【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
この発明は、軸受転動体、更に詳しくは、表面
が粗面である相手部材に対して長寿命を示す転動
体の構造に関するものである。
〔従来の技術〕
転動体の転動寿命に対して転動面の表面粗さが
重要な因子であることはよく知られており、転動
面の研削仕上げはできるだけ滑らかな面にするこ
とが常識になつている。
一般的な軸受は、内輪、外輪、そして「玉」あ
るいは「ころ」等の転動体から構成されている
が、それぞれが単体として製造できる場合は、転
動面の研削仕上げも容易であり、表面粗さは実用
上問題のない範囲に納まつている。
しかしながら、軸受の構造において、例えば歯
車を備えた軸の一部を内輪として使用する場合が
あり、軸は全体として複雑な形状をしているた
め、転動体が接触する転動面部分の研削仕上げが
極めて困難であり、表面粗さは例えばRmax3μm
程度の粗面になり、これを相手に転動面が鏡面仕
上げされた転動体を使用すると、転動体の寿命が
実用上問題となる。
即ち、第5図に示す如く、転動面が粗面である
内輪1と鏡面の転動体2が接触するとき、潤滑油
膜の厚さが十分でないと、金属接触により粗面の
山が鏡面にぶつかり、この部分に応力が集中して
転動体2にピーリング損傷3が発生し、損傷部分
から剥離に至る破損状態が起こり、転動体2は計
算寿命に比して極めて短寿命になる。
上記ピーリング損傷3とは、深さ10μm程度の
浅い小剥離および亀裂の密集をいうものである
が、第6図で拡大した如く、粗面の山が鏡面に対
して接触すると、応力の集中により、転動体2の
表層が転動疲労し、これが原因で前述した通り、
転動体2にピーリング損傷3が生じるのである。
転動体2に発生する上記のような不都合を解消
する手段として、転動体2の表面研削仕上げを粗
くすることが考えられる。
しかし、転動体2の表面研削仕上げを単に粗く
しても、ピーリング損傷の防止に大きな効果のな
いことも後述するように事実である。
即ち、第7図のように、転動体2の転動面を内
輪1と同様の粗面にすると、双方の接触により、
潤滑油4を介して凹部に静油圧が作用し、同図に
矢印で示した如き引張応力により、転動体2ない
し内輪1の凹部に亀裂が発生し、第5図で示した
鏡面と粗面の転動接触の場合と同様にピーリング
損傷が生じる。
〔発明が解決しようとする問題点〕
このように粗面を相手に転動する転動体では、
ピーリング損傷による短寿命が問題である。
そこでこの発明は、粗面を相手に転動する転動
体において、ピーリング損傷の発生を防止し、長
寿命を示す転動体を提供することが目的である。
〔問題点を解決するための手段〕
上記の問題点を解決するため、この発明は、転
動面となる表面をRmax0.3〜1.5μmのランダムな
方向のすり傷で粗面にし、潤滑条件の改良を施
し、かつその表層に500MPa以上の残留応力層を
形成し、傷内に発生する静油圧的な引張応力に抗
することができるようにしたものである。
〔実施例と効果〕
以下、この発明の実施例を、鏡面仕上げした従
来品の転動体及び比較用に製作した転動体と対比
しながら説明する。
この発明の転動体11は、第1図と第2図に示
す如く、内輪となる粗面軸12を支持するための
ものであり、転動面となる表面が、ランダムな方
向のすり傷(スクラツチ)で粗面13に形成さ
れ、その表層に500MPa(50Kg/mm2)以上の残留
応力層を設けて構成されている。
上記粗面軸12は表面粗さがRmax1〜3μmで
あるのに対し、転動体11の表面はランダムな方
向のすり傷によつて、平均的な表面粗さが
Rmax0.3〜0.8μmになつている。
転動体11に対する粗面加工の方法としては、
タンブラー、研摩、シヨツト等の加工手段を採用
することができる。
ちなみに、研削によつて表面がRmax0.8〜1μ
mに仕上げられた転動体にみがきタンブラ加工を
施し、次に表面あらしタンブラ加工を施すことに
より、Rmax0.3〜0.8μmの表面粗さが得られる。
また、表層への圧縮残留応力の形成方法として
は、タンブラー、シヨツトの如き機械的処理や
AS処理(マルストレツシング)、浸炭・窒化処理
のような熱処理をあげることができ、これら機械
的処理と熱処理を複合的に組合せて実施してもよ
い。
表1は、異なつた粗面加工方法によつて製作し
た四種類の試片転動体と従来品の転動寿命試験の
結果を示しており、何れの転動体も「ころ」であ
る。
従来品
従来品の転動体は表面が極めて滑らかであり、
その表面粗さはRmax0.2μm以下である。
試片X
試片Xの転動体は、この発明による転動体の残
留応力層の効果を明確にするため、比較例として
製作したものであり、圧縮残留応力が付与されな
いように研削仕上げで表面に無数の傷をつけ、そ
の後軽くスーパー仕上げを施したものである。
試片A
この転動体は表面にガラスビーズをシヨツトさ
せ、その後軽くスーパー仕上げを施したものであ
り、平均的な表面粗さはRmax5μmである。
試片B
この転動体は、表面にガラスビーズシヨツトに
よる処理を施しただけであり、平均的な表面粗さ
はRmax0.6μmである。
上記試片A及びBの表面に形成される傷は、第
4図に示すように大略円形である。
試片C
この転動体は、タンブラー加工のみであり、表
面には細長い傷が無数に存在する。
上記各試片X、A、B、Cの各転動体は、従来
品の転動体に比べて表面が非常に粗くなつてお
り、これらの表面粗さは前記のように、平均的に
Rmax0.3〜0.8μmであるが、部分的には、1.5μm
程度のすり傷が現れており、特に試片XとCには
ランダムな方向の細長い傷が多数見られる。
次に、従来品及び各試片X、A、B、Cの転動
体に対し、Rmax3μmの表面粗さをもつ円筒部材
を相手に、ヘルツ最大面圧3.1GPaの下で転動寿
命試験を行ない、その結果を表1に示した。
表1から分るように、従来品の転動体に比べて
表面粗さの粗い転動体は、切削によつてすり傷を
つけた試片X以外、転動寿命が大きいことが理解
される。
[Industrial Field of Application] The present invention relates to a rolling element of a bearing, and more particularly to a structure of a rolling element that exhibits a long life compared to a mating member having a rough surface. [Prior Art] It is well known that the surface roughness of the rolling surface is an important factor in the rolling life of the rolling element, and it is important to grind the rolling surface to make it as smooth as possible. It has become common sense. A typical bearing consists of an inner ring, an outer ring, and rolling elements such as "balls" or "rollers."If each can be manufactured as a single unit, it is easy to grind the rolling surfaces, and the surface The roughness is within a range that poses no problem for practical use. However, in the structure of a bearing, for example, a part of the shaft with gears is sometimes used as the inner ring, and the shaft has a complex shape as a whole, so the rolling surfaces that the rolling elements contact are finished by grinding. is extremely difficult, and the surface roughness is, for example, Rmax 3μm.
If a rolling element with a mirror-finished rolling surface is used, the service life of the rolling element becomes a practical problem. That is, as shown in FIG. 5, when the inner ring 1 whose rolling surface is a rough surface comes into contact with the rolling element 2 whose rolling surface is a mirror surface, if the thickness of the lubricating oil film is not sufficient, the peaks of the rough surface will become mirror surfaces due to metal contact. As a result of the collision, stress is concentrated in this area, causing peeling damage 3 to the rolling element 2, causing a state of damage that leads to peeling from the damaged area, resulting in an extremely short lifespan of the rolling element 2 compared to the calculated lifespan. Peeling damage 3 mentioned above refers to shallow small peelings with a depth of about 10 μm and clusters of cracks, but as shown in the enlarged view in Figure 6, when the peaks of a rough surface come into contact with a mirror surface, stress concentration causes damage. , the surface layer of the rolling element 2 suffers rolling fatigue, which causes, as mentioned above,
Peeling damage 3 occurs on the rolling element 2. As a means to eliminate the above-mentioned inconveniences occurring in the rolling elements 2, it is conceivable to roughen the surface grinding finish of the rolling elements 2. However, as will be described later, it is true that simply roughening the surface grinding finish of the rolling elements 2 does not have a great effect on preventing peeling damage. That is, if the rolling surface of the rolling elements 2 is made into a rough surface similar to that of the inner ring 1, as shown in FIG. 7, due to contact between the two,
Hydrostatic pressure acts on the recess through the lubricating oil 4, and cracks occur in the recess of the rolling element 2 or inner ring 1 due to tensile stress as shown by the arrows in the same figure, resulting in the mirror surface and rough surface shown in FIG. Peeling damage occurs as in the case of rolling contact. [Problems to be solved by the invention] In the rolling elements that roll against a rough surface in this way,
Short life due to peeling damage is a problem. Therefore, an object of the present invention is to provide a rolling element that prevents peeling damage from occurring and exhibits a long life in a rolling element that rolls against a rough surface. [Means for Solving the Problems] In order to solve the above problems, the present invention roughens the surface that will become the rolling surface with scratches in random directions with an Rmax of 0.3 to 1.5 μm, and improves the lubrication conditions. In addition, a residual stress layer of 500 MPa or more is formed on the surface layer to resist the hydrostatic tensile stress generated within the wound. [Examples and Effects] Examples of the present invention will be described below in comparison with a mirror-finished conventional rolling element and a rolling element produced for comparison. As shown in FIGS. 1 and 2, the rolling element 11 of the present invention is for supporting a rough shaft 12 serving as an inner ring, and the surface serving as the rolling surface has abrasions in random directions ( The rough surface 13 is formed by scratching), and a residual stress layer of 500 MPa (50 Kg/mm 2 ) or more is provided on the surface layer. The rough surface shaft 12 has a surface roughness of Rmax 1 to 3 μm, whereas the surface of the rolling element 11 has scratches in random directions and has an average surface roughness.
Rmax is 0.3 to 0.8 μm. As a method for roughening the rolling element 11,
Processing methods such as tumbler, polishing, and shot may be employed. By the way, the surface has an Rmax of 0.8 to 1μ due to grinding.
A surface roughness of Rmax 0.3 to 0.8 μm can be obtained by applying polishing and tumble processing to the rolling element that has been finished to a roughness of Rmax 0.3 to 0.8 μm. In addition, methods for creating compressive residual stress on the surface layer include mechanical treatments such as tumblers and shots.
Examples include heat treatments such as AS treatment (marstressing) and carburizing/nitriding treatment, and these mechanical treatments and heat treatments may be combined in combination. Table 1 shows the results of the rolling life test of four types of specimen rolling elements manufactured using different surface roughening methods and a conventional product, and all rolling elements are "rollers". Conventional product The rolling element of the conventional product has an extremely smooth surface.
Its surface roughness is Rmax0.2μm or less. Specimen X The rolling element of Specimen It was made with countless scratches and then lightly given a super finish. Specimen A This rolling element had glass beads shot onto its surface and was then given a light super finish, and the average surface roughness was Rmax 5 μm. Specimen B The surface of this rolling element was only treated with glass bead shots, and the average surface roughness was Rmax 0.6 μm. The scratches formed on the surfaces of the specimens A and B are approximately circular as shown in FIG. Specimen C This rolling element has only been tumbled, and there are countless long and narrow scratches on the surface. The surfaces of the rolling elements of each of the specimens X, A, B, and C are extremely rough compared to the rolling elements of conventional products, and as mentioned above, the average surface roughness of these rolling elements is
Rmax is 0.3~0.8μm, but partially 1.5μm
Some scratches appeared, and in particular, many elongated scratches in random directions were seen on specimens X and C. Next, a rolling life test was performed on the conventional product and each of the rolling elements of specimens X, A, B, and C under a Hertzian maximum surface pressure of 3.1 GPa against a cylindrical member with a surface roughness of Rmax 3 μm. The results are shown in Table 1. As can be seen from Table 1, it is understood that rolling elements with rougher surface roughness than conventional rolling elements have a longer rolling life, except for sample X, which was scratched by cutting.
【表】
上記転動試験後の各転動体に対し、マルテンサ
イト面からの回折X線の半価幅を測定し、表2に
その結果を示している。[Table] For each rolling element after the above rolling test, the half width of diffracted X-rays from the martensite surface was measured, and the results are shown in Table 2.
【表】
※ ランダムな細長い傷
表2から明らかな如く、鏡面をもつ従来品の転
動体は、半価幅低下が非常に大きいことがわか
る。
半価幅低下は、転動面の温度上昇にに対応する
ため、潤滑性の尺度に使用できると考えると、表
2の結果から、表面粗さの小さい従来品の転動体
は、試片X、A、B、Cの転動体に比べて潤滑性
が劣ることになる。
これに対して、試片X及びCの転動体の如く、
細長い傷で粗面にしたものは、半価幅の低下が小
さく、潤滑性が良好なことが分かる。
表1の転動寿命試験結果と対比すると、必ずし
も潤滑性の良い転動体の転動寿命が大きいとはい
えず、潤滑性がやや劣ると判断される試片Bの寿
命は、潤滑性の優れた試片Xより長寿命である。
第3図は、各転動体の転動試験前の表層の残留
応力測定結果を示しており、試片X以外は表層に
圧縮の残留応力が生成されている。
これらの圧縮残留応力は、表層深さ0.1mm前後
において500MPa以上になつている。
第4図は各転動体の半価幅低下、残留応力及び
表面粗さと寿命の関係を示しており、従来品及び
試片Xの転動体に比べ、試片A、B、Cと順次転
動寿命が延びている。
以上のことにより、粗面相手の転動体に対して
疲労寿命を向上させるには、単に表面粗さを大き
くして潤滑性を向上させるだけでは不十分であ
り、表層に圧縮残留応力を生成させることが必要
である。
更に、耐ピーリング強度に対する圧縮残留応力
の影響については、ピーリング損傷の発生よりも
進展を抑制する効果のあることが分かつており、
従つて表面粗さを大きくしたとき、無数に存在す
るすり傷の底に作用する応力集中を、この圧縮残
留応力が緩和し、ピーリング損傷の発生防止に著
しい効果を発揮するのである。[Table] *Random elongated scratches As is clear from Table 2, it can be seen that the half width of the conventional rolling element with a mirror surface is extremely large. Considering that the decrease in half width corresponds to the temperature rise of the rolling surface and can be used as a measure of lubricity, from the results in Table 2, it can be seen that the conventional rolling element with small surface roughness is , A, B, and C have inferior lubricity compared to the rolling elements. On the other hand, like the rolling elements of specimens X and C,
It can be seen that the surface roughened with elongated scratches has a small decrease in half width and has good lubricity. Comparing with the rolling life test results in Table 1, it cannot be said that rolling elements with good lubricity necessarily have a long rolling life, and the life of sample B, which is judged to have slightly poor lubricity, is longer than that of specimen B with excellent lubricity. It has a longer life than the sample X. FIG. 3 shows the results of measuring the residual stress in the surface layer of each rolling element before the rolling test, and compressive residual stress was generated in the surface layer of all the rolling elements except sample X. These compressive residual stresses exceed 500 MPa at a depth of around 0.1 mm. Figure 4 shows the relationship between the half width reduction, residual stress, and surface roughness of each rolling element and its life. Life expectancy is increasing. Based on the above, in order to improve the fatigue life of a rolling element with a rough surface, it is insufficient to simply increase the surface roughness and improve lubricity, and it is necessary to generate compressive residual stress in the surface layer. It is necessary. Furthermore, regarding the influence of compressive residual stress on peeling resistance, it has been found that it is more effective in suppressing the progression of peeling damage than its occurrence.
Therefore, when the surface roughness is increased, this compressive residual stress relieves the stress concentration acting on the bottom of the countless scratches, and is extremely effective in preventing the occurrence of peeling damage.
【図面の簡単な説明】[Brief explanation of drawings]
第1図はこの発明に係る転動体の使用状態を示
す縦断正面図、第2図は同上の拡大横断面図、第
3図は転動体の表層における残留応力の測定図、
第4図は転動体の半価幅低下、残留応力及び表面
あらさと寿命の関係を示すグラフ、第5図乃至7
図の各々は転動体に対するピーリング発生の説明
図である。
11は転動体、12は粗面軸、13は粗面。
FIG. 1 is a longitudinal sectional front view showing the rolling element according to the present invention in use, FIG. 2 is an enlarged cross-sectional view of the same, and FIG. 3 is a measurement diagram of residual stress in the surface layer of the rolling element.
Figure 4 is a graph showing the relationship between the half-width reduction, residual stress, and surface roughness of rolling elements and their lifespan; Figures 5 to 7
Each of the figures is an explanatory diagram of occurrence of peeling on a rolling element. 11 is a rolling element, 12 is a rough shaft, and 13 is a rough surface.