JPH01302785A - Ceramic superconducting device - Google Patents

Ceramic superconducting device

Info

Publication number
JPH01302785A
JPH01302785A JP63202351A JP20235188A JPH01302785A JP H01302785 A JPH01302785 A JP H01302785A JP 63202351 A JP63202351 A JP 63202351A JP 20235188 A JP20235188 A JP 20235188A JP H01302785 A JPH01302785 A JP H01302785A
Authority
JP
Japan
Prior art keywords
control line
ceramic
current
magnetic field
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63202351A
Other languages
Japanese (ja)
Other versions
JPH0810772B2 (en
Inventor
Terue Kataoka
照榮 片岡
Hiroya Sato
浩哉 佐藤
Shuhei Tsuchimoto
修平 土本
Hideo Nojima
秀雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63202351A priority Critical patent/JPH0810772B2/en
Priority to DE89301279T priority patent/DE68906044T2/en
Priority to EP89301279A priority patent/EP0328398B1/en
Priority to CN89101727A priority patent/CN1054471C/en
Publication of JPH01302785A publication Critical patent/JPH01302785A/en
Priority to US07/983,290 priority patent/US5298485A/en
Publication of JPH0810772B2 publication Critical patent/JPH0810772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E40/642

Abstract

PURPOSE:To operate a device with practical output voltage and high speed performance by arranging a laminated layer or U-shaped control line, making magnetic field generated by passing a current through the control line act on a ceramic superconductor. CONSTITUTION:On a superconducting magnetoresistive element 1, a U-shaped control line 5 is arranged, via an insulating film 10. When, in the state where the superconducting magnetoresistive element 1 is cooled at a temperature equal to or lower than a specified value, current is not made to flow through the control line 5, and magnetic field is not applied to the superconducting magnetoresistive element 1, it is in a superconducting state. When a current is made to flow through the control line 5, the generated magnetic field is converged on the superconducting magnetoresistive element 1, because the control line is U-shaped. As a result, the superconducting state of the superconductor 3 is broken, and resistance is exhibited.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セラミック超電導体の特性を、近接して設け
た制御線に流した電流で発生する磁界で制御して論理演
算などを行なわせるセラミック超電導装置の制御線に関
するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention allows logical operations to be performed by controlling the characteristics of a ceramic superconductor using a magnetic field generated by a current flowing through a control line provided in close proximity. This relates to control lines for ceramic superconducting devices.

〈従来の技術〉 超電導の特性を用いた論理回路素子は、ジョセフソン素
子が知られている0使用されるジョセフソン素子は、ニ
オブや、鉛、又は、それらの合金からなる超電導体の間
に極めて薄い絶縁膜を挾んだ構造である〇 〈発明が解決しようとする問題点〉 要があるが、この極薄絶縁膜の作製は高度の製造技術を
要し、特性の揃った素子を製造するのは難しかった。
<Prior art> Josephson elements are known as logic circuit elements that use the characteristics of superconductivity. The Josephson elements used are elements between superconductors made of niobium, lead, or their alloys. 〇 <Problems that the invention will solve the solution of the invention, which is a structure that loses an extremely thin insulating film. It was difficult to do.

また、ジョセフノン素子は極めて早い動作をする一方、
出力レベルは小さいので雑音や、出力回路などから実用
化が難しい素子であった。
Furthermore, while Josephnon elements operate extremely quickly,
Since the output level was low, it was difficult to put this device into practical use due to noise and output circuit considerations.

本発明は、上記の問題点を解決する製造が容易で、その
動作は超電導体の特有の高速な特性をもち、かつ、実用
的な出力レベルをもつ超電導体装置ユであり、特願昭6
3−29526に示したAND。
The present invention is a superconductor device that solves the above-mentioned problems, is easy to manufacture, has high-speed operation characteristic of superconductors, and has a practical output level.
AND shown in 3-29526.

OR又はXORなどの論理演算をする素子と基本的には
同じであるが、小ない制御線の電流入力で動作するよう
改良したものである0 く問題点を解決するための手段) 本発明の目的を達成するため、両端に1対の電極を備え
たセラミック超電導素子に近接して設けられた導体に電
流を流すことにより発生する磁界を前記のセラミック超
電導体に作用させる制御線は、1本、又は、2本以上に
すること゛もできるが、の字の形状に形成して発生した
磁界を効率よく素子に印加するものである。上記の構成
の制御線にすれば少ない電流によっても、セラミック超
電導素子に必要な強さの発生磁界を印加することができ
る。また、セラミック系の厚さが薄い超電導体で、その
結晶粒界か弱接合の構成では、弱い磁界の印加磁界でも
素子の超電導状態が破れるので少ない電流で制御するこ
とができる0 又、本発明によれば、上記の制御線を複数配置し、それ
ぞれ独立した電流を流す構成にすることもでき、これに
より各制御線に流す電流の太きさや、方向を変えること
で、種々の論理出力をセラミック超電導素子の電圧電極
に出力する論理回路素子を構成することができる。
Although it is basically the same as an element that performs logical operations such as OR or XOR, it has been improved to operate with a small control line current input. To achieve this purpose, a single control line is used to apply a magnetic field to the ceramic superconductor, which is generated by passing a current through a conductor provided in close proximity to a ceramic superconductor having a pair of electrodes at both ends. Alternatively, it is also possible to have two or more, but the magnetic field is efficiently applied to the element by forming the magnetic field in the shape of a square. With the control line having the above configuration, a generated magnetic field of necessary strength can be applied to the ceramic superconducting element even with a small current. In addition, in the case of a ceramic-based superconductor with a thin thickness and a structure with weak junctions at grain boundaries, the superconducting state of the element can be broken even with a weak magnetic field applied, so it can be controlled with a small amount of current. According to the above, it is also possible to arrange multiple control lines and create a configuration in which independent currents flow through each one, and by changing the thickness and direction of the current flowing through each control line, various logical outputs can be generated. It is possible to configure a logic circuit element that outputs to a voltage electrode of a ceramic superconducting element.

く作 用〉 結晶粒界が弱結合の構成の、セラミック超電導体は、弱
い磁界によってその超電導状態が破れ常電導の電気抵抗
をもつことを見出し、この現象を用いた磁界計測の発明
、特願昭62−233369号「超電導磁気抵抗システ
ム」を出願している。
〉 He discovered that a ceramic superconductor, whose grain boundaries are weakly bonded, breaks its superconducting state when exposed to a weak magnetic field and exhibits the electrical resistance of normal conduction.He invented a method for measuring magnetic fields using this phenomenon, and filed a patent application. No. 1982-233369 ``Superconducting magnetoresistive system'' has been filed.

本発明は、セラミック超電導体の上記の現象を利用する
もので、超電導体の上に、積層又は、Uの字形の形成し
た制御線を配置し、制御線に流した電流によって発生す
る磁界を効率よくセラミック超電導体に作用させるので
、少ない制御線の電流によってセラミック超電導素子、
又は超電導磁気抵抗素子が、電気抵抗をもつ状態にする
ことができる。
The present invention utilizes the above-mentioned phenomenon of ceramic superconductors, and by arranging a laminated or U-shaped control line on top of the superconductor, the magnetic field generated by the current flowing through the control line can be effectively controlled. Since it often acts on ceramic superconductors, ceramic superconducting elements can be
Alternatively, the superconducting magnetoresistive element can be made to have electrical resistance.

更に詳細に説明すると、セラミック系の結晶粒界を有す
る超電導素子は、磁界が印加されない場合には、第10
図に示すように、素子の示す電気抵抗ROは完全に零の
値を示すが、ある臨界磁界Hcを加えると突然素子は電
気抵抗を示し、印加磁界の増大とともに、電気抵抗が急
激に増大する新しい現象を本出願人は先に見出して上記
した特許出願をしているが、この素子の初期抵抗ROに
対する抵抗の変化ΔRの比、ΔR/ Roは無限大とな
って、従来の磁気抵抗素子とは比較にならない高性能を
示す素子である。
To explain in more detail, a superconducting element having ceramic grain boundaries has a 10th
As shown in the figure, the electrical resistance RO exhibited by the element is completely zero, but when a certain critical magnetic field Hc is applied, the element suddenly exhibits electrical resistance, and as the applied magnetic field increases, the electrical resistance increases rapidly. The present applicant discovered a new phenomenon and filed the above-mentioned patent application, but the ratio of the change in resistance ΔR to the initial resistance RO of this element, ΔR/Ro, becomes infinite, and it is different from the conventional magnetoresistive element. It is a device that exhibits high performance that is incomparable to that of other devices.

即ち、最近多くの研究機関で進められているセラミック
超電導体の研究の方向は、臨界温度(Tc )、臨界磁
界(He)、臨界電流(Jc )の向上を図ることにあ
るが、本出願人も上記セラミック超電導体について種々
研究したところ、この超電導体のある種のもの(超電導
体の粒子間に弱結合状態を持つもの)が上記第1O図に
示すように極めて弱い磁界(数ガウス)で弱結合の超電
導状態が破れて電気抵抗を示し、印加磁界の強さととも
に急激に増加することを見出し、この低い臨界磁界現象
を用いて新規な論理回路素子として動作するセラミック
超電導装置を創案したものである。
That is, the direction of research into ceramic superconductors that has been progressing in many research institutes recently is to improve the critical temperature (Tc), critical magnetic field (He), and critical current (Jc). have conducted various studies on the ceramic superconductors mentioned above, and have found that some types of these superconductors (those with a weak bond between superconductor particles) are exposed to an extremely weak magnetic field (several Gauss) as shown in Figure 1O above. They discovered that the weakly coupled superconducting state is broken and exhibits electrical resistance, which increases rapidly with the strength of the applied magnetic field, and created a ceramic superconducting device that uses this low critical magnetic field phenomenon to operate as a new logic circuit element. It is.

上記第10図に示したような磁界の印加に対する電気抵
抗の変化特性は、セラミックス系の超電導体が多くの超
電導結晶微粒子より構成される結合体で、その粒子境界
に極めて薄い絶縁物あるいは抵抗体が存在するか、また
は、粒子間の接触がポイント状態になり、粒子と粒子が
点状の接触をなしている等、いわゆる超電導の弱結合状
態にあり、磁界などがない超電導状態では、トンネル効
果等により、電子が自由に移動して電気抵抗は零を示す
。つまりセラミック系等の結晶粒子の弱結合状態にある
超電導体1−1iII図に示すように等測的には無数の
ジョセフソン結合+2+、+21゜・・・の集合体とみ
なすことが出来る。
The change in electrical resistance in response to the application of a magnetic field, as shown in Figure 10 above, is due to the fact that ceramic superconductors are composites composed of many superconducting crystalline particles, and there is an extremely thin insulator or resistor at the grain boundaries. In a superconducting state where there is a so-called weakly coupled superconducting state, such as when there is a point state of contact between particles, or where there is point contact between particles, and there is no magnetic field, there is a tunnel effect. etc., electrons move freely and the electrical resistance shows zero. In other words, a superconductor in a weakly bonded state of ceramic crystal grains, etc. As shown in the diagram 1-1iII, it can be equimetrically regarded as an aggregation of innumerable Josephson bonds +2+, +21°, . . .

このような超電導体の素子に磁界を印加すると、磁界の
影響により、ジョセフソン結合121゜121、・・・
の超電導性が破れ、即ち、弱磁界の印加によって弱結合
部から超電導状態が破れて、素子は電気抵抗を示すよう
になり、磁界の強さの増大と共に電気抵抗は急速に増大
する。
When a magnetic field is applied to such a superconductor element, Josephson coupling 121°121,...
The superconductivity of the element is broken, that is, the superconductivity is broken from the weak coupling part by the application of a weak magnetic field, and the element begins to exhibit electrical resistance, and the electrical resistance increases rapidly as the strength of the magnetic field increases.

この性質は、上記原理からも明らかなように、結晶粒界
はランダムに配置されているため、印加する磁界の方向
には依存せずに、磁界の強さの絶体値によって定まるも
のである。
As is clear from the above principle, this property does not depend on the direction of the applied magnetic field, but is determined by the absolute value of the strength of the magnetic field, since the grain boundaries are randomly arranged. .

〈実施例〉 以下、図面を参照して本発明の実施例を詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す平面図である。FIG. 1 is a plan view showing one embodiment of the present invention.

第1図において、lはセラミック超電導体30両端に設
けられた一対の電流電極21.21及びこの電極21.
21の近くに設けられた電圧電極22.22よりなる超
電導磁気抵抗素子であり、5はこの超電導磁気抵抗素子
lの上に絶縁膜10を介してUの字形に形成された制御
線5が形成されている。
In FIG. 1, l indicates a pair of current electrodes 21.21 provided at both ends of the ceramic superconductor 30 and this electrode 21.21.
21 is a superconducting magnetoresistive element consisting of voltage electrodes 22 and 22 provided near 21, and 5 is a U-shaped control line 5 formed on this superconducting magnetoresistive element l via an insulating film 10. has been done.

次に、上記第1図に示した装置の作製方法について詳細
に説明する。
Next, a method for manufacturing the device shown in FIG. 1 will be described in detail.

まず、本装置に用いられるセラミック超電導体膜の磁気
抵抗素子を作製するために、第9図に概要を示す成膜装
膜において、基板7を安定化ジルコニア(YSZ)とし
、ヒーター9で基板温度を400℃に保ちながら、Y(
NO3)3  ・6H20゜Ba (NO3)2 、 
Cu (NO3)2 ・3H20をYIBFLzCu3
0t  Xとなる様所定量秤量し、水で溶解した硝酸塩
水溶液を噴射装着11から断続的に、基板7に向けて、
膜厚5μmの−様な膜となる様にスプレィし、熱分解と
酸化でセラミックを成膜し、その後950℃で60分間
と、500℃で10時間の空気中アニールを行った。こ
の様にして作製したセラミック超電導体膜の抵抗は10
0kから下がりはじめ、83にで完全に抵抗零を示して
いる。
First, in order to fabricate the magnetoresistive element of the ceramic superconductor film used in this device, the substrate 7 is made of stabilized zirconia (YSZ) in the film forming process outlined in FIG. While keeping the temperature at 400℃, Y(
NO3)3 ・6H20゜Ba (NO3)2,
Cu (NO3)2 ・3H20 YIBFLzCu3
0t
It was sprayed to form a --like film with a thickness of 5 μm, and a ceramic film was formed by thermal decomposition and oxidation, followed by annealing in air at 950° C. for 60 minutes and at 500° C. for 10 hours. The resistance of the ceramic superconductor film prepared in this way is 10
It starts to fall from 0k and shows completely zero resistance at 83.

次に、このセラミック高温超電導体膜を@50μm、長
さ30 mm に加工して超電導体3とするために、レ
ジストを塗布し、通常のフォトリングラフィ工程にて細
いストライプ状に加工し超電導磁気抵抗素子1の超電導
体部分3を作製した。このセラミック高温超電導体はリ
ン酸系エツチング液で容易に加工することが出来た。
Next, in order to process this ceramic high-temperature superconductor film into @50μm and 30mm length to form superconductor 3, a resist was applied and processed into thin stripes using a normal photolithography process to form a superconducting magnet. The superconductor portion 3 of the resistance element 1 was manufactured. This ceramic high-temperature superconductor could be easily processed using a phosphoric acid-based etching solution.

この超電導体3の上にポリイミド樹脂からなる絶縁膜I
Oを形成した後、電極21.22及び磁界を発生させる
ための制御線5を作製するため、再びフォトリングラフ
ィ工程とTi 蒸着膜のリフトオフ法により、Ti 蒸
着膜による配線パターンを形成し、第1図に示す本発明
のセラミック超電導装置を作製した。
An insulating film I made of polyimide resin is formed on this superconductor 3.
After forming the O, in order to fabricate the electrodes 21 and 22 and the control line 5 for generating a magnetic field, a wiring pattern is formed using the Ti vapor deposited film again by the photolithography process and the lift-off method of the Ti vapor deposited film. A ceramic superconducting device of the present invention shown in FIG. 1 was manufactured.

本実施例に用いたセラミック超電導磁気抵抗素子1は、
粒界に介在する絶縁層やポイントコンタクトが弱結合に
なり、ジョセフソン結合の集合体と考えられ、印加磁界
と素子抵抗の関係はfJrJ2図に示す様に、抵抗零の
状態からある磁界において突然抵抗が現われ、しかもそ
の抵抗の変化率は極めて大きい。また、突然抵抗が現わ
れる磁界の大きさ(閾値)と抵抗増加率は、このセラミ
ック超電導磁気センサlに流す定電流の大きさによって
制御することが出来る〇 直線のTi  導体線に10 m Aの電流を流すと、
その導体線から約50μm離れた所の磁界の強さは0.
4ガウス程度になる。この磁界の強さを、第2図の超電
導磁気抵抗素子の特性グラフから見ると、セラミック超
電導磁気抵抗素子に2mAの定電流を流したとき20μ
Vの出力が得られることが分った。
The ceramic superconducting magnetoresistive element 1 used in this example is as follows:
The insulating layers and point contacts intervening in the grain boundaries become weakly coupled, which is considered to be an aggregate of Josephson couplings, and the relationship between the applied magnetic field and the element resistance suddenly changes from zero resistance state to a certain magnetic field, as shown in the fJrJ2 diagram. A resistance appears, and the rate of change of that resistance is extremely large. In addition, the magnitude of the magnetic field (threshold value) at which resistance suddenly appears and the rate of increase in resistance can be controlled by the magnitude of the constant current flowing through this ceramic superconducting magnetic sensor l.A current of 10 mA is applied to a straight Ti conductor wire. When you run
The strength of the magnetic field at a distance of approximately 50 μm from the conductor wire is 0.
It will be about 4 Gauss. Looking at the characteristic graph of the superconducting magnetoresistive element in Figure 2, the strength of this magnetic field is 20μ when a constant current of 2 mA is passed through the ceramic superconducting magnetoresistive element.
It was found that an output of V can be obtained.

以上の実験から、第1の実施例では、第1図の形状のよ
うにして、制御線5の幅を30μm、厚さを1μmとし
、その超電導磁気センサlとの平行部の両者の中心間距
離を50μmにした。絶縁膜10の厚さは約1μmであ
った〇 上記のような構成において、少なくとも超電導磁気セン
サlを83に以下の温度に冷却した状態におい又、導体
5に電流を流さず、超電導磁気抵抗素子1に磁界が加わ
らないときは、端子a+b定電流■を流すことにより、
その電流の作る磁界が超電導体3の超電導状態を破って
抵抗性を示すので、第3図に示すように電流工に対応し
て端子c、d間に出力電圧と1−で0.5ピコ秒程度の
遅れで20μVの出力が得られた。なお、このとき超電
導磁気抵抗素子!に流す端子a、b間の定電流は2mA
としていた。
From the above experiments, in the first example, the width of the control line 5 is 30 μm, the thickness is 1 μm, the shape is as shown in FIG. The distance was set to 50 μm. The thickness of the insulating film 10 was about 1 μm. In the above configuration, at least when the superconducting magnetic sensor l is cooled to a temperature below 83, no current is passed through the conductor 5, and the superconducting magnetoresistive element When no magnetic field is applied to 1, by passing constant current ■ to terminals a+b,
The magnetic field created by the current breaks the superconducting state of the superconductor 3 and exhibits resistance, so as shown in Figure 3, 0.5 pico An output of 20 μV was obtained with a delay of about seconds. In addition, at this time, a superconducting magnetoresistive element! The constant current between terminals a and b is 2mA.
It was.

前回の出願特願昭63−29526の制御線を備えた超
電導磁気センサに於ては、制御線を直線にし、前記素子
との中心距離を50μmにした。
In the superconducting magnetic sensor equipped with a control line disclosed in the previous patent application No. 63-29526, the control line was made straight and the center distance from the element was 50 μm.

超電導磁気抵抗素子lに2mAの定電流を流して、その
出力電圧を20μVにするとき、直線の並行制御線には
IOmAの電流を流す必要があったが、本発明のUの字
形の積層制御線にしたときは、電流で発生する磁界が超
電導磁気抵抗素子lに収束するので、制御線5に5mA
の電流を流して、その素子lから20μVの出力電圧を
得ることができ、入力電流を半分に低減できたことにな
る。
When a constant current of 2 mA is applied to the superconducting magnetoresistive element l to make its output voltage 20 μV, it is necessary to apply a current of IO mA to the straight parallel control lines, but the U-shaped laminated control of the present invention When it is a wire, the magnetic field generated by the current converges on the superconducting magnetoresistive element l, so the control wire 5 has a 5 mA
, an output voltage of 20 μV can be obtained from the element l by passing a current of 20 μV, which means that the input current can be reduced by half.

第4図に示した第2の実施例は、それぞれ1対の電流電
極21と、電圧電極22を設けた超電導体3の磁気抵抗
素子lに絶縁膜lOを介して一部積層I−たUの字形の
制御線5と、その超電導体3に平行に配置した制御線6
によって構成した論理素子であり、基板7の上に成膜技
術を用いて作製しである。
In the second embodiment shown in FIG. 4, a part of the magnetoresistive element l of the superconductor 3, which is provided with a pair of current electrodes 21 and a voltage electrode 22, is partially laminated via an insulating film lO. A control line 5 in the shape of a square and a control line 6 arranged parallel to the superconductor 3
This is a logic element constructed by using a film forming technique on a substrate 7.

上記の第4図の制御線5と6及び超電導体が平行になる
ところは、各々の中心間距離を50μmとし、またその
各々の線幅は30μm、30μm及び50μmにしであ
る。このとき、前のように2mAの定電流を流した超電
導磁気抵抗素子から20μVの出力を得るのに、制御線
6に20mAの電流を流さなければならなかった。
Where the control lines 5 and 6 and the superconductor in FIG. 4 are parallel, the distance between their centers is 50 μm, and the line widths are 30 μm, 30 μm, and 50 μm. At this time, in order to obtain an output of 20 μV from the superconducting magnetoresistive element in which a constant current of 2 mA was applied as before, a current of 20 mA had to be applied to the control line 6.

また、制御線5及び6に流す電流■1及びI2を同方向
とし、制御線5に流した電流工!により超電導体3に作
用する磁界をH1、制御線6に流した電流I2により超
電導体3に作用する磁界をH1、超電導磁気センサlの
所定の定電流を流している状態での臨界磁界をHo と
してHl <Ho、Hz<Ho、Hl +H2>Ho 
 −(11の条件のとき、制御線5と6に同時に電流が
流れたときだけ、@5図に示すように端子cod間に出
力電圧が発生し、ANDの論理出力となる。例えば■!
 とじて3mA、Iz として15mAの電流を導体5
.6にそれぞれ流した場合、電流工lとI2が同時に流
れている期間のみ端子end間に20μV以上の出力電
圧が得られた。
In addition, currents 1 and I2 flowing through the control wires 5 and 6 are in the same direction, and the current flow is flowing through the control wire 5! The magnetic field acting on the superconductor 3 is H1, the magnetic field acting on the superconductor 3 due to the current I2 flowing through the control line 6 is H1, and the critical magnetic field of the superconducting magnetic sensor l when a predetermined constant current is flowing is Ho. As Hl <Ho, Hz<Ho, Hl +H2>Ho
- (Under the condition 11, only when current flows through control lines 5 and 6 at the same time, an output voltage is generated between terminals cod as shown in Figure @5, resulting in an AND logical output. For example, ■!
A current of 3 mA as Iz and 15 mA as Iz
.. 6, an output voltage of 20 μV or more was obtained between terminals END only during the period when currents I and I2 were flowing at the same time.

また、Hl>Ha 、 Hl>HO、l Hl  Hz
 l <Ho −(2)の条件で、第6図に示すように
制御線5と制御線6に流す電流I+ 、I2の方向を反
対にすると、第7因に示すように端子c、d間に電流I
1. I2のいずれか一方のみが存在する期間のみ端子
C9d間に出力電圧が得られ、イクスクルーシプオアの
論理出力が得られた。またこの電流条件のとき、電流I
t 、Izを同方向に流すことにより、OR論理出力が
得られることになる。
Also, Hl>Ha, Hl>HO, l Hl Hz
Under the condition of l < Ho - (2), if the directions of the currents I+ and I2 flowing through the control line 5 and control line 6 are reversed as shown in Fig. 6, the current between terminals c and d will change as shown in the seventh factor. current I
1. An output voltage was obtained between the terminals C9d only during the period when only one of I2 was present, and an exclusive OR logic output was obtained. Also, under this current condition, the current I
By flowing t and Iz in the same direction, an OR logic output will be obtained.

なお、上記の実施例にあっては電流値II及びI2の値
を適宜選定するようになしているが、本発明はこれに限
定されるものではなく、例えば制御線5及び6に流す電
流値It及び工2を一定の値とし、超電導体3と制御線
5または制御線6の間隔を適宜選定して、上記(1)式
または(2)式を満足する位置に制御線5及び6を設け
るようになしても良い。
In the above embodiment, the values of the current values II and I2 are appropriately selected, but the present invention is not limited to this. For example, the current values flowing through the control lines 5 and 6 It and E2 are set to constant values, and the distance between the superconductor 3 and the control line 5 or 6 is appropriately selected, and the control lines 5 and 6 are placed at a position that satisfies the above equation (1) or (2). It is also possible to provide one.

また、本発明の装置を作製する場合、上記した方法に限
定されるものではなく、制御線5.6または超電導磁気
センサ1をスパッタやMOCVDあるいは電子ビーム蒸
着法等による薄膜で作成しても同様に結果を得ることが
出来、また加工形状の微細化をも期待することが出来る
In addition, when manufacturing the device of the present invention, the method is not limited to the above-described method, and the control line 5.6 or the superconducting magnetic sensor 1 may be formed using a thin film by sputtering, MOCVD, electron beam evaporation, etc. results can be obtained, and further miniaturization of the processed shape can be expected.

また、本発明の実施例に用いたセラミック高温超電導体
膜はYIBazCuzOt−xとしたが、粒界を有する
ものであれば、他のB1−8r−Ca−Cu−0系、又
は、T I−Ca −B a −Cu−0系などの成分
の高温超電体を用いても同様の結果が得られることは言
うまでもない。
Further, although the ceramic high temperature superconductor film used in the examples of the present invention was YIBazCuzOt-x, other B1-8r-Ca-Cu-0 series or T I- It goes without saying that similar results can be obtained by using a high-temperature superelectric material having components such as Ca-B a -Cu-0.

また超電導体3と制御線5.6の配置関係は上記の実施
例に限定されるものではなく、第8図に示すように超電
導体3を挾むUの字にして両側に制御線5を配置し、他
の制御線6は図のように超電導体3に平行に配置しても
よく、また、制御線5の上に積層しても良い。
Furthermore, the arrangement relationship between the superconductor 3 and the control lines 5 and 6 is not limited to the above embodiment, and as shown in FIG. The other control line 6 may be arranged parallel to the superconductor 3 as shown in the figure, or may be laminated on the control line 5.

以上の実施例により説明したように、制御線を積層又は
、形状をUの字にすれば、素子に近接した電流による磁
界は、Uの字形の内部に収束され、直線形の制御線より
少ない電流で同じ強さの磁界をセラミック超電導体に印
加でき、効率のよい制御線にすることができる。
As explained in the above embodiments, if the control line is laminated or shaped into a U-shape, the magnetic field due to the current close to the element will be converged inside the U-shape, and will be smaller than that of a straight control line. A magnetic field of the same strength can be applied to the ceramic superconductor using an electric current, making it possible to create an efficient control line.

粒界をもつセラミック超電導体膜を更に薄くすることで
制御磁界を小さくし、かつより大きい出力電圧にするこ
とができる。
By making the ceramic superconductor film with grain boundaries even thinner, the control magnetic field can be reduced and the output voltage can be increased.

更に、制御線を薄い絶縁膜を介して超電導体に近接させ
る構j況にすれば制御線の電流による磁界を効果的に超
電導体に作用させることができる。
Furthermore, if the control line is placed close to the superconductor via a thin insulating film, the magnetic field caused by the current in the control line can be effectively applied to the superconductor.

上記の改良を組合せることにより、少ない制御線の電流
による磁界を効果的に超電導体に作用させ種々の論理動
作を高速で行い、かつ実用的な出力レベルをもつセラミ
ック超電導装置にすることができる。
By combining the above improvements, it is possible to create a ceramic superconducting device that allows the magnetic field generated by the small control line current to effectively act on the superconductor, performs various logical operations at high speed, and has a practical output level. .

また、薄膜化、微細化と、制御線の電流の減少化により
周囲への磁気雑音が少なくなり、高密度の集積化が可能
になる。
In addition, by thinning the film, miniaturizing the device, and reducing the current in the control line, magnetic noise to the surroundings is reduced, allowing for high-density integration.

〈発明の効果〉 以上のように本発明によれば、従来のように極めて薄い
絶縁層を人工的に作製するジー3セフソン接合を用いず
、セラミック超電導体の粒界に自然に介在する弱結合を
利用した超電導磁気抵抗効果を用いた論理演算などを行
なうものであり、実用的な出力電圧で、かつ、超電導特
有の極めて高速の動作速度をもつ装置を効率よく作動さ
せることができる。
<Effects of the Invention> As described above, according to the present invention, instead of using the G3-Sefson junction that artificially creates an extremely thin insulating layer as in the past, weak bonds that naturally exist in the grain boundaries of a ceramic superconductor are used. It performs logical operations using the superconducting magnetoresistive effect, making it possible to efficiently operate devices with practical output voltages and extremely high operating speeds unique to superconductors.

又、本発明の詳細な説明したように制御線を、その1部
が超電導体に絶縁膜を介して積層、又はUの字形にする
ので、その制御線の電流による磁界を超電導体に収束さ
せることができ、少ない入力電流での動作をさせること
ができろ。
Further, as described in detail of the present invention, a portion of the control line is laminated to the superconductor via an insulating film or formed into a U-shape, so that the magnetic field due to the current of the control line is focused on the superconductor. It should be possible to operate with a small input current.

更に、実施例で説明したように制御線を平面的に配置す
ることも、ポリイミド等の樹脂又はSiO2等の酸化物
の絶縁膜によって制御線を容易に多層にすることもでき
、効率よく高速で種々の論理演算などを行なう装置にす
ることができる。
Furthermore, as explained in the examples, the control lines can be arranged in a plane, or they can be easily multilayered using an insulating film of resin such as polyimide or oxide such as SiO2. It can be made into a device that performs various logical operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミック超電導装置の一実施例の構
成を示す平面図、第2図はセラミック超電導磁気抵抗素
子の特性の一例を示す図、第3図は制御線に流す電流に
よる超電導磁2抵抗素子の出力応答を示す図、第4図は
本発明のセラミック超電導装置の他の実施例における磁
界を発生する制御線を複数本と[〜で各々の電流方向を
同じ方向とした場合の構成を示す平面図、第5図は第4
図の構成による制御線の電流方向が同じ方向の場合の出
力応答と制御線電流との関係を示す図、第6図は本発明
の他の実施例における磁界を発生する2本の制御線の電
流方向が互いに逆の場合の構成を示す図、第7図は第6
図の構成による本発明実施例装置の出力応答と制御線に
流す電流波形の関係を示す図、第8図は本発明のセラミ
ック超電導装置の更に他の実施例の構成を示す平面図、
第9図は本発明の実施例装置の作製に用いたセラミック
超電導膜の作製装置の概略構成を示す図、第10図は超
電導磁気抵抗素子の特性の一例を示す図、第11図は超
電導磁気抵抗素子の等価回路を示す図であるO I・・・超電導磁気抵抗素子、21.21・・・電流電
極、22.22・・電圧電極、3・・・超電導体、5゜
6・・・制御線、7・・・基板、10・・・絶縁膜。 代理人 弁理士 杉 山 毅 至(他1名)第9図 cう;−yyu(8pgstt+aqa第1O図 第11ス
FIG. 1 is a plan view showing the configuration of an embodiment of the ceramic superconducting device of the present invention, FIG. 2 is a diagram showing an example of the characteristics of a ceramic superconducting magnetoresistive element, and FIG. 3 is a superconducting magnet due to the current flowing through the control line. FIG. 4 is a diagram showing the output response of a two-resistance element, and shows the case where the control lines for generating the magnetic field in another embodiment of the ceramic superconducting device of the present invention are arranged in the same direction. A plan view showing the configuration, Figure 5 is the 4th
A diagram showing the relationship between the output response and the control line current when the current directions of the control lines are in the same direction according to the configuration shown in the figure. Figure 6 shows the relationship between the two control lines that generate a magnetic field in another embodiment of the present invention. Figure 7 is a diagram showing the configuration when the current directions are opposite to each other.
FIG. 8 is a plan view showing the configuration of still another embodiment of the ceramic superconducting device of the present invention; FIG.
FIG. 9 is a diagram showing a schematic configuration of the ceramic superconducting film manufacturing apparatus used for manufacturing the example device of the present invention, FIG. 10 is a diagram showing an example of the characteristics of a superconducting magnetoresistive element, and FIG. 11 is a diagram showing a superconducting magnetic resistance element. 21.21. Current electrode, 22.22. Voltage electrode, 3. Superconductor, 5°6... Control line, 7... Substrate, 10... Insulating film. Agent Patent attorney Takeshi Sugiyama (and 1 other person) Figure 9c; -yyu (8pgstt + aqua Figure 1O Figure 11)

Claims (1)

【特許請求の範囲】 1、少なくとも一対の電極を備えた磁気抵抗特性をもつ
セラミック超電導素子と、前記セラミック超電導素子に
近接して設けた導体からなり流した電流で発生する磁界
の作用で、前記セラミック超電導素子の導電性を制御す
る制御線の、少なくとも一部を、薄い絶縁膜を介した積
層構成にしたことを特徴とするセラミック超電導装置。 2、前記制御線がU字型の折り返し形状であり、電流に
より各辺の導線で発生した磁界が前記セラミック超電導
素子に作用することを特徴とする請求項1記載のセラミ
ック超電導装置。 3、前記セラミック超電導素子に、個別の電流制御が可
能な2本以上の制御線が設けられたことを特徴とする請
求項1又は2記載のセラミック超電導装置。 4、前記セラミック超電導素子は、非磁性基板上に形成
された膜状のセラミック超電導体から作製されたことを
特徴とする請求項1、又は、2、又は3記載のセラミッ
ク超電導装置。
[Scope of Claims] 1. Comprised of a ceramic superconducting element having magnetoresistive characteristics and having at least one pair of electrodes, and a conductor provided in close proximity to the ceramic superconducting element, the above-mentioned A ceramic superconducting device characterized in that at least a part of a control line for controlling conductivity of a ceramic superconducting element has a laminated structure with a thin insulating film interposed therebetween. 2. The ceramic superconducting device according to claim 1, wherein the control wire has a U-shaped folded shape, and a magnetic field generated in the conductive wires on each side by a current acts on the ceramic superconducting element. 3. The ceramic superconducting device according to claim 1 or 2, wherein the ceramic superconducting element is provided with two or more control lines capable of individually controlling current. 4. The ceramic superconducting device according to claim 1, wherein the ceramic superconducting element is made of a film-like ceramic superconductor formed on a non-magnetic substrate.
JP63202351A 1988-02-10 1988-08-12 Ceramic superconducting device Expired - Fee Related JPH0810772B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63202351A JPH0810772B2 (en) 1988-02-10 1988-08-12 Ceramic superconducting device
DE89301279T DE68906044T2 (en) 1988-02-10 1989-02-10 SUPRALOCIAL LOGICAL DEVICE.
EP89301279A EP0328398B1 (en) 1988-02-10 1989-02-10 Superconductive logic device
CN89101727A CN1054471C (en) 1988-02-10 1989-02-10 Superconductive logic device
US07/983,290 US5298485A (en) 1988-02-10 1992-11-30 Superconductive logic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-29526 1988-02-10
JP2952688 1988-02-10
JP63202351A JPH0810772B2 (en) 1988-02-10 1988-08-12 Ceramic superconducting device

Publications (2)

Publication Number Publication Date
JPH01302785A true JPH01302785A (en) 1989-12-06
JPH0810772B2 JPH0810772B2 (en) 1996-01-31

Family

ID=26367736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202351A Expired - Fee Related JPH0810772B2 (en) 1988-02-10 1988-08-12 Ceramic superconducting device

Country Status (1)

Country Link
JP (1) JPH0810772B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature
JPS62115881A (en) * 1985-11-15 1987-05-27 Agency Of Ind Science & Technol Magnetic field coupling type josephson integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature
JPS62115881A (en) * 1985-11-15 1987-05-27 Agency Of Ind Science & Technol Magnetic field coupling type josephson integrated circuit

Also Published As

Publication number Publication date
JPH0810772B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US5041880A (en) Logic device and memory device using ceramic superconducting element
WO1997034327A1 (en) Wide josephson junction with asymmetric control lines
JPH01170080A (en) Superconducting fet element
JPH01302785A (en) Ceramic superconducting device
JP3123164B2 (en) Superconducting device
JP2644284B2 (en) Superconducting element
JPH01316977A (en) Ceramic superconductive device
JPS6288381A (en) Superconducting switching apparatus
JP2955407B2 (en) Superconducting element
JP2583922B2 (en) Superconducting switching element
JP2523655B2 (en) Superconducting element
JPH01287976A (en) Ceramic superconducting device
JPH0315355B2 (en)
JP3016566B2 (en) Superconducting switch element
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JPH0810770B2 (en) Ceramic superconducting device
JPH01161785A (en) Superconducting device
JP2680954B2 (en) Superconducting field effect element
JPH09312424A (en) Superconducting transistor
JPH02273975A (en) Superconducting switching element
JPH05175559A (en) Superconducting element
JPH0249481A (en) Oxide josephson junction device
JP2599500B2 (en) Superconducting element and fabrication method
JPH03171683A (en) Superconducting electrode
JPH01102821A (en) Permanent current switch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees