JPH03219005A - Smelting reduction iron-making method - Google Patents

Smelting reduction iron-making method

Info

Publication number
JPH03219005A
JPH03219005A JP1318490A JP1318490A JPH03219005A JP H03219005 A JPH03219005 A JP H03219005A JP 1318490 A JP1318490 A JP 1318490A JP 1318490 A JP1318490 A JP 1318490A JP H03219005 A JPH03219005 A JP H03219005A
Authority
JP
Japan
Prior art keywords
furnace
smelting reduction
gas
exhaust gas
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1318490A
Other languages
Japanese (ja)
Inventor
Hiroyuki Katayama
裕之 片山
Mitsutaka Matsuo
充高 松尾
Tsutomu Saito
力 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1318490A priority Critical patent/JPH03219005A/en
Publication of JPH03219005A publication Critical patent/JPH03219005A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively utilize generated exhaust gas as energy source by parallelly arranging one pair of converter type smelting reduction furnace, supplying the exhaust gas from the furnace having a high secondary combustion ratio into a pre-treating furnace and using the exhaust gas from the furnace having a low secondary combustion ratio as fuel gas. CONSTITUTION:The smelting reduction furnaces 1, 2 are parallelly arranged, and bottom blowing and top blowing are executed while supplying the pre- treated ore and carbonaceous material from the pre-treating furnace 4 (rotary kiln) and the smelting reduction of ore is executed by supplying the carbonaceous material and flux. Then the secondary combustion ratio in the smelting reduction furnace 2 shown in the equation is made to 5-35%, and this exhaust gas is sucked under an unburnt condition, and after removing dust, the gas is stored in a gas holder 3, and as necessary, used as the fuel gas. On the other hand, the secondary combustion ratio in the smelting reduction furnace 1 is made to 40-68% and this exhaust gas is supplied to the pre-treating furnace 4 under high temp. condition and is perfectly burnt. By this method, the unit consumption of coal and oxygen gas are reduced, and also the suitable quantity of fuel gas is obtd. as byproduct.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鉄鉱石と石炭から、溶銑のような溶融鉄合金
を製造する、所謂、溶融還元製鉄法において、発生する
排ガスをエネルギー源として効率的に利用するだめの方
法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention uses the exhaust gas generated as an energy source in the so-called smelting reduction ironmaking process, which produces a molten iron alloy such as hot metal from iron ore and coal. Concerning how to use it efficiently.

(従来の技術) 従来、量産溶融鉄合金(溶銑)は焼結鉱あるいはペレッ
トのような塊成鉱と、石炭を高温で乾溜して製造された
強度の高いコークスを高炉に装入する、所謂、高炉法で
製造されてきた。
(Prior art) Conventionally, mass-produced molten iron alloy (hot metal) is produced by charging agglomerated ore such as sintered ore or pellets and high-strength coke produced by dry distilling coal at high temperatures into a blast furnace. , has been manufactured using the blast furnace method.

これに対して、溶融還元法は鉄鉱石を塊成化せず、また
、石炭をコークス化せずに溶融鉄合金の製造を可能にす
ることを狙っている。
In contrast, the smelting reduction method aims to enable the production of molten iron alloys without agglomerating iron ore or coking coal.

この際、溶融還元炉の操業成績(石炭、酸素ガス、耐火
物などの原単位、歩留りなど)を改善するには、鉱石は
極力予備還元を進め、かつ、溶融還元炉に供給される石
炭のVM(揮発分)含有量を低くすることが望ましい。
At this time, in order to improve the operational performance of the smelting reduction furnace (unit consumption of coal, oxygen gas, refractories, etc., yield, etc.), the ore should be pre-reduced as much as possible, and the amount of coal supplied to the smelting reduction furnace should be reduced. It is desirable to have a low VM (volatile matter) content.

このような目的に合った鉱石、石炭の予備処理を同時に
行なえる設備としてロータリーキルンがある。
A rotary kiln is a facility that can simultaneously perform preliminary treatment of ore and coal for this purpose.

しかし、このロータリーキルンによる予備処理法では、
COガスを含む未燃ガスを回収することが難しい。それ
は可動部があるために完全なシールが困難であることに
起因し、従って、この方法ではガスをキルン内で完全燃
焼させ、排ガスのエネルギーは熱として回収するのが普
通である。ただし、この場合、使用する石炭の揮発分含
有量が多いとキルン排ガス温度が高くなり過ぎるという
問題がある。一方、製鉄所において他の工程で使用する
燃料ガスが不足することがあり、それを補うために、未
燃ガス回収が必要となる場合も生じている。
However, with this rotary kiln pretreatment method,
It is difficult to recover unburned gas including CO gas. This is because it is difficult to achieve a complete seal due to the presence of moving parts, so in this method, the gas is usually completely combusted in the kiln and the energy of the exhaust gas is recovered as heat. However, in this case, there is a problem that if the volatile content of the coal used is high, the temperature of the kiln exhaust gas becomes too high. On the other hand, there are cases in which there is a shortage of fuel gas used in other processes at a steelworks, and in order to compensate for this, unburned gas recovery is sometimes necessary.

それゆえに、ロータリーキルンと溶融還元炉との組み合
わせからなる工程において、溶融鉄合金を製造するため
の石炭、酸素ガスの原単位を小さくするとともに、排出
エネルギーとして未燃ガスと熱とを適度の組み合わせで
得ることのできるプロセスの開発が望まれている。しか
しながら、それを可能にする方法はこれまでに実現され
ていなかった。
Therefore, in the process consisting of a combination of a rotary kiln and a smelting reduction furnace, we can reduce the consumption of coal and oxygen gas to produce molten iron alloy, and use an appropriate combination of unburned gas and heat as exhaust energy. It is desired to develop a process that can achieve this. However, a method to make this possible has not been realized so far.

(発明が解決しようとする課題) 本発明は、従来法では困難であった、溶融鉄合金製造の
ための石炭、酸素ガスの原単位を低減するとともに、i
I!i量の燃料ガスを副生物として得ることを可能なら
しめる操業方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention reduces the basic unit consumption of coal and oxygen gas for producing molten iron alloy, which was difficult with conventional methods, and also
I! It is an object of the present invention to provide an operating method that makes it possible to obtain i amount of fuel gas as a by-product.

(課題を解決するための手段) 本発明の要旨とするところは、原料の予備処理炉と転炉
型溶融還元炉の組み合わせからなる設備を用い、鉄鉱石
から溶融鉄合金を製造するに際して、溶融還元炉は2基
並列とし、一方は、2次燃焼率 ((%C0z)+(%HzO)l] X100%(%C
o2)+(%CO) + (%H2) + (%H2O
)40〜68%の範囲で操業してその排出ガスを予備処
理炉に供給したのち、該炉内で完全燃焼させてその熱を
利用し、他方は、該2次燃焼率5〜35%の範囲で操業
してその排出ガスを未燃状態で回収することを特徴とす
る溶融還元製鉄法にある。
(Means for Solving the Problems) The gist of the present invention is to produce a molten iron alloy from iron ore using equipment consisting of a combination of a raw material pretreatment furnace and a converter-type smelting reduction furnace. Two reducing furnaces are arranged in parallel, and one is
o2) + (%CO) + (%H2) + (%H2O
) 40 to 68%, and the exhaust gas is supplied to a pretreatment furnace, and then it is completely combusted in the furnace and the heat is utilized. It is a smelting reduction iron manufacturing method characterized by operating within a range and recovering the exhaust gas in an unburned state.

(作 用) 第1図は本発明を実施するのに用いる設備の一例を示す
。1および2は、予備処理された鉱石などの原料を投入
しつつ、溶融物層を底吹きガスにより撹拌して、また、
酸素ガスを主として上吹きランス5から吹きつけて、溶
融、還元を行なう炉(溶融還元炉)であって、並列して
操業される。
(Function) FIG. 1 shows an example of equipment used to carry out the present invention. 1 and 2, while charging raw materials such as pretreated ore, stirring the melt layer with bottom blowing gas, and
This furnace (melting and reduction furnace) performs melting and reduction by blowing oxygen gas mainly from the top blowing lance 5, and is operated in parallel.

これら2基の溶融還元炉は、例えば次のようにサイクル
操業を行なう。
These two melting reduction furnaces perform cycle operation as follows, for example.

■溶融還元期・・・・・・鉄酸化物を含む鉄原料を供給
しつつ、酸素上吹き及び底吹きガス撹拌を行ない、同時
に消耗量に相当する石炭と、石灰などのフラックスを供
給して、溶融並びに還元を行なう。
■Smelting and reduction stage: While supplying iron raw materials containing iron oxides, oxygen top-blowing and bottom-blowing gas agitation are performed, and at the same time, coal equivalent to the consumption amount and flux such as lime are supplied. , melting and reduction.

■仕上げ還元期・・・・・・酸化鉄を含む鉄原料の供給
を止めて、その他は■の溶融還元期とほぼ同じ操業を行
なう。
■Final reduction period: The supply of iron raw materials containing iron oxide is stopped, and other operations are almost the same as those in the smelting reduction period.

■出湯、出滓期・・・・・・■の仕上げ還元によってス
ラグ中の酸化鉄含有量を1%以下まで低下させ、同時に
メタル中のSをスラグに移行させて、(S)/(S)を
2O以上(ただし、(S)はメタル中のS濃度、(S)
はスラグ中のS濃度を示す)にした後、吹酸を止めて、
炉を傾けて出湯、出滓を行なう。なお、炉を傾けると底
吹きガス羽目が溶融物の上に出て撹拌がストップするの
で、撹拌時にスラグの中に巻き込まれていた炭材がスラ
グ層の上に浮き、また、スラグ内に懸濁していた粒鉄が
溶融鉄合金中に沈降して、炭材、スラグ、溶融鉄合金の
3層に分離するため、炉傾動時に炭材を炉に残し、また
、スラグ中の粒鉄を少なくして出滓できる。
■ Tapping, slag tapping period......■ The iron oxide content in the slag is reduced to 1% or less by finishing reduction, and at the same time, the S in the metal is transferred to the slag, (S)/(S ) is 2O or more (where (S) is the S concentration in the metal, (S)
indicates the S concentration in the slag), stop blowing acid,
Tilt the furnace to tap the hot water and tap the slag. Note that when the furnace is tilted, the bottom-blown gas blades come out on top of the molten material and the stirring stops, so the carbonaceous material that was caught in the slag during stirring floats on top of the slag layer, and the carbon material suspended in the slag is The turbid granulated iron settles into the molten iron alloy and separates into three layers: carbonaceous material, slag, and molten iron alloy. Therefore, when the furnace is tilted, the carbonaceous material remains in the furnace, and the granular iron in the slag is reduced. It can be slaged out.

2基の溶融還元炉の操業サイクルは必ずしも一定の関係
に合せる必要はない。要は、それぞれの溶融還元炉で操
業条件を炉内の2次燃焼率、すなわち、 (%C02) + (%CO) + C%H2) +(
%H2O)の値がそれぞれ次のように異なる範囲の値に
設定されていることである。
The operating cycles of the two melting reduction furnaces do not necessarily have to be in a fixed relationship. In short, the operating conditions for each smelting reduction furnace are determined by the secondary combustion rate in the furnace, that is, (%C02) + (%CO) + C%H2) + (
%H2O) are set to values in different ranges as follows.

溶融還元炉1では40〜68% 溶融還元炉2では5〜35% 各炉の2次燃焼率は、ガス分析の結果に基づいて炉内の
平均ガス組成から算出し、その値に応じて、酸素ガスの
供給条件と炭材供給条件を調整して所定の値に合せるこ
とができる。すなわち、吹酸速度を大にする、上吹きラ
ンス5の高さを上げる、炭材供給速度を小さくする、炭
材の成分については揮発分含有量の低いものを選んで用
いるなどの方法によって2次燃焼率を高めることができ
、一方、その逆の操作によって2次燃焼率を低くするこ
とができる。
40 to 68% for smelting reduction furnace 1 and 5 to 35% for smelting reduction furnace 2. The secondary combustion rate of each furnace is calculated from the average gas composition in the furnace based on the results of gas analysis, and The oxygen gas supply conditions and the carbonaceous material supply conditions can be adjusted to match predetermined values. That is, by increasing the blowing acid speed, increasing the height of the top blowing lance 5, decreasing the carbon material supply speed, and selecting and using carbon materials with low volatile content. The secondary combustion rate can be increased, while the reverse operation can decrease the secondary combustion rate.

溶融還元炉2からの排出ガスは未燃のまま吸引されて、
除塵された後、ガスホルダー3に溜められ、必要に応じ
て燃料ガスとして利用される。
The exhaust gas from the melting reduction furnace 2 is sucked in unburned state,
After the dust is removed, it is stored in the gas holder 3 and used as fuel gas as needed.

該炉2の2次燃焼率を5〜35%の範囲とした理由は、
5%未満では排出ガス中にタール分が含まれるため長時
間の安定した操業が阻害されること、一方、35%を越
えると燃料ガスとしての利用価値が低下するためである
The reason why the secondary combustion rate of the furnace 2 is set in the range of 5 to 35% is as follows.
If it is less than 5%, tar will be included in the exhaust gas, which will impede stable operation over a long period of time, while if it exceeds 35%, its utility as a fuel gas will decrease.

一方、溶融還元炉1からの排出ガスは、高温のまま予備
処理炉4に供給される。
On the other hand, the exhaust gas from the smelting reduction furnace 1 is supplied to the pretreatment furnace 4 while being at a high temperature.

ここで、溶融還元炉1の2次燃焼率を40〜68%の範
囲とする理由は、40%未満だと、この排出ガスを完全
燃焼させてその際の熱を利用しようとする原料予備処理
炉4において発生熱量が多くなり過ぎ、一方、68%を
越えると溶融還元炉1の炉内温度が高くなり過ぎて耐火
物の損耗が急激に増加するので好ましくないからである
Here, the reason why the secondary combustion rate of the smelting reduction furnace 1 is set in the range of 40 to 68% is that if it is less than 40%, the exhaust gas will be completely combusted and the heat at that time will be used for raw material pretreatment. This is because the amount of heat generated in the furnace 4 becomes too large, and on the other hand, if it exceeds 68%, the temperature inside the melting reduction furnace 1 becomes too high and wear and tear on the refractory increases rapidly, which is not preferable.

次に、原料予備処理炉4としては例えばロータリーキル
ンが用いられる。ロータリーキルンには鉄鉱石と一部の
石炭が添加され、そこに溶融還元炉1から供給される高
温ガスと、ロータリーキルン内で発生する還元性ガス(
石炭から発生する揮発分および鉄鉱石還元によって発生
するCOガスなど)とを完全燃焼させるための空気が供
給される。
Next, as the raw material pretreatment furnace 4, for example, a rotary kiln is used. Iron ore and some coal are added to the rotary kiln, and high-temperature gas supplied from the smelting reduction furnace 1 and reducing gas (
Air is supplied for complete combustion of volatile matter generated from coal and CO gas generated by iron ore reduction.

ロータリーキルンのような原料予備処理炉4内で加熱さ
れた石炭と鉄鉱石の混合物は、先ず水分の除去が起こり
、ついで、石炭の乾留、並びにその時に発生した揮発分
と加熱された鉄鉱石との反応による酸化鉄の予備還元が
進行する。これらの反応はいずれも吸熱反応であるが、
その必要熱量は、溶融還元炉1から供給される排出ガス
の顕熱および未燃分の完全燃焼による発生熱、それにロ
ータリーキルン内で発生したガスの完全燃焼による発生
熱で補われる。このロータリーキルン内発生ガスからの
発生熱量は、使用する石炭の銘柄、特に揮発分含有量に
依存する。揮発分含有量が多く、もし、ロータリーキル
ン内での発生熱量が多くなり過ぎる場合には、予備処理
工程で使用する石炭を熱的に必要な量だけにして、残り
は溶融還元炉1に直接添加すればよい。
The mixture of coal and iron ore heated in a raw material pretreatment furnace 4 such as a rotary kiln undergoes moisture removal first, followed by carbonization of the coal and the mixing of the volatile matter generated at that time with the heated iron ore. Preliminary reduction of iron oxide by reaction proceeds. All of these reactions are endothermic reactions, but
The required amount of heat is supplemented by the sensible heat of the exhaust gas supplied from the smelting reduction furnace 1, the heat generated by the complete combustion of unburned matter, and the heat generated by the complete combustion of the gas generated in the rotary kiln. The amount of heat generated from the gas generated in the rotary kiln depends on the brand of coal used, especially on the volatile content. If the volatile content is high and the amount of heat generated in the rotary kiln becomes too large, reduce the amount of coal used in the pretreatment process to the thermally necessary amount and add the rest directly to the smelting reduction furnace 1. do it.

なお、予備処理炉4から排出されるガスの顕熱は、原料
の乾燥、予熱に用いられたり、あるいは熱回収されたり
して有効に使用可能である。
Note that the sensible heat of the gas discharged from the pretreatment furnace 4 can be effectively used for drying and preheating the raw material, or for heat recovery.

また、予備処理炉4から出てくる原料は予備還元された
鉱石と乾留された石炭の混合物であるが、これは2つの
溶融還元炉1及び2に供給される。
Further, the raw material coming out of the pretreatment furnace 4 is a mixture of prereduced ore and carbonized coal, and this is supplied to the two smelting reduction furnaces 1 and 2.

各熔融還元炉においては、前述の2次燃焼率の条件を満
足するように、まだ乾留していない石炭の添加条件並び
に吹酸条件を選定、調整することになる。
In each smelting reduction furnace, conditions for adding coal that has not yet been carbonized and conditions for blowing acid are selected and adjusted so as to satisfy the conditions for the secondary combustion rate described above.

(実施例) 第1図に示すような方式の設備、すなわち、内径4m、
長さ105mのロータリーキルン1基と、内容積がそれ
ぞれ60rrlの転炉型の熔融還元炉ゼ基を用いて以下
のような操業を行なった。。
(Example) Equipment of the type shown in Fig. 1, that is, an inner diameter of 4 m,
The following operation was carried out using one rotary kiln with a length of 105 m and converter type melting and reduction furnaces each having an internal volume of 60 rrl. .

まず、使用した原料の条件を第1表に示す。First, Table 1 shows the conditions of the raw materials used.

F、Cは固定炭素(Fixed Carbon) 、V
Mは揮発分(Volatile Matter)、Ba
l はBa1anceを意味する。
F, C are fixed carbon, V
M is volatile matter, Ba
l means Balance.

次に、予備処理炉4すなわちロータリーキルン、溶融還
元炉1、並びに溶融還元炉2の操業条件及び結果を、そ
れぞれ第2表、第3表、並びに第4表に示す。
Next, the operating conditions and results of the pretreatment furnace 4, that is, the rotary kiln, the smelting reduction furnace 1, and the smelting reduction furnace 2 are shown in Tables 2, 3, and 4, respectively.

第 表 第4表 以上のような条件で本発明のプロセスによる溶融還元を
実施した結果、トータルシステムでの原単位は以下の通
りである。
As a result of carrying out the melt reduction according to the process of the present invention under the conditions as shown in Table 4, the basic unit of the total system was as follows.

石炭A    487  kg/l−メタル石炭B  
  116kg/l−メタル石炭C89kg/l−メタ
ル 酸 素   354 Nボ/l−メタル従って、本発明
により溶融還元炉1で処理したときの石炭原単位は57
6kg/l−メタル、溶融還元炉2で処理したときの石
炭原単位は603kg/l−メタルとなる。生成メタル
量で加重平均すれば、582kg/l−メタルとなる。
Coal A 487 kg/l-Metal coal B
116 kg/l-metal coal C89 kg/l-metal oxygen 354 N/l-metal Therefore, the coal consumption rate when treated in the smelting reduction furnace 1 according to the present invention is 57
6 kg/l-metal, the coal consumption rate when processed in the smelting reduction furnace 2 is 603 kg/l-metal. A weighted average based on the amount of metal produced is 582 kg/l-metal.

一方、比較例として、次の二つの事例を検討した。On the other hand, the following two cases were considered as comparative examples.

(1)排出ガスを全て未燃ガス(すなわち、燃料ガス)
として回収する場合: これは前記実施例で溶融還元炉2のみを使用するケース
に相当する。まず、原料条件は実施例と同様に第1表の
通りとした。ロータリーキルンの操業条件及び結果につ
いては、高温ガスによる「熱供給」を行なわず、「原料
供給」における1石炭A」の供給速度のみを変化させ、
その他の因子の目標値を第2表の値に設定して予備処理
を実施したところ、「石炭A」の供給速度が平均56、
Ot/hのときに3%以内の誤差でその他の因子の目標
値を達成できた。また、溶融還元炉2の操業条件及び結
果は実施例と同じとし、第4表に示した値を採用した。
(1) All exhaust gas is unburned gas (i.e., fuel gas)
When recovering as: This corresponds to the case where only the melting reduction furnace 2 is used in the above embodiment. First, the raw material conditions were as shown in Table 1, similar to the examples. Regarding the operating conditions and results of the rotary kiln, we did not perform "heat supply" with high-temperature gas, and only changed the supply speed of "1 coal A" in "raw material supply".
When preliminary processing was carried out with the target values of other factors set to the values in Table 2, the average supply rate of "Coal A" was 56,
At Ot/h, the target values for other factors were achieved with an error within 3%. Further, the operating conditions and results of the melting reduction furnace 2 were the same as in the examples, and the values shown in Table 4 were adopted.

このときのトータルシステムとしての原単位は以下の通
りである。
The basic unit for the total system at this time is as follows.

石炭A    622  kg/l、−メタル石炭B 
   116kg/l−メタル酸 素   354  
Nr+(/l−メタル従って、この場合の石炭原単位は
738kg/lメタルとなり、実施例に比べて増加する
Coal A 622 kg/l, - Metal coal B
116kg/l-metal oxygen 354
Nr+(/l-metal) Therefore, the coal consumption rate in this case is 738 kg/l metal, which is increased compared to the example.

(2)排出ガスのエネルギーを全て予備処理炉に供給す
る熱に変換する場合: これは前記実施例で溶融還元炉1のみを使用するケース
に相当する。まず、原料条件は実施例と同様に第1表の
通りとした。このとき、ロータリーキルン並びに溶融還
元炉1の操業条件及び結果も同じとし、それぞれ第2表
並びに第3表に示した値を採用した。
(2) Case in which all the energy of the exhaust gas is converted into heat to be supplied to the pretreatment furnace: This corresponds to the case in which only the smelting reduction furnace 1 is used in the above embodiment. First, the raw material conditions were as shown in Table 1, similar to the examples. At this time, the operating conditions and results of the rotary kiln and the melting reduction furnace 1 were also the same, and the values shown in Tables 2 and 3 were adopted, respectively.

このときのトータルシステムとしての原単位は以下の通
りとなる。
The basic unit for the total system at this time is as follows.

石炭A    487kg/l−メタル石炭CB9kg
/l−メタル 酸 素  354  Nrrr/l−メタル従って、こ
の場合の石炭原単位は576kg/lメタルとなり、実
施例に比べてわずかに減少する。
Coal A 487kg/l-Metal coal CB9kg
/l-metal oxygen 354 Nrrr/l-metal Therefore, the coal consumption rate in this case is 576 kg/l metal, which is slightly decreased compared to the example.

(発明の効果) 本発明による溶融還元法の特徴は次の通りである。(Effect of the invention) The characteristics of the melt reduction method according to the present invention are as follows.

(1)排出ガスを全て燃料ガスとして回収する場合に比
べて、銑鉄製造に対する石炭、酸素ガスの原単位が低い
(1) Compared to the case where all exhaust gas is recovered as fuel gas, the unit consumption of coal and oxygen gas for pig iron production is lower.

(2)排出ガスのエネルギーを全て熱あるいは電力に変
換する場合に比べて、銑鉄製造に対する石炭、酸素ガス
の原単位増加分はわずかであり、一方、排出されるエネ
ルギーの半分近くを燃料ガスとして回収できる。
(2) Compared to converting all exhaust gas energy into heat or electricity, the increase in unit consumption of coal and oxygen gas for pig iron production is small; on the other hand, nearly half of the energy emitted is converted into fuel gas. It can be recovered.

(3)2つの溶融還元炉の吹酸量、石炭装入条件などを
調整することによって、排出されるエネルギーの形態を
変えることができ、その時点で最も利用価値の高いもの
を得ることができる。
(3) By adjusting the amount of blown acid in the two smelting reduction furnaces, the coal charging conditions, etc., the form of the emitted energy can be changed, and the energy with the highest utility value can be obtained at that time. .

以上のように、本発明による方法は、各時点で排出され
るエネルギーの利用形態まで考えた場合に最も適切な形
態を選ぶことができるという特徴がある。
As described above, the method according to the present invention is characterized in that it is possible to select the most appropriate form when considering the form of utilization of energy emitted at each point in time.

したがって、本発明は製鉄法における発生エネルギーを
理想的な形態にできるという点で工業的、経済的効果が
大きい。
Therefore, the present invention has great industrial and economical effects in that the energy generated in the iron manufacturing process can be made into an ideal form.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するのに用いる設備の一例を示す
説明図である。
FIG. 1 is an explanatory diagram showing an example of equipment used to carry out the present invention.

Claims (1)

【特許請求の範囲】 原料の予備処理炉と転炉型溶融還元炉の組み合わせから
なる設備を用い、鉄鉱石から溶融鉄合金を製造するに際
して、溶融還元炉は2基並列とし、一方は、2次燃焼率 〔(%CO_2)+(%H_2O)〕×100%(%C
O_2)+(%CO)+(%H_2)+(%H_2O)
40〜68%の範囲で操業してその排出ガスを予備処理
炉に供給したのち、該炉内で完全燃焼させてその熱を利
用し、他方は、該2次燃焼率5〜35%の範囲で操業し
てその排出ガスを未燃状態で回収することを特徴とする
溶融還元製鉄法。
[Claims] When manufacturing molten iron alloy from iron ore using equipment consisting of a combination of a raw material pretreatment furnace and a converter-type smelting reduction furnace, two smelting reduction furnaces are arranged in parallel, and one Secondary combustion rate [(%CO_2) + (%H_2O)] x 100% (%C
O_2) + (%CO) + (%H_2) + (%H_2O)
After operating in the range of 40 to 68% and supplying the exhaust gas to the pretreatment furnace, it is completely combusted in the furnace and the heat is utilized, and the other is in the range of the secondary combustion rate of 5 to 35%. This is a smelting reduction iron manufacturing method characterized by operating a steel mill and recovering its exhaust gas in an unburned state.
JP1318490A 1990-01-23 1990-01-23 Smelting reduction iron-making method Pending JPH03219005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318490A JPH03219005A (en) 1990-01-23 1990-01-23 Smelting reduction iron-making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318490A JPH03219005A (en) 1990-01-23 1990-01-23 Smelting reduction iron-making method

Publications (1)

Publication Number Publication Date
JPH03219005A true JPH03219005A (en) 1991-09-26

Family

ID=11826090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318490A Pending JPH03219005A (en) 1990-01-23 1990-01-23 Smelting reduction iron-making method

Country Status (1)

Country Link
JP (1) JPH03219005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688143A (en) * 1992-03-04 1994-03-29 Technological Resources Pty Ltd Method for melting reduction of metal ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688143A (en) * 1992-03-04 1994-03-29 Technological Resources Pty Ltd Method for melting reduction of metal ore

Similar Documents

Publication Publication Date Title
CN101525678B (en) Method of replacing lime with limestone for slagging and producing steel in oxygen top blown converter
WO2014112432A1 (en) Converter steelmaking process
CN105838838B (en) Method for preparing pure steel by coal gas direct reduction one-step method
CN103911479A (en) Method for directly reducing and alloying chromium ore in 90t top-bottom combined blowing converter
UA72045C2 (en) A method and a device for producing reprocessable pig iron or liquid steel products from charge materials containing iron ore
JP2002509194A (en) Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste
CN1041328C (en) Method of direct steel-smelting of cooled agglomerated pellet
CN110423856B (en) Low-temperature smelting method for dephosphorization and decarburization of low-silicon molten iron
JPH03219005A (en) Smelting reduction iron-making method
JPS61104013A (en) Method for recovering iron contained in molten steel slag
US2581597A (en) Process for the reduction of iron ores and the like by carbon
JP2007131929A (en) Solid fuel for vertical scrap-melting furnace, and method for operating vertical scrap-melting furnace
JP2803528B2 (en) Converter steelmaking method
CN115537491B (en) Converter converting method of low-temperature low-silicon molten iron
US4412862A (en) Method for the production of ferrochromium
RU2217505C1 (en) Method of processing nickel-bearing iron ore raw material
JPS60145307A (en) Reducing method of iron ore by melting
JPH11217614A (en) Smelting reduction method of metal
JP4772436B2 (en) How to use dust in converter steelmaking and how to operate a dust melting converter
JPH0273911A (en) Method for operating iron smelting reduction
JPH06228623A (en) Steelmaking method having small energy consumption
JPS59104419A (en) Steel-making process in arc furnace
CN117587226A (en) Method and system for recycling laterite nickel ore leaching tailings
JP2837282B2 (en) Production method of chromium-containing hot metal
CN114350882A (en) Method for controlling end point oxygen in smelting ultra-low carbon steel by low-silicon molten iron