JP2586656B2 - Wavelength stabilized laser device - Google Patents

Wavelength stabilized laser device

Info

Publication number
JP2586656B2
JP2586656B2 JP24953489A JP24953489A JP2586656B2 JP 2586656 B2 JP2586656 B2 JP 2586656B2 JP 24953489 A JP24953489 A JP 24953489A JP 24953489 A JP24953489 A JP 24953489A JP 2586656 B2 JP2586656 B2 JP 2586656B2
Authority
JP
Japan
Prior art keywords
wavelength
laser
etalon
semi
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24953489A
Other languages
Japanese (ja)
Other versions
JPH03110882A (en
Inventor
浩一 和▲に▼
恭博 嶋田
英仁 河原
睦己 三升
忠明 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24953489A priority Critical patent/JP2586656B2/en
Priority to US07/480,152 priority patent/US5050174A/en
Priority to CA002010084A priority patent/CA2010084C/en
Priority to EP90301598A priority patent/EP0383586B1/en
Priority to DE69012369T priority patent/DE69012369T2/en
Publication of JPH03110882A publication Critical patent/JPH03110882A/en
Application granted granted Critical
Publication of JP2586656B2 publication Critical patent/JP2586656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は投影露光装置の光源に用いる波長安定化レー
ザ装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength stabilized laser device used as a light source of a projection exposure apparatus.

従来の技術 近年、半導体集積回路の高集積化に伴い、回路パター
ン露光用光源としてエキシマレーザが従来の高圧水銀ラ
ンプに代わるものとして注目されている。エキシマレー
ザはレーザ媒質としてクリプトン,キセノンなどの希ガ
スとふっ素,塩素などのハロゲンガスを組み合わせるこ
とにより、353nmから193nmの間のいくつかの波長で発振
線を得ることができる紫外レーザの1つである。特にふ
っ化クリプトンエキシマレーザは波長248nmで発振し、
水銀のg線(436nm)あるいはi線(365nm)の場合と比
べて倍以上集積度の高い、いわゆる超LSI製造への道を
開くものとして期待されている。
2. Description of the Related Art In recent years, as semiconductor integrated circuits have become more highly integrated, an excimer laser has attracted attention as a light source for circuit pattern exposure as an alternative to a conventional high-pressure mercury lamp. An excimer laser is an ultraviolet laser that can obtain oscillation lines at several wavelengths between 353 nm and 193 nm by combining a rare gas such as krypton or xenon with a halogen gas such as fluorine or chlorine as a laser medium. is there. In particular, a krypton fluoride excimer laser oscillates at a wavelength of 248 nm,
It is expected to pave the way for so-called VLSI manufacturing, which has more than twice the integration density of mercury g-line (436 nm) or i-line (365 nm).

これらエキシマレーザの利得バンド幅は約1nmと広
く、光共振器と組み合わせて発振させた場合、発振線が
0.5nm程度の帯域幅(半値全幅)を持つ。このように比
較的広い帯域幅を持つレーザ光を露光用光源として用い
た場合、ランプ光源の場合と同様、露光光学系に色収差
を補正した結像光学系を採用する必要がある。ところ
が、波長が350nm以下の紫外域では結像光学系に用いる
レンズの光学材料の選択の幅が限られ、色収差補正が困
難となる。レーザ発振線の帯域幅を0.005nm程度にまで
単色化し、かつ中心波長の変動を防止できれば色収差補
正しない結像光学系が利用可能となり、エキシマレーザ
を光源とした投影露光装置が実現する。
These excimer lasers have a wide gain bandwidth of about 1 nm, and when oscillated in combination with an optical resonator,
It has a bandwidth of about 0.5 nm (full width at half maximum). When a laser beam having a relatively wide bandwidth is used as a light source for exposure as in the case of a lamp light source, it is necessary to employ an imaging optical system in which chromatic aberration is corrected for the exposure optical system. However, in the ultraviolet region having a wavelength of 350 nm or less, the selection range of the optical material of the lens used in the imaging optical system is limited, and it becomes difficult to correct chromatic aberration. If the bandwidth of the laser oscillation line is made monochromatic to about 0.005 nm and the fluctuation of the center wavelength can be prevented, an imaging optical system without chromatic aberration correction can be used, and a projection exposure apparatus using an excimer laser as a light source can be realized.

広い帯域幅を持つレーザ光を単色化するには、狭い透
過帯域を持つ波長選択素子をレーザ共振器内に設置する
方法が採用されてきた。第3図はこのような狭帯域の波
長安定化エキシマレーザの従来の構成を示す。第3図に
おいて全反射鏡2および半透過鏡4からなる光共振器内
に放電管1が置かれている。放電管1には希ガスとハロ
ゲンガスを含む媒質ガスが封入されており、放電励起に
よってレーザ発振する。放電管1と全反射鏡2の間には
気密室6が置かれ、気密室内には波長選択素子であるエ
アスペースエタロン5,5′が設置されている。エアスペ
ースエタロン(以下、単にエタロンと略す)は対向する
平行平板間の光の干渉を利用した波長選択素子であり、
周囲の気圧によって選択波長を変化させることができ
る。
In order to monochromaticize a laser beam having a wide bandwidth, a method of installing a wavelength selection element having a narrow transmission band in a laser resonator has been adopted. FIG. 3 shows a conventional configuration of such a narrow band wavelength stabilized excimer laser. In FIG. 3, a discharge tube 1 is placed in an optical resonator including a total reflection mirror 2 and a semi-transmission mirror 4. The discharge tube 1 is filled with a medium gas containing a rare gas and a halogen gas, and oscillates laser by discharge excitation. An airtight chamber 6 is placed between the discharge tube 1 and the total reflection mirror 2, and airspace etalons 5, 5 'as wavelength selection elements are installed in the airtight chamber. An air space etalon (hereinafter simply abbreviated as an etalon) is a wavelength selection element utilizing interference of light between opposed parallel flat plates,
The selected wavelength can be changed depending on the ambient pressure.

レーザ出力の一部は波長検出器7に導かれその中心波
長が測定される。圧力制御器8は波長検出器7によって
測定されたレーザ光の中心波長が一定になるよう気密室
6内の圧力を調整し、中心波長の変動を防止している。
A part of the laser output is guided to the wavelength detector 7 and its center wavelength is measured. The pressure controller 8 adjusts the pressure in the hermetic chamber 6 so that the center wavelength of the laser beam measured by the wavelength detector 7 becomes constant, thereby preventing the center wavelength from fluctuating.

エタロンを2個用いるのは以下の理由による。エタロ
ンは干渉素子であるため、ある透過帯に隣合って必ず異
なる次数の透過帯が存在する。透過帯域幅に対する隣合
う透過帯までの距離の比をフィネスと呼ぶ。エキシマレ
ーザの波長域で製作可能なエタロンのフィネスはせいぜ
い20程度である。したがって、1個のエタロンで0.005n
m以下の帯域幅を実現しようとすると隣合う透過帯の間
隔は0.1nm以下となり、第4図(a)に示すように媒質
の利得バンド幅内に複数の発振線が現われる。このよう
に複数の発振線が生じると、微細なパターンを結像する
という当初の目的を達成できないので、第2のエタロン
を配置してこのうち1本の発振線だけを選択してやる。
その様子を第4図(b)に示す。第2のエタロンの透過
帯域幅は第1のエタロンの透過帯の間隔程度とすれば発
振線の単色化が実現し、投影露光用に適したエキシマレ
ーザが得られることになる。なお、それぞれエタロンの
透過波長はエタロンを傾けレーザ光の入射角を変化させ
ることによって独立に選択可能であり、容易に第4図
(b)に示すような状態に調整することができる。
The reason for using two etalons is as follows. Since the etalon is an interference element, a transmission band of a different order always exists adjacent to a certain transmission band. The ratio of the distance between adjacent transmission bands to the transmission bandwidth is called finesse. The finesse of an etalon that can be manufactured in the wavelength range of an excimer laser is at most about 20. Therefore, 0.005n per etalon
In order to realize a bandwidth of less than m, the interval between adjacent transmission bands is less than 0.1 nm, and a plurality of oscillation lines appear within the gain bandwidth of the medium as shown in FIG. 4 (a). If a plurality of oscillation lines are generated in this way, the initial purpose of imaging a fine pattern cannot be achieved. Therefore, a second etalon is arranged and only one oscillation line is selected.
This is shown in FIG. 4 (b). If the transmission bandwidth of the second etalon is approximately equal to the interval between the transmission bands of the first etalon, monochromatic oscillation lines can be realized, and an excimer laser suitable for projection exposure can be obtained. The transmission wavelength of each etalon can be independently selected by tilting the etalon and changing the incident angle of the laser beam, and can be easily adjusted to the state shown in FIG. 4 (b).

発明が解決しようとする課題 しかし、このような従来の波長安定化レーザでは、レ
ーザ出力を増大するにつれエタロンの変形が生じ複数の
発振線が現われるという欠点があった。すなわち、2個
のエタロンはその透過帯域幅を違えるため、平行平板間
のギャップ間隔が異なるように設計してある。このた
め、レーザ光を吸収した場合、熱的変形によってそれぞ
れ異なる量の選択波長の変動を示す。その結果、レーザ
運転中に第4図(c)に示すように第2のエタロンの透
過帯が第1のエタロンの2本の透過内にまたがるような
状態を生じ、複数の発振線が現われることがある。この
ような状態下で露光用光源として用いると、中心波長の
検出が困難で波長の安定化が不可能になるばかりか、単
色レンズで投影されたパターンにボケを生じ、製品の不
良につながる。本発明はこのような課題を解決するため
なされたもので、常に1本の発振線で発振することので
きる波長安定化レーザ装置を提供するものである。
Problems to be Solved by the Invention However, such a conventional wavelength-stabilized laser has a disadvantage that the etalon is deformed as the laser output is increased, and a plurality of oscillation lines appear. That is, since the two etalons have different transmission bandwidths, the two etalons are designed to have different gap intervals between the parallel plates. Therefore, when the laser beam is absorbed, different amounts of the selected wavelength change due to thermal deformation. As a result, during the laser operation, as shown in FIG. 4 (c), a state occurs in which the transmission band of the second etalon straddles the two transmissions of the first etalon, and a plurality of oscillation lines appear. There is. When used as an exposure light source in such a state, not only is it difficult to detect the center wavelength and it becomes impossible to stabilize the wavelength, but also the pattern projected by the monochromatic lens is blurred, leading to defective products. The present invention has been made to solve such a problem, and an object of the present invention is to provide a wavelength-stabilized laser device that can always oscillate with one oscillation line.

課題を解決するための手段 この課題を解決するため本発明の波長安定化レーザ装
置は、レーザ媒質と第1の全反射鏡からなる光増幅器
と、気密室内に複数個設置した波長選択素子と第2の全
反射鏡からなる波長選択器とを半透過鏡をはさんで直線
上に配置して光共振器を構成し、レーザ光の発振波長を
検出する手段と圧力制御手段とを設け、前記気密室内の
圧力を変化させるようにしたものである。
Means for Solving the Problems To solve this problem, a wavelength stabilized laser device according to the present invention comprises an optical amplifier comprising a laser medium and a first total reflection mirror, a plurality of wavelength selection elements installed in an airtight chamber, and A wavelength selector composed of two total reflection mirrors and a semi-transmission mirror are arranged on a straight line to constitute an optical resonator, and a means for detecting an oscillation wavelength of laser light and a pressure control means are provided. The pressure in the airtight chamber is changed.

作用 この構成により、エタロンを通過するレーザ光のエネ
ルギーは従来例の場合のそれに半透過鏡の反射率を乗じ
た程度に低下するので、エタロンの受ける熱的負荷は著
しく低減し、複数の発振線が生じるようなエタロンの変
形を防止することができる。
Operation With this configuration, the energy of the laser beam passing through the etalon is reduced to a level obtained by multiplying the energy of the conventional example by the reflectivity of the semi-transmissive mirror. This can prevent the etalon from being deformed.

実施例 第1図は本発明の一実施例であるエキシマレーザの構
成図である。第1図において本発明実施例のレーザ装置
では、半透過鏡4と全反射鏡2との間の光軸上にエタロ
ン5,5′を設置して、特定の狭い帯域の波長だけを選択
する波長選択器22を具備している。一方、半透過鏡4と
全反射鏡3を結ぶ光軸上には希ガスとハロゲンガスの混
合気体をレーザ媒質とする放電管1を設置し、光増幅器
21を構成している。波長選択器22で選択された単色光は
光増幅器21で増幅され、レーザ光として半透過鏡4から
光軸とほぼ直角方向に取り出される。ここで、エタロン
5,5′は内部の気圧を調整可能な気密室内に設置してあ
る。
Embodiment FIG. 1 is a configuration diagram of an excimer laser according to an embodiment of the present invention. In FIG. 1, in the laser apparatus according to the embodiment of the present invention, etalons 5, 5 'are installed on the optical axis between the semi-transmissive mirror 4 and the total reflection mirror 2, and only a wavelength in a specific narrow band is selected. A wavelength selector 22 is provided. On the other hand, a discharge tube 1 using a mixed gas of a rare gas and a halogen gas as a laser medium is installed on an optical axis connecting the semi-transmissive mirror 4 and the total reflection mirror 3, and an optical amplifier is provided.
Make up 21. The monochromatic light selected by the wavelength selector 22 is amplified by the optical amplifier 21 and extracted from the semi-transmissive mirror 4 in a direction substantially perpendicular to the optical axis as laser light. Where the etalon
5, 5 'are installed in an airtight room where the internal pressure can be adjusted.

出力ビーム上にはビームスプリッタ10を置き、出力光
の一部を波長検出器7に導いている。波長検出器7はレ
ーザ光の中心波長を基準値と比較し、誤差信号を圧力制
御器8へ送る。圧力制御器8は誤差信号が零になるよう
に気密室6内の圧力を調整する結果、レーザ光の中心波
長は常に一定に保たれることになる。
A beam splitter 10 is placed on the output beam, and a part of the output light is guided to a wavelength detector 7. The wavelength detector 7 compares the center wavelength of the laser light with a reference value, and sends an error signal to the pressure controller 8. As a result of the pressure controller 8 adjusting the pressure in the hermetic chamber 6 so that the error signal becomes zero, the center wavelength of the laser beam is always kept constant.

ここで放電管1を含む全反射鏡3と半透過鏡4の間の
光共振器内には、従来のレーザ装置の場合と同様、大き
な光エネルギーが定在する。一方、半透過鏡4と全反射
鏡2の間の空間では、放電管方向からきた光の大半が半
透過鏡によって光共振器外へ放射されるため、定在する
光エネルギーはわずかである。したがって、半透過鏡4
の反射率がたとえば20%であるとすると、エタロン5,
5′を通過する光エネルギーは第3図に示した従来例の
約1/5となる。この結果、エタロン5,5′は熱的変形を受
けにくく、発振線を1本に保てることになる。
Here, in the optical resonator between the total reflection mirror 3 including the discharge tube 1 and the semi-transmission mirror 4, a large amount of light energy is present as in the case of the conventional laser device. On the other hand, in the space between the semi-transmissive mirror 4 and the total reflection mirror 2, most of the light coming from the discharge tube direction is radiated out of the optical resonator by the semi-transmissive mirror, so that the standing light energy is small. Therefore, the transflective mirror 4
Is 20%, for example, the etalon 5,
The light energy passing through 5 'is about 1/5 that of the conventional example shown in FIG. As a result, the etalons 5, 5 'are less susceptible to thermal deformation and can maintain a single oscillation line.

本発明者らの実験によれば、第3図に示したような従
来のエキシマレーザで出力を2W以上取り出そうとする
と、当初発振線が一本になるようにエタロンを調整して
おいても、発振開始後、数分以内に隣合う発振線が現れ
複数発振となる場合があった。しかし、本発明による波
長安定化レーザ装置では、出力を5Wとしても発振線が複
数になることはなかった。また、1つの気密室で2つの
エタロンのギャップ間の気圧を同時に制御することで中
心波長を一定に保つことができた。
According to the experiments of the present inventors, when an output of 2 W or more is to be obtained with a conventional excimer laser as shown in FIG. 3, even if the etalon is initially adjusted so that the number of oscillation lines becomes one, In some cases, adjacent oscillation lines appear within a few minutes after the start of oscillation, resulting in multiple oscillations. However, in the wavelength stabilized laser device according to the present invention, even when the output was set to 5 W, the oscillation line did not become plural. Further, the center wavelength could be kept constant by simultaneously controlling the pressure between the gaps of the two etalons in one hermetic chamber.

エキシマレーザは媒質の利得が高いため、光共振器の
カップリング、すなわち本発明における半透過鏡の透過
率は10〜20%と低く取ることができる。したがって、本
発明は特にエキシマレーザにおいてその効果を発揮する
ものと言える。発明者らは、本実施例による波長安定化
レーザ装置の出力について実験,検討を加えた。実験は
レーザ装置としてクリプトン,ふっ素を、希釈ガスとし
てヘリウム用いたKrFエキシマレーザについて行なっ
た。第2図は半透過鏡4の透過率に対するレーザ出力の
測定結果、およびレーザ出力から見積もったエタロンの
吸収パワーの関係を示す。本発明による構成では、半透
過鏡の透過率を4%以上とすればレーザ発振する。ま
た、半透過鏡の透過率は最大でも40%以下とすればエタ
ロンの吸収パワーを従来例の場合よりも低減でき、複数
発振を避けられることもわかった。
Since the excimer laser has a high medium gain, the coupling of the optical resonator, that is, the transmittance of the transflective mirror in the present invention can be as low as 10 to 20%. Therefore, it can be said that the present invention exerts its effect particularly in an excimer laser. The inventors conducted experiments and studies on the output of the wavelength stabilized laser device according to the present embodiment. The experiment was performed on a KrF excimer laser using krypton and fluorine as a laser device and helium as a diluent gas. FIG. 2 shows the relationship between the transmittance of the semi-transmissive mirror 4 and the measurement results of the laser output, and the relationship between the etalon absorption power estimated from the laser output. In the configuration according to the present invention, laser oscillation occurs when the transmittance of the semi-transmissive mirror is 4% or more. It was also found that if the transmissivity of the semi-transmissive mirror is 40% or less at the maximum, the absorption power of the etalon can be reduced as compared with the conventional example, and multiple oscillations can be avoided.

以上のような構成を有するので、本発明の波長安定化
レーザ装置はエタロンの熱的変形による発振線の複数化
を避けられ、一定波長の単色光を安定に放射できるもの
となる。
With the configuration described above, the wavelength stabilized laser device of the present invention can avoid a plurality of oscillation lines due to thermal deformation of the etalon, and can stably emit monochromatic light of a certain wavelength.

発明の効果 以上説明したように、本発明は半透過鏡によってエタ
ロンへ入射するレーザパワーの低減を図っているので、
発振波長の単色性が安定に保たれ、露光用光源として最
適な波長安定化レーザを提供できるものである。
Effect of the Invention As described above, the present invention aims at reducing the laser power incident on the etalon by the semi-transmissive mirror,
An object of the present invention is to provide a wavelength-stabilized laser that is stable in monochromaticity of the oscillation wavelength and is optimal as a light source for exposure.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例である狭帯域化レーザ装置の
構成を説明する図、第2図は半透過鏡の反射率に対する
レーザ出力およびエタロンが吸収するパワーの関係を示
す図、第3図は従来の波長安定化レーザの構成を示す
図、第4図はレーザ波長選択の原理を説明する図であ
る。 1……放電管、2,3……全反射鏡、4……半透過鏡、5,
5′……ファブリペローエタロン、6……気密室、7…
…波長検出器、8……信号処理回路、10……ビームスプ
リッタ、21……光増幅器、22……波長選択器。
FIG. 1 is a diagram for explaining the configuration of a narrow-band laser device according to one embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the laser output and the power absorbed by an etalon with respect to the reflectance of a semi-transmissive mirror, FIG. 3 is a diagram showing a configuration of a conventional wavelength stabilizing laser, and FIG. 4 is a diagram for explaining the principle of laser wavelength selection. 1 ... discharge tube, 2,3 ... total reflection mirror, 4 ... semi-transmission mirror, 5,
5 '... Fabry-Perot etalon, 6 ... Airtight room, 7 ...
… Wavelength detector, 8… signal processing circuit, 10… beam splitter, 21… optical amplifier, 22… wavelength selector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三升 睦己 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 三木 忠明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭64−84767(JP,A) 特開 昭64−84682(JP,A) 実開 平1−113377(JP,U) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mutsumi Sansho 1006 Kazuma Kadoma, Osaka Pref.Matsushita Electric Industrial Co., Ltd. (56) References JP-A-64-84767 (JP, A) JP-A-64-84682 (JP, A) JP-A-1-113377 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザ媒質と第1の全反射鏡からなる光増
幅器と、気密室内に複数個設置した波長選択素子と第2
の全反射鏡からなる波長選択器とを半透過鏡をはさんで
直線上に配置して光共振器を構成し、レーザ光の発振波
長を検出する手段と圧力制御手段とを設け、前記気密室
内の圧力を変化させることを特徴とする波長安定化レー
ザ装置。
An optical amplifier comprising a laser medium and a first total reflection mirror; a plurality of wavelength selection elements installed in an airtight chamber;
A wavelength selector consisting of a total reflection mirror is arranged on a straight line with a semi-transmissive mirror interposed therebetween to form an optical resonator, and a means for detecting an oscillation wavelength of laser light and a pressure control means are provided, and the airtightness is provided. A wavelength stabilizing laser device characterized by changing a pressure in a room.
【請求項2】半透過鏡の透過率が光共振器の光軸方向の
入射光に対して4%から40%の範囲にあることを特徴と
する請求項1記載の波長安定化レーザ装置。
2. The wavelength stabilized laser device according to claim 1, wherein the transmittance of the semi-transmissive mirror is in the range of 4% to 40% with respect to the incident light in the optical axis direction of the optical resonator.
JP24953489A 1989-02-14 1989-09-26 Wavelength stabilized laser device Expired - Fee Related JP2586656B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24953489A JP2586656B2 (en) 1989-09-26 1989-09-26 Wavelength stabilized laser device
US07/480,152 US5050174A (en) 1989-02-14 1990-02-14 Laser device
CA002010084A CA2010084C (en) 1989-02-14 1990-02-14 Laser device
EP90301598A EP0383586B1 (en) 1989-02-14 1990-02-14 Laser device
DE69012369T DE69012369T2 (en) 1989-02-14 1990-02-14 Laser device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24953489A JP2586656B2 (en) 1989-09-26 1989-09-26 Wavelength stabilized laser device

Publications (2)

Publication Number Publication Date
JPH03110882A JPH03110882A (en) 1991-05-10
JP2586656B2 true JP2586656B2 (en) 1997-03-05

Family

ID=17194417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24953489A Expired - Fee Related JP2586656B2 (en) 1989-02-14 1989-09-26 Wavelength stabilized laser device

Country Status (1)

Country Link
JP (1) JP2586656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209926256U (en) * 2018-11-16 2020-01-10 华域视觉科技(上海)有限公司 Lighting device and car of integrated LiDAR system

Also Published As

Publication number Publication date
JPH03110882A (en) 1991-05-10

Similar Documents

Publication Publication Date Title
US6560254B2 (en) Line-narrowing module for high power laser
US7245420B2 (en) Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime
JP3888673B2 (en) Fluorine molecular laser system for exposure
US6856638B2 (en) Resonator arrangement for bandwidth control
US6839373B1 (en) Ultra-narrow band flourine laser apparatus
JPWO2019012642A1 (en) Laser system
JPH04211108A (en) Exposing method and apparatus
US6735232B2 (en) Laser with versatile output energy
US6717973B2 (en) Wavelength and bandwidth monitor for excimer or molecular fluorine laser
US6603788B1 (en) Resonator for single line selection
JP2007059788A (en) Laser system and laser exposing system
US6801561B2 (en) Laser system and method for spectral narrowing through wavefront correction
JPS63280483A (en) Light source for exposure device
US6542243B2 (en) Resonator optics monitoring method
JP2586656B2 (en) Wavelength stabilized laser device
EP0383586B1 (en) Laser device
JP2586655B2 (en) Wavelength stabilized laser device
JP2586661B2 (en) Wavelength stabilized laser device
JP2600364B2 (en) Narrow band laser device
US7253905B2 (en) Determination and correction for laser induced CCD camera degradation
JPH02273981A (en) Narrow-band laser device
JP2715610B2 (en) Narrow band laser device
JPH02273980A (en) Narrow-band laser device
JP2715609B2 (en) Narrow band laser device
JPH03142979A (en) Narrow-band laser equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees