 (en)
JPH01155673A (en) Laser wavelength control device
JP2586656B2 (en) Wavelength stabilized laser device
JP2586661B2 (en) Wavelength stabilized laser device
JPS6329758A (en) Light source for exposing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees