JPH01301812A - Converter which prevents erosion of furnace wall by secondary combustion - Google Patents

Converter which prevents erosion of furnace wall by secondary combustion

Info

Publication number
JPH01301812A
JPH01301812A JP63132351A JP13235188A JPH01301812A JP H01301812 A JPH01301812 A JP H01301812A JP 63132351 A JP63132351 A JP 63132351A JP 13235188 A JP13235188 A JP 13235188A JP H01301812 A JPH01301812 A JP H01301812A
Authority
JP
Japan
Prior art keywords
converter
blowing
tuyeres
gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63132351A
Other languages
Japanese (ja)
Other versions
JPH0619097B2 (en
Inventor
Hiroaki Ishida
博章 石田
Masaharu Anezaki
姉崎 正治
Minoru Ishikawa
稔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63132351A priority Critical patent/JPH0619097B2/en
Publication of JPH01301812A publication Critical patent/JPH01301812A/en
Publication of JPH0619097B2 publication Critical patent/JPH0619097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To effectively prevent the erosion of furnace wall refractories by secondary combustion by providing tuyeres to be used exclusively for blowing gaseous hydrocarbon to the lower part of a converter throat and specifying the height from the furnace bottom and blowing angle of the tuyeres. CONSTITUTION:The tuyeres 5 to be used exclusively for blowing the gaseous hydrocarbon (gaseous methane, gaseous propane, etc.) or the gas contg. a part of the gaseous hydrocarbon are provided to the lower part of the throat 4 of the composite converter 1 having, for example, a top blowing lance 2 and bottom blowing tuyeres 3 in combination at the time of executing converter operation by secondary combustion method. The height of the tuyeres 5 from the furnace bottom, designated as HL, and the height from the furnace bottom to the throat, designated as HV, are regulated to 0.6HV<=HL<=0.9HV and the blowing angle theta of the tuyeres 5 to horizontal is regulated to -30 deg.<=theta<=30 deg.. The gas blown from the tuyeres 5 is uniformly spread to the sections exposed to the high-temp. gas near the throat, etc., to equally lower the temp. of the sections and to effectively prevent the erosion of refractories. The exhaust gas having high calory is recoverable.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、炉壁耐火物の溶損を効果的に防止すると共に
、カロリーの高い排ガス回収を可能とした転炉に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a converter that effectively prevents melting of furnace wall refractories and enables recovery of high-calorie exhaust gas.

〈従来技術とその課題〉 転炉製鋼法の発達に伴い、鉄鋼産業に“鉄鋼−貫体制”
が確立されて久しく、鋼の生産能率は飛躍的な向上を遂
げてきたが、近年、世界的な景気の安定期を迎えるに及
んで鋼の需要も一時の無制限状態から着実な安定化傾向
をたどるようになってきた。
<Conventional technology and its challenges> With the development of converter steel manufacturing method, the “steel-through system” has been introduced in the steel industry.
has been established for a long time, and steel production efficiency has improved dramatically, but in recent years, as the global economy has entered a period of stability, demand for steel has steadily stabilized from a temporary unlimited state. I've started to follow it.

このため、最近では高炉銑の生産量抑制策が採られるよ
うになり、同時に土中スクラップが大量に出回ってその
価格も安定化してきたことから、転炉製鋼原料に占める
スクラップの割合を増加し、更に鉄鉱石やマンガン鉱石
をも配合する転炉操業法の確立が検討され始めてきた。
For this reason, measures have recently been taken to curb the production of blast furnace pig iron, and at the same time, a large amount of underground scrap has become available and its price has stabilized, so the proportion of scrap in the raw materials for converter steel production has been increased. Studies have begun to establish a converter operation method that also incorporates iron ore and manganese ore.

中でも、溶銑処理により溶銑の熱源が低下した場合にお
けるスクラップ比率上昇対策や鉄鉱石。
Among these, measures to increase the scrap ratio when the heat source of hot metal decreases due to hot metal processing and iron ore.

マンガン鉱石等の増配対策等としての“転炉への熱付与
技術”が注目を集めており、特に「転炉での脱炭操業時
に発生したCOガスを炉内でCOzガスにまで燃焼させ
る“二次燃焼法”によって所要熱量を確保するのが有効
かつ実用的な手段である」として、通常の主送酸ノズル
の他に“COガス燃焼用の02送給ノズル”を配設した
上吹ランスを用いて転炉操業を行う方法や、炉肩部(絞
り部)にCOガス燃焼用の0□送給ノズルを斜め下方に
向けて配置した転炉を使用する方法等、“二次燃焼法゛
に関する様々な提案がなされた。
``Technology for applying heat to converters'' as a measure to increase the yield of manganese ore, etc. is attracting attention, and in particular, ``technology to combust CO gas generated during decarburization operations in converters to COz gas in the furnace'' is attracting attention. Securing the required amount of heat through the secondary combustion method is an effective and practical means.''In addition to the normal main oxygen supply nozzle, the top blower is equipped with an 02 supply nozzle for CO gas combustion. "Secondary combustion" methods include a method of operating a converter using a lance, and a method of using a converter in which a 0□ feed nozzle for CO gas combustion is placed diagonally downward in the furnace shoulder (throttle part). Various proposals regarding the law were made.

しかしながら、上述のような“二次燃焼法”を採用する
と、 a)炉内での排ガス温度が上昇して耐火物の溶損が増加
する(特に炉口下部付近が著しい)。
However, when the above-mentioned "secondary combustion method" is adopted, a) the temperature of the exhaust gas in the furnace rises and the melting loss of the refractory increases (particularly noticeable near the lower part of the furnace mouth).

b)排ガス中のCO含有量が低下するためエネルギー回
収の面で不利である。
b) Since the CO content in the exhaust gas decreases, it is disadvantageous in terms of energy recovery.

等の新たな問題が生じ、その解決策の必要性が認識され
ることとなった。
New problems such as these have arisen, and the need for solutions has been recognized.

そこで、これらの問題を解決すべく、本発明者等は先に
、 (A)  転炉の絞り部に炭素系物質をコーティングし
、このコーティング中のCと高温排ガス中に存在するC
O,との吸熱反応を利用して炉壁耐火物の溶損を防止す
る方法(特願昭61−303366号)。
Therefore, in order to solve these problems, the present inventors first coated the throttle part of the converter with a carbon-based material, and the carbon in this coating and the carbon present in the high-temperature exhaust gas were
A method for preventing melting of furnace wall refractories by utilizing an endothermic reaction with O (Japanese Patent Application No. 303366/1982)

(B)  転炉の絞り部から炭材を吹き込み、これによ
って生じる“吹込み炭材中のCと高温排ガス中のCO2
との吸熱反応”を利用して炉壁耐火物の溶損を防止する
方法(特願昭61−303366号)。
(B) Carbon in the blown carbon and CO2 in the high-temperature exhaust gas produced by blowing carbon into the constriction section of the converter.
A method for preventing melting and damage of furnace wall refractories by utilizing an endothermic reaction with a furnace wall (Japanese Patent Application No. 61-303366).

(C)  上吹ランスを介して転炉内に炭材粉を吹き込
んで炉壁耐火物の溶損を防止する方法。
(C) A method of blowing carbonaceous powder into the converter through a top blowing lance to prevent melting of the furnace wall refractories.

(D)  軸心回りに上吹ランスを回転させながら、該
上吹ランスを介して転炉内に炭材粉を吹き込んで炉壁耐
火物の溶損を防止する方法。
(D) A method for preventing melting of the furnace wall refractories by blowing carbonaceous powder into the converter through the top blowing lance while rotating the top blowing lance around the axis.

等の各提案を行った。The following proposals were made.

そして、これらの提案により前記二次燃焼法を採用した
際の“炉耐火物の溶損”や“排ガスカロリーの低下”に
係る問題は効果的に解決されることとなったが、その後
も続けられた本発明者等の検討によると、前記(A)〜
(D)に示した方法にも、なお次のような改善すべき点
の存在することが明らかとなった。
These proposals effectively solved the problems associated with "melting of furnace refractories" and "decrease in exhaust gas calories" when the secondary combustion method was adopted, but the problems continued. According to the studies conducted by the present inventors, the above (A) ~
It has become clear that the method shown in (D) still has the following points to be improved.

即ち、前記(A)の方法では、転炉内溶湯の出湯時にコ
ーティングからの[C] ピックアップが生じがちであ
り、低炭鋼の溶製には不向きであるとの問題が内在して
おり、また、前記(B)のような転炉絞り部のノズルか
ら炭材粉を吹き込む方法では、均一な炭材粉吹き込みが
困難であるために局部的に過冷却となり、却って耐火物
の熱スポーリングを起こしがちであると言う問題があっ
た。
That is, the method (A) has the inherent problem that it tends to pick up [C] from the coating when the molten metal is tapped out of the converter, making it unsuitable for melting low carbon steel. In addition, in the method (B) above in which carbonaceous powder is injected from the nozzle of the converter constriction part, it is difficult to uniformly inject the carbonaceous powder, resulting in local supercooling and, on the contrary, thermal spalling of the refractory. The problem is that it tends to cause

一方、前記(C)及び(D)の方法は前記(B)の方法
よりは均一な炭材吹き込みを実施できるものの、それで
も完全に均一な吹き込みは不可能であり、その結果、耐
火物の局部的過冷却が起きたり未反応炭材粉が発生する
等の不都合を避けることはできなかった。
On the other hand, although the above methods (C) and (D) can carry out more uniform blowing of carbonaceous material than the above method (B), it is still impossible to blow completely uniformly, and as a result, there are Inconveniences such as overcooling and generation of unreacted carbonaceous material cannot be avoided.

また、炭材粉を吹き込む手段にあっては、その反応性を
高めるために炭材粒度を1鶴以下に整粒することが要求
され、従って設備的な規模の拡大を余儀無くされるので
コストメリットが減少するとの問題も指摘された。
In addition, in the method of injecting carbonaceous powder, it is required to size the carbonaceous material to less than 1 grain in order to increase its reactivity, which necessitates an expansion of the equipment scale, which is a cost advantage. It was also pointed out that there would be a decrease in

く課題を解決するための手段〉 本発明者等は、転炉操業に二次燃焼法を採用しようとす
る際に見られる前述の問題点を解消し、炉耐火物の溶損
やコスト上昇等の不都合を伴うことのない安定な転炉操
業を実現すべく研究を重ねた結果、[上吹転炉、底吹転
炉或いは複合転炉の何れであっても構わないが、該転炉
の炉口下部に羽口を設け、転炉操業時に該羽口からメタ
ンガスやプロパンガス等の炭化水素系ガス、或いはコー
クス炉ガス(以降、COGと略記する)のような炭化水
素系ガスを一部含有するガスを吹き込むと、これらのガ
スは高温の排ガス中のCOzに触れてア)メタンガスの
場合: CHa+3Co□→4CO+2H,O。
Means for Solving the Problems> The present inventors have solved the above-mentioned problems that occur when trying to adopt the secondary combustion method for converter operation, and have solved the problems such as melting of furnace refractories and increased costs. As a result of repeated research to realize stable converter operation without any inconvenience, we found that [it does not matter whether the converter is a top-blowing converter, a bottom-blowing converter, or a combined converter; A tuyere is installed at the bottom of the furnace mouth, and during converter operation, hydrocarbon gas such as methane gas or propane gas, or a portion of hydrocarbon gas such as coke oven gas (hereinafter abbreviated as COG) is extracted from the tuyere. When the containing gases are blown in, these gases come into contact with COz in the high-temperature exhaust gas, and a) In the case of methane gas: CHa+3Co□→4CO+2H,O.

イ)プロパンガスの場合: C3H1+7CO2→IOCO+ 4 H2O。b) For propane gas: C3H1+7CO2→IOCO+4H2O.

つ’)COGの場合: [Hz(inCOG) 十COz→CO+H20゜CH
a(incOG)+3COR−4CO+2H20゜なる
吸熱反応を起こして炉内耐火物近傍の温度を低下させる
上、吹込みムラや未反応炭材粉の残留と言った不都合を
生じることもないので、耐火物の溶損防止効果が一段と
向上すると共に、排ガスのカロリーも一層上昇すること
となる」との知見を得るに至ったのである。
For COG: [Hz (inCOG) 10 COz→CO+H20°CH
The endothermic reaction of a(incOG)+3COR-4CO+2H20° occurs, lowering the temperature near the refractory in the furnace, and it does not cause inconveniences such as uneven injection or residual unreacted carbon powder. This led to the finding that the effect of preventing melting and loss of fuel is further improved, and the calorie content of exhaust gas is further increased."

本発明は、上記知見に基づいてなされたものであり、 「転炉を、炉口下部に炭化水素系ガス又は炭化水素系ガ
スを一部含有するガスを吹き込む専用の羽口を設けて成
る構成とするか、更には前記羽口の炉底からの高さHL
を 0.6HV≦HL≦0.9HV (但し、HVは炉底から炉口までの高さ)の範囲内に、
かつ該羽口の吹込角度θを水平に対して 一30°≦θ≦30゜ の範囲内に設定した構成とすることにより、二次燃焼法
採用時の炉内耐火物の溶損を効果的に防止すると共にカ
ロリーの高い排ガスの回収を可能とした点」 に特徴を有するものである。
The present invention has been made based on the above findings, and provides a converter with a configuration in which a dedicated tuyere for blowing hydrocarbon gas or gas partially containing hydrocarbon gas is provided at the lower part of the furnace mouth. Furthermore, the height HL of the tuyere from the hearth bottom is
within the range of 0.6HV≦HL≦0.9HV (however, HV is the height from the bottom of the furnace to the mouth of the furnace),
In addition, by setting the blowing angle θ of the tuyere within the range of -30°≦θ≦30° with respect to the horizontal, it is possible to effectively prevent melting of the refractories in the furnace when the secondary combustion method is adopted. It is characterized by the fact that it is able to prevent oxidation and to recover high-calorie exhaust gas.

ここで、転炉の基本形式としては“上吹転炉”。Here, the basic type of converter is the "top-blown converter."

“底吹転炉”又は“上吹と底吹を併せ持つ複合転炉”の
何れであっても良いことは先に述べた通りである。
As mentioned above, it may be either a "bottom blowing converter" or a "compound converter having both top blowing and bottom blowing".

また、炭化水素系ガス吹き込み用羽口から吹き込む「炭
化水素系ガス」としてはメタンガスやプロパンガスが好
適であるが、勿論これ以外のものでも良く、また「炭化
水素系ガスを一部含有するガス」もCOGのみに限定さ
れるものでないことは言うまでもない。ただ、COGと
しては、製鉄所内のコークス炉で回収しダスト等の不純
物を除去・精製した後の一般的なもので十分であり、こ
のようなCOGの代表的なガス組成は第1表に示す通り
である。
In addition, methane gas or propane gas is suitable as the "hydrocarbon gas" to be blown in from the tuyere for blowing hydrocarbon gas, but of course other gases may also be used. '' is not limited to COG. However, as COG, it is sufficient to use general COG that has been collected in a coke oven in a steelworks and has been purified and removed from dust and other impurities.The typical gas composition of such COG is shown in Table 1. That's right.

第   1   表 次に、本発明を図面に基づいて更に詳述する。Chapter 1 Table Next, the present invention will be explained in more detail based on the drawings.

〈作用〉 第1図は、本発明に係る転炉の1例であるところの、上
吹ランス2と底吹羽口3を併せ持つ複合転炉1の概略模
式図であるが、炉口4の下部に炭化水素系ガス吹き込み
専用羽口5が設けられており、二次燃焼法を適用する際
はこの羽口5から炭化水素系ガス又は炭化水素系ガスを
一部含有するガスを吹込むと、該ガスは炉口付近等の高
温ガスに曝される部位に均一に広がり高温排ガス中のC
O2と接触してCOを生成する吸熱反応を起すので、該
部位の温度をムラ無く低下させるので耐火物溶損が効果
的に防止される。その上、COを多量に含有するカロリ
ーの高い排ガスが生成するので、排ガスエネルギー回収
も極めて有利となる。
<Function> FIG. 1 is a schematic diagram of a composite converter 1 having both a top blowing lance 2 and a bottom blowing tuyere 3, which is an example of a converter according to the present invention. A tuyere 5 dedicated to blowing hydrocarbon gas is provided at the bottom, and when applying the secondary combustion method, hydrocarbon gas or gas partially containing hydrocarbon gas is blown from this tuyere 5. , the gas spreads uniformly to areas exposed to high-temperature gas, such as near the furnace mouth, and absorbs C in the high-temperature exhaust gas.
Since it contacts with O2 and causes an endothermic reaction to produce CO, the temperature of the area is lowered evenly, so that refractory erosion is effectively prevented. Moreover, since high-calorie exhaust gas containing a large amount of CO is generated, exhaust gas energy recovery is also extremely advantageous.

なお、第1図において、符号6はスラグを、7は溶銑又
は溶鋼をそれぞれ示す。
In addition, in FIG. 1, the reference numeral 6 indicates slag, and 7 indicates hot metal or molten steel.

ところで、炉口の下部に炭化水素系ガス吹き込み用羽口
を設ける場合には、第1図に示す炉底からの高さHLを
、炉底から炉口までの高さHVとの関係で 0.6HV≦H4≦0.9HV の範囲内とし、また該羽口の水平角度θを−30” ≦
θ≦30 ″ の範囲とするのが良い。なぜなら、前記羽口の設置状態
がrHt< 0.6HVJ又は「θ<−30’Jの場合
には排ガス温度の低下によって溶鉄やスラグへの熱供給
が減少し、一方、rHL> 0.9HVJ又は「θ〉3
0°」の場合には、炭化水素系ガスと排ガス(高温Co
t)との反応が不十分となり、排ガス温度低下の効果が
減少するためである。
By the way, when installing tuyere for blowing hydrocarbon gas at the lower part of the furnace mouth, the height HL from the furnace bottom shown in Fig. 1 is set to 0 in relation to the height HV from the furnace bottom to the furnace mouth. .6HV≦H4≦0.9HV, and the horizontal angle θ of the tuyere is -30”≦
It is preferable to set the value in the range of θ≦30″. This is because if the installed state of the tuyere is rHt<0.6HVJ or θ<−30′J, the heat supply to the molten iron and slag is reduced due to the decrease in exhaust gas temperature. decreases, while rHL > 0.9HVJ or “θ〉3
0°, hydrocarbon gas and exhaust gas (high-temperature Co
This is because the reaction with t) becomes insufficient and the effect of lowering the exhaust gas temperature decreases.

以下、本発明の効果を実施例によって具体的に説明する
Hereinafter, the effects of the present invention will be specifically explained using examples.

〈実施例〉 第1図に示すような15トン複合転炉の炉口下部のHL
=0.8HVの位置に、θ=06(水平)の炭化水素系
ガス吹き込み用羽口を等間隔で3個設置したものを用意
し、 溶銑量:lQt。
<Example> HL at the bottom of the furnace mouth of a 15-ton combined converter as shown in Figure 1
Three tuyeres for blowing hydrocarbon gas with θ=06 (horizontal) were installed at equal intervals at a position of =0.8HV, and the amount of hot metal was lQt.

溶銑温度:1280℃。Hot metal temperature: 1280℃.

使用上吹酸素ランス:12φ×6孔X15’1吹錬時間
:15分 なる条件で脱燐溶銑の脱炭処理を実施した。
Decarburization treatment of dephosphorized hot metal was carried out under the following conditions: top-blown oxygen lance: 12φ x 6 holes x 15'1 blowing time: 15 minutes.

一方、比較のため、上記と同様な複合転炉を使用し、炭
化水素系ガスや炭材吹込みの有無以外は同様条件下で脱
燐溶銑の脱炭処理を実施した。
On the other hand, for comparison, decarburization of dephosphorized hot metal was carried out using the same complex converter as above under the same conditions except for the presence or absence of hydrocarbon gas and carbon material injection.

このときの炉口下部における耐火物表面最高到達温度、
耐火物の溶損量、並びに炉口排ガス成分の測定値を第2
表に示す。
At this time, the maximum temperature reached on the refractory surface at the bottom of the furnace mouth,
The amount of erosion of the refractories and the measured values of the exhaust gas components at the furnace mouth are
Shown in the table.

なお、炉内耐火物の表面温度は、耐火物表面より3Rの
深さに熱電対をセットして測定した。
The surface temperature of the refractory in the furnace was measured by setting a thermocouple at a depth of 3R from the surface of the refractory.

第2表に示される結果からも明らかなように、プロパン
ガス或いはCOO吹き込み用羽口を設置した本発明に係
る転炉を使用した場合には、炭化水素系ガスのCO2ガ
スとの反応効率の向上により、従来の転炉を使用した場
合に比べて耐火物の溶損量が著しく低減されるばかりか
、同時に排ガス中OCO量も上昇し、転炉操業コストの
更なる低減がなされることが分かる。
As is clear from the results shown in Table 2, when using the converter according to the present invention equipped with tuyeres for blowing propane gas or COO, the efficiency of the reaction between hydrocarbon gas and CO2 gas increases. This improvement not only significantly reduces the amount of corrosion of refractories compared to when using a conventional converter, but also increases the amount of OCO in the exhaust gas, further reducing converter operating costs. I understand.

(以下余白) く効果の総括〉 上述のように、この発明によれば、既存の転炉をそのま
ま利用して炉壁耐火物の溶損が極力少なく、又カロリー
の高い排ガスの回収が可能な転炉を実現することができ
、転炉操業効率の一層の向上、そして転炉操業コストの
更なる低減が可能となるなど、産業上極めて有用な効果
がもたらされるのである。
(Blank below) Summary of Effects> As described above, according to the present invention, existing converters can be used as is, the melting of the furnace wall refractories is minimized, and high-calorie exhaust gas can be recovered. This makes it possible to realize a converter, further improve the operating efficiency of the converter, and further reduce the operating cost of the converter, which is extremely useful in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る転炉の一例を示した概略模式図
である。 図面において、 ■・・・複合転炉、   2・・・上吹き酸素ランス。 3・・・底吹羽口、   4・・・炉口。 5・・・炭化水素系ガス吹き込み用羽口。 6・・・スラグ、    7・・・溶銑又は溶鋼。
FIG. 1 is a schematic diagram showing an example of a converter according to the present invention. In the drawings, ■...Combined converter, 2...Top-blowing oxygen lance. 3...bottom blowing tuyere, 4...furnace mouth. 5...Tuyere for blowing hydrocarbon gas. 6...Slag, 7...Hot metal or molten steel.

Claims (1)

【特許請求の範囲】 (1)炉口下部に炭化水素系ガス又は炭化水素系ガスを
一部含有するガスを吹き込む専用の羽口を設けて成るこ
とを特徴とする転炉。 (2)前記羽口の炉底からの高さH_Lが 0.6H_V≦H_L≦0.9H_V (但し、H_Vは炉底から炉口までの高さ)の範囲内で
、かつ該羽口の吹込角度θが水平に対して −30°≦θ≦30° の範囲内に設定されて成る、請求項1記載の転炉。
[Scope of Claims] (1) A converter characterized in that a dedicated tuyere for blowing a hydrocarbon gas or a gas partially containing a hydrocarbon gas is provided at the lower part of the furnace mouth. (2) The height H_L of the tuyere from the hearth bottom is within the range of 0.6H_V≦H_L≦0.9H_V (however, H_V is the height from the hearth bottom to the hearth mouth), and the blowing of the tuyere The converter according to claim 1, wherein the angle θ is set within the range of -30°≦θ≦30° with respect to the horizontal.
JP63132351A 1988-05-30 1988-05-30 Converter that prevents melting damage of furnace wall due to secondary combustion Expired - Lifetime JPH0619097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132351A JPH0619097B2 (en) 1988-05-30 1988-05-30 Converter that prevents melting damage of furnace wall due to secondary combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132351A JPH0619097B2 (en) 1988-05-30 1988-05-30 Converter that prevents melting damage of furnace wall due to secondary combustion

Publications (2)

Publication Number Publication Date
JPH01301812A true JPH01301812A (en) 1989-12-06
JPH0619097B2 JPH0619097B2 (en) 1994-03-16

Family

ID=15079327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132351A Expired - Lifetime JPH0619097B2 (en) 1988-05-30 1988-05-30 Converter that prevents melting damage of furnace wall due to secondary combustion

Country Status (1)

Country Link
JP (1) JPH0619097B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959820A (en) * 1982-09-30 1984-04-05 Sumitomo Metal Ind Ltd Metal refining furnace and its operating method
JPS6167708A (en) * 1984-09-10 1986-04-07 Nippon Steel Corp Refining method of iron alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959820A (en) * 1982-09-30 1984-04-05 Sumitomo Metal Ind Ltd Metal refining furnace and its operating method
JPS6167708A (en) * 1984-09-10 1986-04-07 Nippon Steel Corp Refining method of iron alloy

Also Published As

Publication number Publication date
JPH0619097B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
USRE32247E (en) Process for the direct production of steel
US4936908A (en) Method for smelting and reducing iron ores
CA2094199A1 (en) Operating a blast furnace using untreated top gas
JPH0124993B2 (en)
JPH01301812A (en) Converter which prevents erosion of furnace wall by secondary combustion
US3511644A (en) Process for reducing and carburizing melting of metallic material in a rotary furnace
EP0950117B1 (en) A method for producing metals and metal alloys
JPS62167811A (en) Melt reduction steel making method
EP0099713B1 (en) A method for protecting tuyères for refining a molten iron
JP2541200B2 (en) Converter for preventing melting of furnace wall due to high temperature gas
JPS63176407A (en) Production of molten iron
JPH08260010A (en) Operation for blowing large quanty of pulverized coal in blast furnace
JP2837282B2 (en) Production method of chromium-containing hot metal
RU1827386C (en) Method of heating and fusion of solid metal charge in converter with combination oxygen-fuel blast
JPH02194112A (en) Method for melting and refining scraps in combined blowing converter
SU597718A1 (en) Method of blast furnace smelting
GB1573455A (en) Production of steel from iron carbide
JPH06228623A (en) Steelmaking method having small energy consumption
JP2666385B2 (en) Hot metal production method
JPH0478688B2 (en)
JPS62116712A (en) Melting and smelting vessel having splash lance
JPH01195211A (en) Method for melting and reducing iron oxide
JPH03219005A (en) Smelting reduction iron-making method
JPS59113157A (en) Method for refining iron-chromium alloy
JPH01195214A (en) Operation of iron bath type melting and reducing furnace