JPS6216589A - Laser device for separating isotope - Google Patents

Laser device for separating isotope

Info

Publication number
JPS6216589A
JPS6216589A JP15518185A JP15518185A JPS6216589A JP S6216589 A JPS6216589 A JP S6216589A JP 15518185 A JP15518185 A JP 15518185A JP 15518185 A JP15518185 A JP 15518185A JP S6216589 A JPS6216589 A JP S6216589A
Authority
JP
Japan
Prior art keywords
wavelength
laser
isotope
laser beams
specific wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15518185A
Other languages
Japanese (ja)
Other versions
JPH0634422B2 (en
Inventor
Chikara Konagai
主税 小長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15518185A priority Critical patent/JPH0634422B2/en
Publication of JPS6216589A publication Critical patent/JPS6216589A/en
Publication of JPH0634422B2 publication Critical patent/JPH0634422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1392Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length by using a passive reference, e.g. absorption cell

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To hold the wavelength of laser beams stable by detecting a deviation between the wavelength of laser beams used for separating an isotope and a specific wavelength required for separating the isotope with high precision by a discharge tube having optical absorption characteristics. CONSTITUTION:A pump laser 2 is given pulses having required frequency from a pulse generator 1 and pulse-oscillated. Laser beams R2 are outputted from the pump laser 2, and projected to a wavelength selective laser 3. The wavelength selective laser 3 selectively outputs laser beams R3 having a specific wavelength needed for separating an isotope from laser beams R2 projected to an isotope separator 4. The same isotope as the isotope to be separated is attached to an electrode, and the wavelength of laser beams R3 is detected at all times by a hollow cathode lamp 8 having optical absorption characteristics. Accordingly, the wavelength can be detected with high accuracy, and the wavelength of laser beams R3 can be held stable to the specific wavelength.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は同位体分離に必要な特定波長のレーザビームを
出力する同位体分離用レーザ装置に係り、特に、出力レ
ーザビームの波長の偏位を検出する波長検出器を改良し
た同位体分離用レーザ装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a laser device for isotope separation that outputs a laser beam of a specific wavelength necessary for isotope separation, and particularly relates to a laser device for isotope separation that outputs a laser beam of a specific wavelength necessary for isotope separation. This invention relates to a laser device for isotope separation with an improved wavelength detector.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、レーザ同位体分離法とは同位体シフト効果を利
用し不特定の波長のレーザビームにより   □特定の
同位体のみを選択的に励起、電離させて分離する方法で
ある。
In general, laser isotope separation is a method that utilizes isotope shift effects to selectively excite and ionize specific isotopes using a laser beam of an unspecified wavelength.

原子は一般に、特定の波長の光を吸収して基底状態から
励起状態となり、さらに、励起状態で別の特定波長の光
を吸収して一層高い励起状態、もしくは電子を喪失して
電離に至る光電離現象を生ずる。この光電離の時に原子
が!収し易い光の特定波長は、同一元素であっても質m
数が異なる場合には僅かに異にする場合がある。これを
同位体シフトという。
In general, atoms absorb light of a specific wavelength to change from the ground state to an excited state, and then in the excited state absorb light of another specific wavelength to reach a higher excited state, or lose electrons and become ionized. Causes ionization phenomenon. During this photoionization, atoms! The specific wavelength of light that is easy to collect is different even if the elements are the same.
If the numbers are different, they may be slightly different. This is called an isotope shift.

このように元素の同位体シフト間は極く僅かであるから
、同位体分離を効率良く行なうためには、これに用いる
レーザビームを特定の波長に高精度、かつ安定に保持す
ることが必要である。ずなわら、同位体分離に供せられ
るレーザビームの・波長の精度は、例えばウラン235
の場合には特定波長に対し偏差が17106内であるこ
とが要求される。
In this way, the isotope shift of an element is extremely small, so in order to perform isotope separation efficiently, it is necessary to maintain the laser beam used for this purpose at a specific wavelength with high precision and stability. be. Of course, the accuracy of the wavelength of the laser beam used for isotope separation is, for example, uranium-235
In this case, it is required that the deviation for a specific wavelength be within 17106.

そこで、従来の同位体分離用レーデ装置では、特定の元
素、例えばヨウ素■の吸収スベク]・ルで較正された超
高精密の波長計によりレーザ光を特定波長に調整してい
た。しかしながら、これではレーザ光を同位体分離に必
要な特定波長に調整することが必ずしも容易ではなかっ
た。また、同位体分離中にレーザ光を特定波長に保持す
ることは、超高精密の波長計を常時作動させておく必要
があるために、調整と同様に容易ではなかった。
Therefore, in conventional Raded isotope separation devices, the laser beam was adjusted to a specific wavelength using an ultra-high precision wavelength meter calibrated with the absorption spectrum of a specific element, such as iodine. However, it is not always easy to adjust the laser beam to a specific wavelength required for isotope separation. In addition, maintaining the laser beam at a specific wavelength during isotope separation is not as easy as adjusting it because it requires an ultra-high precision wavelength meter to be in constant operation.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、レーザビ
ームを特定波長に、高精度、かつ安定に保持することの
できる同位体分離用レーザ装置を提供することを目的と
する。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a laser device for isotope separation that can maintain a laser beam at a specific wavelength with high precision and stability.

〔発明の概要〕[Summary of the invention]

本発明は同位体分離しようとする同位体の光吸収効果に
着目してなされたものであり、この光吸収特性を有する
放電管により、同位体分離に用いられるレーザビームの
波長と同位体分離に必要な特定波長との偏差を高粘度で
検出し、このレーザビームの波長を特定波長に安定に保
持するように構成したことに特徴がある。
The present invention was made by focusing on the light absorption effect of the isotope to be separated, and by using a discharge tube with this light absorption characteristic, the wavelength of the laser beam used for isotope separation and the isotope separation can be adjusted. The feature is that the deviation from the required specific wavelength is detected using high viscosity, and the wavelength of the laser beam is stably maintained at the specific wavelength.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第1図および第2図を
参照して説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明の一実施例の全体構成を示すブロック線
図であり、パルス発生器1より所要周波数のパルスをポ
ンプレーザ2に与えてパルス発振を行なわせる。このポ
ンプレーザ2からはレーザ光R2が出力され、波長選択
性レーザ3に入射される。波長選択性レーザ3は入射さ
れたレーザ光R2から同位体分離に必要な特定波長のレ
ーザビームR3を同位体分離装置4に選択的に出力する
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the present invention, in which a pulse generator 1 supplies pulses of a desired frequency to a pump laser 2 to cause pulse oscillation. Laser light R2 is output from the pump laser 2 and is incident on the wavelength selective laser 3. The wavelength selective laser 3 selectively outputs a laser beam R3 having a specific wavelength necessary for isotope separation from the incident laser light R2 to the isotope separation device 4.

上記波長選択性レーザ3は第2図に示すように構成され
、ポンプレーザ2からのレーザ光R2を波長選択性レー
ザ励起部3aを介して気密室3b内のレーザ光拡大器3
c、エタロン3dおよび回折格子3eに入射させる。気
密室3bは複数、例えば2つの圧力制御弁3fを装着し
ており、内圧力制御弁3fは波長制御器5からの波長制
御信号S5により弁開度を制御される。この内圧力制御
弁3fの弁開度の制御により、気密室3b内の圧力を変
化させて、出力ミラー3gより出力されるレーザビーム
R3の波長を適宜制御する。また、波長選択素子である
回折格子3eとエタロン3dのレーザ光軸に対する角度
を図中矢印方向に微小角度調整することによりレーザビ
ームR3の波長を制御することができる。この回折格子
3eおよびエタロン3dからめレーザ光は再び波長選択
性レーザ励起m13aを経て、出力ミラー3gよりレー
ザビームR3として半透過ミラー6を透過させア籟i;
百ノ、’y))l>錨オ太耶りAΔh74ご4つフ【一
方、半透過ミラー6にて反射されたレーザビームR3の
一部は第1図に示すようにモニタ用ビームR6として分
離され、反射ミラー7を介してホローカソードランプ8
へ入射される。このホ[1−カソードランプ8は直流高
電圧で放電する放電管であり、その電極の一方、例えば
8aに、同位体分離装置4にて分離しようとする同位体
と同一の同位体元素Uを付着して、オプトガルバノ効果
を星するようになっている。すなわち、ホローカソード
ランプ8に入射されたモニタ用ビームR6の波長が放電
中の同位体元素Uの共鳴吸収ラインに一致すると、放電
プラズマのインピーダンスが急減する。したがって、こ
のインピーダンス変化をコンデンサCにより放電電圧変
化として検出することができる。これにより、ボローカ
ソードランプ8はモニタ用ビームR6の波長について同
位体分離に必要な特定波長との偏差を検出する。この偏
差は電気信号のオプトガルバノ信号S8としてロックイ
ンアンプ9に入力され、ここでパルスを生x1のパルス
に皿II L T 1台幅されてカら波搭制御器5に入
力される。波長制御器5はオプトガルバノ信号S8に対
応した波長制御信号S5を波長選択性レーザ3の両圧力
制御弁3f(第2図参照)に加え、これらの開度を制御
する。これにより、出力ミラー30より出力されるレー
ザビームR3の波長は同位体分離に必要な特定波長に制
御される。
The wavelength-selective laser 3 is configured as shown in FIG.
c, the beam is made incident on the etalon 3d and the diffraction grating 3e. The airtight chamber 3b is equipped with a plurality of pressure control valves 3f, for example two pressure control valves, and the opening degree of the internal pressure control valve 3f is controlled by a wavelength control signal S5 from a wavelength controller 5. By controlling the opening degree of the internal pressure control valve 3f, the pressure within the airtight chamber 3b is changed, and the wavelength of the laser beam R3 output from the output mirror 3g is appropriately controlled. Further, the wavelength of the laser beam R3 can be controlled by slightly adjusting the angle of the diffraction grating 3e and etalon 3d, which are wavelength selection elements, with respect to the laser optical axis in the direction of the arrow in the figure. The laser light from this diffraction grating 3e and etalon 3d passes through the wavelength-selective laser excitation m13a again, and is transmitted through the semi-transmissive mirror 6 as a laser beam R3 from the output mirror 3g.
On the other hand, a part of the laser beam R3 reflected by the semi-transmissive mirror 6 is used as a monitor beam R6 as shown in FIG. The hollow cathode lamp 8 is separated through the reflective mirror 7.
is incident on the This cathode lamp 8 is a discharge tube that discharges at a high DC voltage, and one of its electrodes, for example 8a, contains an isotope element U that is the same as the isotope to be separated in the isotope separation device 4. It is attached to produce an opto-galvanic effect. That is, when the wavelength of the monitoring beam R6 incident on the hollow cathode lamp 8 coincides with the resonance absorption line of the isotope element U during discharge, the impedance of the discharge plasma decreases rapidly. Therefore, this impedance change can be detected by the capacitor C as a discharge voltage change. Thereby, the borrow cathode lamp 8 detects the deviation of the wavelength of the monitoring beam R6 from the specific wavelength required for isotope separation. This deviation is input to the lock-in amplifier 9 as an opto-galvano signal S8, which is an electric signal, and here the pulse is converted into a pulse of output x1 and input to the wave tower controller 5. The wavelength controller 5 applies a wavelength control signal S5 corresponding to the opto-galvano signal S8 to both pressure control valves 3f (see FIG. 2) of the wavelength selective laser 3 to control their opening degrees. Thereby, the wavelength of the laser beam R3 output from the output mirror 30 is controlled to a specific wavelength necessary for isotope separation.

したがって、本実施例によれば、同位体分離を行なおう
とする同位体と同一の同位体元素を電極に付着して、光
吸収特性を右するホローカソードランプ8によりレーザ
ビームR3の波長を常時検出するので、高精度で波長を
検出することができ、しかもレーザビームR3の波長を
特定波長に安定して保持することができる。その結果、
複数の同位体の中の稀少成分の同位体分離を行なう場合
には、その稀少成分を濃縮してホローカソードランプ電
極に付着することにより、同位体分離に用いられるレー
ザビームの波長を高精度で検出することができる。例え
ば天然ウランからウラン235を同位体分離する場合に
は高濃縮のウラン235をホローカソードランプ8の電
極8aに付着寸ればよい。
Therefore, according to this embodiment, the same isotope element as the isotope to be subjected to isotope separation is attached to the electrode, and the wavelength of the laser beam R3 is constantly controlled by the hollow cathode lamp 8 that controls the light absorption characteristics. Therefore, the wavelength can be detected with high precision, and the wavelength of the laser beam R3 can be stably maintained at a specific wavelength. the result,
When performing isotopic separation of rare components among multiple isotopes, the wavelength of the laser beam used for isotope separation can be adjusted with high precision by concentrating the rare components and attaching them to the hollow cathode lamp electrode. can be detected. For example, when isotopically separating uranium 235 from natural uranium, highly enriched uranium 235 may be attached to the electrode 8a of the hollow cathode lamp 8.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ポンプレーザからのレー
ザ光を受けて発振し同位体分離に必要な特定波長のシー
11ビームを選択的に出力する波長選択性レーザと、同
位体分離を行なおうとする同位体と同一の同位体元素を
電極に付着する放電管に上記レーデビームの一部を入射
させて上記特定波長との偏差を検出する波長検出器と、
この波長検出器からの偏差出力に応じて波長制御信号を
上記波長選択性レーザに与えて上記レーデビームの波長
を上記特定波長に制御させる波長制御器とを右りる。
As explained above, the present invention includes a wavelength-selective laser that receives laser light from a pump laser, oscillates, and selectively outputs a C-11 beam of a specific wavelength necessary for isotope separation, and a wavelength-selective laser that performs isotope separation. a wavelength detector that detects a deviation from the specific wavelength by making a part of the radar beam incident on a discharge tube whose electrode is attached with the same isotopic element as the intended isotope;
A wavelength controller is provided which applies a wavelength control signal to the wavelength selective laser in accordance with the deviation output from the wavelength detector to control the wavelength of the radar beam to the specific wavelength.

したがって、本発明にJ:れば、光吸収特性を有する波
長検出器により同位体分離に供せられるレーザビームの
波長を常時検出するので、その検出精度の向上を図るこ
とができる。
Therefore, according to the present invention, since the wavelength of the laser beam used for isotope separation is constantly detected by a wavelength detector having light absorption characteristics, the detection accuracy can be improved.

また、レーザビームの波長は高精度の波長検出器からの
検出出力に基づいて同位体分離に必要な特定波長に制御
するので、レーザビームの波長を特定波長に安定的に保
持することができる効果がある。
In addition, since the wavelength of the laser beam is controlled to the specific wavelength required for isotope separation based on the detection output from a high-precision wavelength detector, the wavelength of the laser beam can be stably maintained at a specific wavelength. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成を示すブロック線
図、第2図は主に第1図で示す波長選択性レーザの構成
を示す構成図である。 1・・・パルス発生器、2・・・ポンプレーザ、3・・
・波長選択性レーザ、4・・・同位体分離装置、5・・
・波長制御器、8・・・ホローカソードランプ(波長検
出器)。
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the present invention, and FIG. 2 is a block diagram mainly showing the configuration of the wavelength selective laser shown in FIG. 1. 1...Pulse generator, 2...Pump laser, 3...
・Wavelength selective laser, 4... Isotope separation device, 5...
- Wavelength controller, 8...Hollow cathode lamp (wavelength detector).

Claims (1)

【特許請求の範囲】 1、ポンプレーザからのレーザ光を受けて発振し同位体
分離に必要な特定波長のレーザビームを選択的に出力す
る波長選択性レーザと、同位体分離を行なおうとする同
位体と同一の同位体元素を電極に付着する放電管に上記
レーザビームの一部を入射させて上記特定波長との偏差
を検出する波長検出器と、この波長検出器からの偏差出
力に応じて波長制御信号を上記波長選択性レーザに与え
て上記レーザビームの波長を上記特定波長に制御させる
波長制御器とを有することを特徴とする同位体分離用レ
ーザ装置。 2、放電管がホローカソードランプである特許請求の範
囲第1項に記載の同位体分離用レーザ装置。
[Claims] 1. Isotope separation is attempted using a wavelength selective laser that receives laser light from a pump laser and oscillates to selectively output a laser beam of a specific wavelength necessary for isotope separation. A wavelength detector that detects the deviation from the specific wavelength by making a part of the laser beam incident on the discharge tube whose electrode is attached with the same isotopic element as the isotope; and a wavelength detector that detects the deviation from the specific wavelength; a wavelength controller that applies a wavelength control signal to the wavelength selective laser to control the wavelength of the laser beam to the specific wavelength. 2. The laser device for isotope separation according to claim 1, wherein the discharge tube is a hollow cathode lamp.
JP15518185A 1985-07-16 1985-07-16 Laser device for isotope separation Expired - Lifetime JPH0634422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15518185A JPH0634422B2 (en) 1985-07-16 1985-07-16 Laser device for isotope separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15518185A JPH0634422B2 (en) 1985-07-16 1985-07-16 Laser device for isotope separation

Publications (2)

Publication Number Publication Date
JPS6216589A true JPS6216589A (en) 1987-01-24
JPH0634422B2 JPH0634422B2 (en) 1994-05-02

Family

ID=15600255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15518185A Expired - Lifetime JPH0634422B2 (en) 1985-07-16 1985-07-16 Laser device for isotope separation

Country Status (1)

Country Link
JP (1) JPH0634422B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484767A (en) * 1987-09-28 1989-03-30 Matsushita Electric Ind Co Ltd Tunable laser device
JPH01287427A (en) * 1988-05-16 1989-11-20 Matsushita Electric Ind Co Ltd Laser wavelength detector
JPH01302884A (en) * 1988-05-31 1989-12-06 Matsushita Electric Ind Co Ltd Wavelength-stabilized laser apparatus
JPH0346838A (en) * 1989-07-13 1991-02-28 American Teleph & Telegr Co <Att> Light wave communication system having source synchronized individually with obsolute frequency standard
JPH0476976A (en) * 1990-07-19 1992-03-11 Komatsu Ltd Narrow-band oscillation laser device
JP2002084026A (en) * 2000-06-16 2002-03-22 Lambda Physik Ag F2 laser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484767A (en) * 1987-09-28 1989-03-30 Matsushita Electric Ind Co Ltd Tunable laser device
JPH01287427A (en) * 1988-05-16 1989-11-20 Matsushita Electric Ind Co Ltd Laser wavelength detector
JPH01302884A (en) * 1988-05-31 1989-12-06 Matsushita Electric Ind Co Ltd Wavelength-stabilized laser apparatus
JPH0346838A (en) * 1989-07-13 1991-02-28 American Teleph & Telegr Co <Att> Light wave communication system having source synchronized individually with obsolute frequency standard
JPH0476976A (en) * 1990-07-19 1992-03-11 Komatsu Ltd Narrow-band oscillation laser device
JP2689012B2 (en) * 1990-07-19 1997-12-10 株式会社小松製作所 Narrowband oscillation laser device
JP2002084026A (en) * 2000-06-16 2002-03-22 Lambda Physik Ag F2 laser

Also Published As

Publication number Publication date
JPH0634422B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US3718868A (en) I{11 {11 {11 {11 INVERTED LAMB DIP STABILIZED He-Ne LASER
FI80791C (en) Ring Laser Gyroscope
CN110333651B (en) Laser atomic clock locked based on coherent population trapping mode
EP0196856B1 (en) Dual-wavelength laser apparatus
JPS6216589A (en) Laser device for separating isotope
Rasel et al. White light transverse cooling of a helium beam
US4070580A (en) Method and apparatus for field ionization for isotope separation
GB1149190A (en) A device for the frequency stabilization of a gas laser oscillator
JPS63280483A (en) Light source for exposure device
US3568088A (en) Laser with improved power and frequency stability
Cabaret et al. High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a VUV single mode pulsed laser system
US5059028A (en) Ring laser gyroscope having means for maintaining the beam intensity
JPH0560962B2 (en)
Karlov et al. Measurement of the photoionization cross section of the Li atom at the 2P level
US3613026A (en) Plasma tube impedance variation frequency stabilized gas laser
KR910001160B1 (en) Laser generating power safety method using support polar
Bendali et al. Optical resonance detection by field ionization of Rydberg state in colinear laser spectroscopy
JP5599992B2 (en) Ionized laser device and extreme ultraviolet light source device
Gusev et al. Stabilization of the emission frequency of a CO2 laser to within 10–12 with the aid of narrow SF6 and OsO4 resonances
JPS61101234A (en) Apparatus for separating isotope by laser
JPH02238685A (en) Excimer laser device
Srivastava et al. A sub-Doppler resolution double resonance molecular beam infrared spectrometer operating at chemically relevant energies (∼ 2 eV)
Nagourney et al. Optical frequency standard based upon single laser-cooled indium ion
JPH0334874B2 (en)
JPH02130973A (en) Laser oscillator