JPH01299295A - Method for purifying sucrose ester of fatty acid - Google Patents

Method for purifying sucrose ester of fatty acid

Info

Publication number
JPH01299295A
JPH01299295A JP12733388A JP12733388A JPH01299295A JP H01299295 A JPH01299295 A JP H01299295A JP 12733388 A JP12733388 A JP 12733388A JP 12733388 A JP12733388 A JP 12733388A JP H01299295 A JPH01299295 A JP H01299295A
Authority
JP
Japan
Prior art keywords
amount
fatty acid
salt
reaction mixture
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12733388A
Other languages
Japanese (ja)
Other versions
JP2686960B2 (en
Inventor
Shusaku Matsumoto
修策 松本
Yoshio Hatakawa
畑川 由夫
Akihiko Nakajima
明彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP12733388A priority Critical patent/JP2686960B2/en
Publication of JPH01299295A publication Critical patent/JPH01299295A/en
Application granted granted Critical
Publication of JP2686960B2 publication Critical patent/JP2686960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To industrially and readily obtain the subject compound without using a solvent, by regulating a reaction mixture containing a specific sucrose ester of a fatty acid to a neutral pH region, adding water, a neutral salt and sucrose thereto and washing the formed precipitates with acidic water. CONSTITUTION:Water is added to a reaction mixture containing an unreacted saccharide, unreacted fatty acid methyl ester, catalyst, soap, fatty acid and volatiles so as to provide 20:1 weight ratio of water:reaction mixture and pH is regulated to 6.2-8.2. A neutral salt and sucrose are added to the resultant mixture at ratios expressed by formula I (total amount of salt = amount of the added neutral salt + amount of salt by neutralizing the catalyst), formula II (total amount of saccharide = amount of added sucrose + amount of unreacted sucrose from the beginning) and formula III to afford precipitates, which are then collected by filtration, etc., and washed with acidic water regulated to pH3.0-5.5 and 10-40 deg.C temperature several times to provide the objective compound.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、溶媒法で合成したショ糖脂肪酸エステルの精
製に際して、ショ糖脂肪酸エステルを含む反応混合物よ
り、工業的な規模で不純なショ糖脂肪酸エステルを精製
、単離する方法に関する。
The present invention relates to a method for purifying and isolating impure sucrose fatty acid esters on an industrial scale from a reaction mixture containing sucrose fatty acid esters when purifying sucrose fatty acid esters synthesized by a solvent method.

【従来の技術】[Conventional technology]

(背景) 水を使ってショ糖を石鹸と共に溶融混合物としく即ち、
溶媒を用いず)、触媒の存在下で、高級詣肪酸メチルエ
ステルと反応させる(水媒法SE合成;特公昭5l−1
4485)の場合には残留溶媒に係る問題は起こらない
が、ジメチルスルホキシドやジメチルホルムアミドなど
の溶媒を用いて反応させる(溶媒法SE合成;特公昭3
5−13102)場合には、反応混合物中に残留してい
る揮発分、つまり°゛残存反応溶媒”の除去が重要な問
題として派生する。 近来、この揮発分(以下(反応溶媒)と呼ぶ)の規制が
厳しくなり、例えば米国FDAの規制によれば、ショ糖
脂肪酸エステル(以下(s E)とも略す))中の残存
の反応溶媒のジチルスルホキシドは2 ppm以下とさ
れている(Fed、 Regist、、51(214)
、40160−1)。 (従来技術の問題点) 従来から、ジメチルスルホキシドやジメチルホルムアミ
ド等の反応溶媒を含むSE生成反応混合物中(SHの他
、石鹸、脂肪酸、未反応の脂肪酸メチルエステル、未反
応の糖及び触媒等を含む混合物)から除去するのに煩雑
な操作を必要としていた。 例えば、代表的な特開昭51−29417によれば、水
と°“精製溶媒°°(反応溶媒と区別するために、特に
そう呼ぶ)の混合溶液が軽液層(上層)と重液層(下層
)に分相する性質が利用される。 即ち、一般に重液層(下層)には水が多く含まれている
ので、親水性の未反応糖、触媒由来の塩などがこの重液
層(下層)に溶解している。一方軽液層(上層)は、精
製溶媒が多く含まれているので、SE、脂肪酸、未反応
脂肪酸メチルエステル等の極性の小さいものは、この軽
液層に溶解してくる。 ところが、ジメチルスルホキシドなど反応溶媒は、下層
の重液層にも溶解するが、都合の悪いことに上層の軽液
層にも溶解するので、この方法で反応溶媒を完全分離す
るのは不可能である。従って、微量の反応溶媒を除去す
るだけの目的で、非常に多量の精製溶媒が必要であった
。しかるに精製溶媒の多用は、以下の問題点を生じ、こ
れは、小規模な場合はともかく、工業的規模でのSE製
造に当る工場に於ては、それによる不利、不便は目に余
るものであった。 ■ 爆発、火災の危険性。 ■ 上の■に備えた電気装置の防爆化。 ■ 上の■に備えた製造装設の密閉化。 ■ 上の■に備えた建物全体の耐火構造化。 ■ 上の■、■、■による固定費の上昇。 ■ 溶媒の損耗による原価の上昇。 ■ 製品ショ糖脂肪酸エステル中に残留する残留溶媒の
負効果。 ■ 従業員の健康上への慈影響、ひいてはこれによる口
数の増大と原価の上昇。 このような事情から、SE精製時における精製溶媒の使
用を不必要化する精製技術の開発は、当業界における切
実な要望であった。
BACKGROUND: Using water to form a molten mixture of sucrose with soap, i.e.
(without using a solvent), and reacted with higher fatty acid methyl ester in the presence of a catalyst (water-mediated SE synthesis; Japanese Patent Publication No. 51-1)
4485), there is no problem with residual solvent, but the reaction is carried out using a solvent such as dimethyl sulfoxide or dimethyl formamide (solvent method SE synthesis;
5-13102), the removal of the volatile matter remaining in the reaction mixture, that is, the residual reaction solvent, becomes an important problem.Recently, this volatile matter (hereinafter referred to as (reaction solvent)) For example, according to the regulations of the US FDA, the residual reaction solvent dityl sulfoxide in sucrose fatty acid ester (hereinafter also abbreviated as (sE)) is limited to 2 ppm or less (Fed, Registration). ,,51(214)
, 40160-1). (Problems with the prior art) Conventionally, SE generation reaction mixtures containing reaction solvents such as dimethyl sulfoxide and dimethyl formamide (in addition to SH, soaps, fatty acids, unreacted fatty acid methyl esters, unreacted sugars, catalysts, etc.) have been It required a complicated operation to remove it from the mixture (containing it). For example, according to the representative Japanese Patent Application Laid-Open No. 51-29417, a mixed solution of water and a purified solvent (especially called that to distinguish it from a reaction solvent) has a light liquid layer (upper layer) and a heavy liquid layer. In other words, since the heavy liquid layer (lower layer) generally contains a large amount of water, hydrophilic unreacted sugars, catalyst-derived salts, etc. On the other hand, since the light liquid layer (upper layer) contains a large amount of purified solvent, less polar substances such as SE, fatty acids, and unreacted fatty acid methyl esters are dissolved in this light liquid layer. However, reaction solvents such as dimethyl sulfoxide dissolve in the lower heavy liquid layer, but unfortunately they also dissolve in the upper light liquid layer, so this method cannot completely separate the reaction solvent. Therefore, a very large amount of purified solvent was required just for the purpose of removing a trace amount of the reaction solvent. However, the excessive use of purified solvent caused the following problems, which were: Regardless of the small-scale case, the disadvantages and inconveniences caused by this are noticeable in factories that manufacture SE on an industrial scale. ■ Risk of explosion and fire. ■ Preparation for the above ■ ■ Making the manufacturing equipment hermetically sealed in preparation for ■ above. ■ Making the entire building fireproof in preparation for ■ above. ■ Increased fixed costs due to ■, ■, and ■ above. ■ Increased cost due to solvent wear and tear. ■ Negative effect of residual solvent remaining in the product sucrose fatty acid ester. ■ Impact on employee health, which in turn increases the number of customers and increases costs. These circumstances Therefore, the development of a purification technique that eliminates the need for the use of purification solvents during SE purification has been a pressing need in the industry.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は、溶媒法で合成された粗製SHの精製に際し、
精製溶媒を使用しないに拘らず、実質的にSHの損失の
ない精製手段を開発することによって、溶媒の使用に起
因する全ての問題を解決するのを目的とする。 C課題を解決するための手段】 (概要) 以上の課題を解決せんがため1本発明に係るショ糖脂肪
酸エステルのオh製方法は、未反応の糖、未反応の脂肪
酸メチルエステル、触媒、石鹸、脂肪酸、揮発分を含む
ショ糖脂肪酸エステル含有反応混合物を中性領域のpH
に調整し、水、中性塩及びショ糖を加えることにより生
成した沈S物を濾取し、該沈殿を酸性の水で洗浄するこ
とを特徴とする。 (発明の経過と原理) ところで、精製溶媒を用いずに1反応混合物中のSEを
沈殿させて未反応糖などの親水性物質から分離する方法
自体は公知であって、例えば代表的なものとして、 (1)酸性水溶液によるSHの沈殿方法(英国特許80
9,815 (11359)) (2)一般の中性塩水溶液によるSEの沈澱法(特公昭
4.2−8850) などが知られている。 しかし方法(1)のように1例えば塩酸水溶液を反応混
合物中に加えると、成る程SEは直ちに沈澱するが、未
反応のショ糖は容易にグルコースと果糖とに分解、転化
し、たとえ低温(0〜5°C,)で行っても分解を避け
ることができない、このため未反応糖の回収、再利用が
困難となる。 また、方法(2)のように、食塩や芒硝などの中性塩の
水溶液を反応混合物中に加えてもSEは直ちに沈澱する
。この場合、未反応糖の分解は起こらないが、SE中の
有用な成分であるモノエステルが水相側に溶解してしま
うため、大きなロスを生じるのみでなく、特に近来需要
の多い高HLBのSEを得たいとき妨げとなる。 そこで本発明者は、(イ)水相側に溶解するSE量を最
少限に押えるのみならず、可能ならば線量を零として全
量のSEを沈澱させること、(+1)未反応糖の分解を
避けること、及び(ハ)残留する反応溶媒を水相外に溶
解させることにより、SEから分離することの3点を目
標に、多くの塩析実験を行なった結果、ショ糖と中性塩
の2物質の水溶液を反応混合物中に溶解させたとき、適
当なpH。 温度、中性塩の濃度、ショ糖の濃度及び水量の組合せの
下で、SEの略々全量が沈澱するのみならず、意外なこ
とに、水相には未反応の糖以外に反応溶媒が溶解するに
至るという都合の良い現象を見出した。従って、この現
象を利用して、沈εしたSEを再度水に溶解後、中性塩
及びショ糖水溶液による沈澱操作を反復することにより
、SEの損失を事実上防止しながら、残留する揮発分(
残留する反応溶媒)を完全に水相中に移行させることが
できること、及び更に、沈澱したSEに随伴している中
性塩及びショ糖は、該沈殿を適当なFHの酸性水で洗浄
することにより実質的に除去されて、精製されたSEと
なることが知られた。 本発明は1以上の新規知見を基礎とするものである。以
下、発明の詳細に付き記述する。 (SE反応混合物) 溶媒法によるSEの合成においては1通常、ショ糖と脂
肪酸メチルエステルとの混合物を、これらの合計量に対
し数倍量の反応溶媒1例えばジメチルスルホキシドに添
加、溶解させ、炭酸カリウム(K2CO3)等のアルカ
リ性触媒の存在下、真空2゜〜30Torr近辺で数時
間80〜90℃に保持することにより、容易に90%以
上の反応率(脂肪酸メチルエステル基準)にてSE反応
混合物が生成する。 次に、SE反応混合物中のアルカリ性触媒の活性を消失
させるため、乳酸、酢酸等の有機酸又は塩酸2ft酸等
の鉱酸を当量だけSE反応組成物に添加する。この中和
により、触媒は、乳酸カリウム等のカリウム塩に変化す
る。 最後に1反応溶媒、例えばジメチルスルホキシドを真空
下に留去すると、大略、下記組成範囲の組成物(中和及
び蒸留後の反応混合物)となる。 ショ糖脂肪酸エステル   =15〜92%未反応糖 
        =1.0〜80%未反応脂肪酸メチル
エステル=0.5〜10%炭酸カリウムの中性塩   
= 0.05〜7%石鹸           =1.
0〜10%脂肪酸          =0.5〜10
%揮発分(残留する反応溶媒)=5.0〜30%このと
き、SHのエステル分布は、モノエステル10%〜75
%(ジエステル以上が90%〜25%)である、そして
、脂肪酸メチルエステル、石鹸及び脂肪酸の夫々に主と
して含まれる脂肪酸根は飽和であって、共通のCI6〜
C22の炭素数を持つ。 (加水) 次に、上の反応混合物に対して水を。 水:反応混合物=5:1〜40:1(重量比)・・(1
)式の割合になるように、更に望ましくは、水:反応混
合物=20:1(重量比)・・・・・・・(2)式の割
合に加えると共に、pHを8.2〜8.2、望ましくは
pH7,5とする。 この場合、水の添加割合が上の範囲から外れ。 例えば、水/反応混合物=く5となった場合は、得られ
た水溶液の粘度が大となり、実質的に以後の操作が不可
能となる。また、逆に、水/反応混合物=〉40となる
程に過剰の水を加えた場合は、粘度が小となって以後の
操作が容易となり、かつ、目的とする反応溶媒の除去も
好適に行われるが、他方、未反応糖等の回収に際して水
分の除去に多大のエネルギーコストを必要とすることに
なって、経済性が失われることになる。 さらに、水溶液のpHは、目的とするSEの分解を避け
るため、pH6.2〜8.2の間に調整されるのが好ま
しい、 P)16.2以上の水素イオン濃度下では、ア
ルカリによる定量的なSHの分解が起こる心配があり、
また6、2以下の弱酸性域でも1例えば80°C以上の
高温にさらされると、酸分解の懸念がある。 (塩析) 以上の如<pH調整されたSE反応混合物の水溶液に、
更に中性塩及びショ糖を加える。この場合、加えるべき
中性塩は、先ず下式(3)を満たしているのが好ましい
。 =0.015〜0.12(重量比)・・・・・・・・(
3)ここで、 合計基量=加えるべきφ性基量+触媒から形成される場
景・・・・・・・・・・・・・・(4)合計糖量=加え
るべきショ糖琶+当初からの未反応糖量 ・・・・・・
・・・・・・・・(5)次に、加えるべきショ糖の量は
、下式(6)により定められるのがよい。 = 0.025〜0.201量比)・・・・・・・・・
・(6)さらに、上記の両式に加え、合計基量と合計糖
量の重量比率もまた、下式(7)を満足しているのが好
ましい。 本発明者らは、上記式(3) 、 (θ)及び(7)を
王者共に満たすように中性塩及びショ糖を加えて得たS
Eの沈澱を含む水溶液を、50℃〜80℃まで加熱昇温
させると、たとえSE反応混合物中に含まれる揮発分(
残留する反応溶媒)の組成が5.0−30.0%と大幅
に振れようとも、略々近似的に全量のSEが沈澱するこ
とを見出した。この現象は特異な現象であると共に1発
明目的上、重要な価値を有するものである。 添付の第1図は、この現象をより詳しく示す三元グラフ
である。この図において、 水相側に溶解しているSHの重量=Y [g] 。 沈澱しているSEの重量=X [g] 全S E (X+Y)[g] に対して、水相側に溶解
しているSEの重量割合=φ[%] とすれば、φは下式(8)で定義される。 ここで、以下の条件; 温度;80℃、pH=7.5、 水:反応混合物=14 : l (重量比)脂肪酸残基
=ステアリン酸 反応混合物の組成 ショ糖脂肪酸エステル   =29% 未反応糖         =35% 未反応脂肪酸メチルエステル=2% 触媒由来の塩       = 1% 石鹸           =3% 脂肪酸          = 1% 揮発分(残留する反応溶媒)=28% SE中のエステル分布:モノエステル=73%ジエステ
ル以上=27% において、φの値がどのように変化するかが三角座標で
示される。 ここに1合計塩は式(4)により1合計糖は式(5)に
より夫々で定義された量であって。 水+合計塩十合計糖=100 として表示しである。 本第1図の斜線の部分は、本発明者らが発見した式(3
)1式(6)、及び式(7)を同時に満たす領域である
。 この斜線の部分に入るような中性塩及びショ糖の溶解量
を決めることによって、実質的にφ=0即ち、近似的に
全量のSEを沈ε化することができ、沈殿したSEの濾
取又は遠心分離により、水相側に溶解している揮発分(
残留している反応混合物)と完全に分離(即ち、夾雑す
る揮発分を完全に除去)することができる。 (洗浄) 以上の塩析操作の後、 pH=3.0〜5.5 、温度
10”Q〜40℃程度に調整、調温された酸性水を用い
て。 前述の分離されたSEのケーキを洗浄する。これに使用
される酸は1例えば塩酸、硫酸等の鉱酸及び酢酸、乳酸
等の有機酸が適当であるが、側段例示のもののみに限る
訳ではない。 このような条件の下で洗浄することにより。 ケーキ側から水相側へ再溶解するSEの量を極減させな
がら希望する不純物を、水相側に移行させることができ
る。 以上の洗浄操作に当たり、酸性水の温度が40°C以上
となると、操作が長時間、例えば数ヶ方にも及んだとき
、SEの酸分解が懸念されるだけでなく、粘度が上昇し
て操作が困難となる。他方、10℃以下の低温の保持に
は、経済性を軽視した冷凍機の設備が必要となる。従っ
て、普通は10℃〜40℃、殊に常温付近での操業が好
ましい。 なお、この酸性水によるSEケーキの洗浄に際しては1
本ケーキ中に含まれている揮発分(反応溶媒)や、未反
応糖、加えられた中性塩及び触媒の中和により副生した
塩の囲者を、可能な限りSEケーキから除く必要がある
ので、SEケーキは、該酸性水中で、可能な限り小さい
粒子径になるまで細断されているのが望ましい、この目
的は、例えば、分散混合機(例えば特殊機器工業昧製(
ホモミキサー))、ホモジナイザー又はコロイドミル(
例えば商品名(マイコロイダー)等の細分化装置により
効率的に達成でき、揮発分(反応溶媒)、未反応糖、触
媒由来の塩及び中性塩の囲者は、全量沈澱SEのケーキ
から酸性水相中に移行する。 但し、実質的に少量であるとは言いながら、この際一部
のSEが酸性水相に溶出するのは避けられない、この酸
性水への溶解傾向は、モノエステル含分の多いSE程強
いので、ジエステルやトリエステル分を相対的に増加さ
せることによって事実上抑制できる。 以上の酸性水によるSEケーキの洗浄は、洗浄の回数増
加と、洗浄水量の増加によって一層完全となり、かくし
て事実上純粋に近い精製SEを得ることができる。
In the present invention, when purifying crude SH synthesized by a solvent method,
The objective is to solve all the problems caused by the use of solvents by developing a purification means that causes virtually no loss of SH, even though no purification solvent is used. C Means for Solving Problems] (Summary) In order to solve the above problems, 1. The method for producing sucrose fatty acid ester according to the present invention consists of unreacted sugar, unreacted fatty acid methyl ester, catalyst, The sucrose fatty acid ester-containing reaction mixture containing soap, fatty acids, and volatile components was heated to a neutral pH range.
The method is characterized in that the precipitate produced by adjusting the pH and adding water, a neutral salt, and sucrose is collected by filtration, and the precipitate is washed with acidic water. (Progress and Principle of the Invention) By the way, methods for precipitating SE in one reaction mixture and separating it from hydrophilic substances such as unreacted sugars without using a purifying solvent are well known. (1) SH precipitation method using acidic aqueous solution (British Patent No. 80
9,815 (11359)) (2) A method of precipitation of SE using a general neutral salt aqueous solution (Japanese Patent Publication No. 4.2-8850) is known. However, when an aqueous solution of hydrochloric acid is added to the reaction mixture as in method (1), SE is immediately precipitated, but unreacted sucrose is easily decomposed and converted into glucose and fructose, and even at low temperatures ( Even if the temperature is 0 to 5°C, decomposition cannot be avoided, making it difficult to recover and reuse unreacted sugar. Furthermore, even if an aqueous solution of a neutral salt such as common salt or Glauber's salt is added to the reaction mixture as in method (2), SE will immediately precipitate. In this case, unreacted sugars do not decompose, but the monoester, which is a useful component in SE, is dissolved in the aqueous phase, which not only causes a large loss but also increases the It becomes a hindrance when you want to get SE. Therefore, the inventors of the present invention aimed to (a) not only minimize the amount of SE dissolved in the aqueous phase side, but also precipitate the entire amount of SE by reducing the dose to zero if possible; and (+1) prevent the decomposition of unreacted sugars. As a result of conducting many salting-out experiments, we have conducted many salting-out experiments with the following three goals: (c) separating the residual reaction solvent from the SE by dissolving it outside the aqueous phase. The appropriate pH when the aqueous solutions of the two substances are dissolved in the reaction mixture. Under the combination of temperature, neutral salt concentration, sucrose concentration, and water amount, not only almost the entire amount of SE precipitates, but surprisingly, the aqueous phase contains reaction solvent in addition to unreacted sugar. We have discovered a convenient phenomenon that leads to dissolution. Therefore, by taking advantage of this phenomenon, by dissolving the precipitated SE in water and repeating the precipitation operation with a neutral salt and sucrose aqueous solution, the remaining volatile content can be effectively prevented while preventing the loss of SE. (
The remaining reaction solvent) can be completely transferred into the aqueous phase, and the neutral salt and sucrose accompanying the precipitated SE can be removed by washing the precipitate with acidic water of appropriate FH. It has been found that the SE can be substantially removed by the method, resulting in purified SE. The present invention is based on one or more novel findings. The details of the invention will be described below. (SE reaction mixture) In the synthesis of SE by the solvent method, 1. Usually, a mixture of sucrose and fatty acid methyl ester is added and dissolved in a reaction solvent 1, for example, dimethyl sulfoxide, in an amount several times the total amount of these, and carbonic acid is added. By holding the temperature at 80 to 90°C for several hours in a vacuum of 2° to 30 Torr in the presence of an alkaline catalyst such as potassium (K2CO3), the SE reaction mixture can be easily converted to a reaction rate of 90% or more (based on fatty acid methyl ester). is generated. Next, to quench the activity of the alkaline catalyst in the SE reaction mixture, an equivalent amount of an organic acid such as lactic acid, acetic acid, or a mineral acid such as 2ft hydrochloric acid is added to the SE reaction composition. This neutralization converts the catalyst into a potassium salt such as potassium lactate. Finally, one reaction solvent, such as dimethyl sulfoxide, is distilled off under vacuum, resulting in a composition (reaction mixture after neutralization and distillation) approximately having the following composition range. Sucrose fatty acid ester = 15-92% unreacted sugar
= 1.0-80% unreacted fatty acid methyl ester = 0.5-10% neutral salt of potassium carbonate
= 0.05-7% soap =1.
0-10% fatty acid = 0.5-10
% volatile content (residual reaction solvent) = 5.0 to 30% At this time, the ester distribution of SH is monoester 10% to 75%
% (diester or more is 90% to 25%), and the fatty acid roots mainly contained in each of fatty acid methyl esters, soaps and fatty acids are saturated and have a common CI of 6 to 25%.
It has a carbon number of C22. (Addition of water) Next, add water to the above reaction mixture. Water: Reaction mixture = 5:1 to 40:1 (weight ratio)...(1
), more preferably, water:reaction mixture = 20:1 (weight ratio)... (2) and the pH is adjusted to 8.2 to 8. 2. The pH is preferably 7.5. In this case, the water addition ratio is outside the above range. For example, if water/reaction mixture = 5, the viscosity of the resulting aqueous solution becomes so high that subsequent operations become virtually impossible. On the other hand, if an excess of water is added so that water/reaction mixture =>40, the viscosity decreases, making subsequent operations easier, and also making it easier to remove the desired reaction solvent. However, on the other hand, when recovering unreacted sugars and the like, a large amount of energy cost is required to remove water, resulting in a loss of economic efficiency. Furthermore, the pH of the aqueous solution is preferably adjusted between pH 6.2 and 8.2 in order to avoid decomposition of the target SE. There is a concern that decomposition of SH may occur.
Furthermore, even in the weakly acidic range of 6.2 or less, there is a risk of acid decomposition when exposed to high temperatures of 80° C. or higher, for example. (Salting out) To the aqueous solution of the SE reaction mixture whose pH was adjusted as described above,
Add more neutral salt and sucrose. In this case, it is preferable that the neutral salt to be added first satisfies the following formula (3). =0.015-0.12 (weight ratio)
3) Here, total base amount = amount of φ group to be added + scene formed from catalyst (4) Total amount of sugar = sucrose to be added + initial amount Amount of unreacted sugar from...
(5) Next, the amount of sucrose to be added is preferably determined by the following formula (6). = 0.025-0.201 quantitative ratio)...
-(6) Furthermore, in addition to both of the above formulas, it is preferable that the weight ratio of the total base amount and the total sugar amount also satisfy the following formula (7). The present inventors have developed S
When an aqueous solution containing a precipitate of E is heated to a temperature of 50 to 80 °C, even if the volatiles contained in the SE reaction mixture (
It has been found that approximately the entire amount of SE is precipitated even if the composition of the remaining reaction solvent varies widely from 5.0 to 30.0%. This phenomenon is a unique phenomenon and has important value for the purpose of the invention. The attached FIG. 1 is a ternary graph showing this phenomenon in more detail. In this figure, the weight of SH dissolved in the aqueous phase = Y [g]. Weight of precipitated SE = X [g] Weight ratio of SE dissolved in the aqueous phase to total SE (X + Y) [g] = φ [%], then φ is calculated using the following formula. Defined in (8). Here, the following conditions: Temperature: 80°C, pH = 7.5, Water: Reaction mixture = 14: l (weight ratio) Fatty acid residue = Stearic acid Composition of the reaction mixture Sucrose fatty acid ester = 29% Unreacted sugar = 35% Unreacted fatty acid methyl ester = 2% Salt derived from catalyst = 1% Soap = 3% Fatty acid = 1% Volatile content (residual reaction solvent) = 28% Ester distribution in SE: Monoester = 73% or more diester =27%, how the value of φ changes is shown by triangular coordinates. Here, 1 total salt is the amount defined by formula (4) and 1 total sugar is the amount defined by formula (5), respectively. Water + total salt and total sugar = 100. The shaded part in Figure 1 is the formula (3) discovered by the present inventors.
)1 is a region that simultaneously satisfies equations (6) and (7). By determining the amount of dissolved neutral salt and sucrose that falls within this shaded area, it is possible to substantially precipitate φ=0, that is, approximately the entire amount of SE, and filter the precipitated SE. Volatile matter dissolved in the water phase is removed by separation or centrifugation.
(residual reaction mixture) can be completely separated (that is, contaminating volatile components can be completely removed). (Washing) After the above salting-out operation, use acidic water whose pH is adjusted to 3.0 to 5.5 and the temperature is about 10"Q to 40°C. The above-mentioned separated SE cake is washed. The acids used for this purpose are, for example, mineral acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid and lactic acid, but are not limited to those exemplified in the side column.Such conditions The desired impurities can be transferred to the aqueous phase while minimizing the amount of SE redissolved from the cake side to the aqueous phase side. When the temperature exceeds 40°C, there is a concern that the SE will not only be decomposed by acid, but also that the viscosity will increase, making the operation difficult. In order to maintain a low temperature of 10°C or less, it is necessary to use a refrigerator that does not consider economic efficiency. Therefore, it is usually preferable to operate at a temperature of 10°C to 40°C, especially around room temperature. 1 When cleaning SE cake
It is necessary to remove from the SE cake as much as possible the volatile components (reaction solvent) contained in the main cake, unreacted sugars, added neutral salts, and salt surroundings produced by neutralization of the catalyst. Therefore, it is desirable that the SE cake be shredded in the acidic water to the smallest possible particle size.
Homo mixer)), homogenizer or colloid mill (
For example, this can be efficiently achieved using a fragmentation device such as the product name (Mycolloider). Migrate into the aqueous phase. However, although it is said to be a substantially small amount, it is inevitable that some SE will elute into the acidic aqueous phase. Therefore, it can be effectively suppressed by relatively increasing the diester or triester content. The above washing of the SE cake with acidic water becomes more complete by increasing the number of washings and increasing the amount of washing water, thus making it possible to obtain purified SE that is virtually pure.

【実施例】【Example】

以下、実施例及び比較例に発明実施の態様及び効果を説
明するが、例示は勿論説明のためのものであって1発明
思想の限定又は制限を意図したものではない。 実施例−1 下表−1の組成で表される溶媒法SE反応混合物から反
応溶媒を留去した残液を乳酸で中和後、乾燥させた乾物
100gに水2,000gを加えて溶解させた。 (以下余白) 表−1 本エステル分布:モノエステル70%、ジエステル以上
は30%。 上の水溶液に、シヨ糖92.5g及び50%乳酸カリウ
ム97.8gを加えて、75℃まで加熱、昇温させ、沈
澱したケーキをフィルターで濾取した。 このケーキを真空下に80℃で乾燥した固形物の組成は
、下表−2の通りであった。 表−2 なお、ケーキを濾別した残りの濾液中のSE量をゲル濾
過クロマトグラフィー(出願人会社列(シュガーエステ
ル物語)63頁参照)で測定したところ、SEの損失は
全く認められず、しかも反応溶媒(ジメチルスルホキシ
ド)の85%が除去されていた。 次に、上表−2で示される組成の固形物44gと、水5
6gとからなるスラリー100gに、pH3,5の常温
墳酸水2,000gを加えたところ、直ちに白濁したS
Hの沈澱が発生した。 この沈澱を含むpH3,5の酸性水溶液をホモミキサー
(特殊機器工業■製)により均一に細分化した後、i!
!過して沈澱を猥め、pH7,3に調節後、真空下に8
0℃で乾燥した。得られた固形物の組成は下表−3の通
りであった。 上表−1の組成で表わされる溶媒法SE反応混合物から
溶媒を留去後、乳酸で中和、乾燥した乾物100gに、
水2,000gを加えて溶解させた。 この水溶液に、シヨ糖28.5g及び50%乳酸カリラ
ム65.6gを加えて、75°Cまで加熱、昇温させ、
以後、実施例−1と同様に操作して下表−4記載の固形
物を得た。 表−4 なお、ケーキから分離された濾液中に損失として含まれ
ているSE量を、ゲル濾過クロマトグラフィー(前出)
で定量したところ、SEの損失は0.02g(当初量の
0.06りに過ぎず1反応溶媒(ジメチルスルホキシド
)の95%が除去されていた。 次に、上表−1に示す組成の固形物44gと、水56g
とからなるスラリー100gに、 p)14.0 、常
温の酢酸酩性水3,000gを加えたところ、直ちに白
濁したSEの沈澱が生成した。 この沈澱を含むpH4,0の酸性水溶液をホモミキサー
により均一に細分化した後、遠心して沈澱を集め、 p
H7,3に調節後、真空下に80℃で乾燥した。得られ
た固形物の組成は下表−5の通りであった・ 表−5
Hereinafter, the embodiments and effects of the invention will be explained in Examples and Comparative Examples, but the examples are of course for explanation and are not intended to limit or limit the idea of the invention. Example-1 After the reaction solvent was distilled off from the solvent method SE reaction mixture represented by the composition shown in Table-1 below, the residual liquid was neutralized with lactic acid, and then 2,000 g of water was added to 100 g of the dried substance to dissolve it. Ta. (Left below) Table 1: Distribution of esters: 70% monoester, 30% diester or higher. 92.5 g of sucrose and 97.8 g of 50% potassium lactate were added to the above aqueous solution, heated to 75° C., and the precipitated cake was collected by filtration. The composition of the solid obtained by drying this cake at 80° C. under vacuum was as shown in Table 2 below. Table 2 When the amount of SE in the filtrate remaining after filtering the cake was measured by gel filtration chromatography (see page 63 of Applicant Company Series (Sugar Ester Story)), no loss of SE was observed. Moreover, 85% of the reaction solvent (dimethyl sulfoxide) was removed. Next, 44 g of solid material having the composition shown in Table 2 above and 5 g of water were added.
When 2,000 g of room temperature mounded acid water with a pH of 3.5 was added to 100 g of a slurry consisting of 6 g of S.
Precipitation of H occurred. After this acidic aqueous solution containing the precipitate with a pH of 3.5 was homogenized using a homomixer (manufactured by Tokushu Kiki Kogyo ■), the i!
! The precipitate was filtrated, the pH was adjusted to 7.3, and the pH was adjusted to 8.
It was dried at 0°C. The composition of the obtained solid was as shown in Table 3 below. After distilling off the solvent from the solvent method SE reaction mixture represented by the composition shown in Table 1 above, 100 g of the dry matter was neutralized with lactic acid and
2,000 g of water was added and dissolved. To this aqueous solution, 28.5 g of sucrose and 65.6 g of 50% potassium lactic acid were added, and the temperature was raised to 75°C.
Thereafter, the same procedure as in Example 1 was carried out to obtain the solids listed in Table 4 below. Table 4 In addition, the amount of SE contained as a loss in the filtrate separated from the cake was determined by gel filtration chromatography (described above).
When quantitatively determined, the loss of SE was 0.02 g (only 0.06 of the initial amount, and 95% of the reaction solvent (dimethyl sulfoxide) was removed. 44g of solids and 56g of water
When 3,000 g of acetic acid-intoxicated water at room temperature was added to 100 g of a slurry consisting of p) 14.0, a white cloudy SE precipitate was immediately formed. This acidic aqueous solution containing the precipitate with a pH of 4.0 is uniformly divided using a homomixer, and then centrifuged to collect the precipitate.
After adjusting to H7.3, it was dried at 80° C. under vacuum. The composition of the obtained solid was as shown in Table 5 below. Table 5

【発明の効果】【Effect of the invention】

以上説明した如く1本発明は、溶媒法で合成された粗製
SHの精製に際し、ショ糖脂肪酸エステルの特異な溶解
性状を利用して、精製溶媒を使用しないに拘らず、実質
的にSHの損失のない生成手段を提供し得たことによっ
て本エステルの工業生産に多大の寄与を果す。
As explained above, the present invention utilizes the unique solubility properties of sucrose fatty acid ester when purifying crude SH synthesized by a solvent method, resulting in a substantial loss of SH regardless of the use of a purifying solvent. By being able to provide a means for producing this ester without any esters, it has made a significant contribution to the industrial production of this ester.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、水1合計糖及び合計塩の各最の変化と水相中
に溶存するショ糖脂肪酸エステル量との関係を示す三角
グラフである。 特許出願人  第−工業製薬株式会社 一→合8′を塩(%)
FIG. 1 is a triangular graph showing the relationship between the respective maximum changes in water, total sugar, and total salt and the amount of sucrose fatty acid ester dissolved in the aqueous phase. Patent applicant No.-Kogyo Seiyaku Co., Ltd. 1 → 8' Salt (%)

Claims (1)

【特許請求の範囲】 1、未反応の糖、未反応の脂肪酸メチルエステル、触媒
、石鹸、脂肪酸、揮発分を含むショ糖脂肪酸エステル含
有反応混合物を中性領域のpHに調整し、水、中性塩及
びショ糖を加えることにより生成した沈澱物を濾取し、
該沈殿を酸性の水で洗浄することを特徴とするショ糖脂
肪酸エステルの精製方法。 2、反応混合物が、pH6.2〜8.2に調整される請
求項1記載の方法。 3、水、中性塩及びショ糖が、50〜80℃に保たれた
反応混合物に添加される請求項1記載の方法。 4、加えるべき水と反応混合物の重量比が、水:反応混
合物=5:1〜40:1である請求項1記載の方法。 5、下記の関係式に従って中性塩及びショ糖が、反応混
合物に添加される請求項1又は3記載の方法。 合計塩量/水量+合計塩量+合計糖量=0.015〜0
.12かつ、 合計糖量/水量+合計塩量+合計糖量=0.025〜0
.20かつ、 合計塩量/合計糖量=0.4〜0.6 ここで、 合計塩量=加えられるべき中性塩量+触媒の中和によっ
て生成する塩量 合計糖量=加えられるべきショ糖量+当初からの未反応
糖量 6、反応混合物のpHの調整に使用される酸が、乳酸、
酢酸、塩酸及び硫酸からなる群から選ばれた酸のいずれ
かである請求項1記載の方法。 7、反応混合物の組成が、 ショ糖脂肪酸エステル=15〜92% 未反応糖=1.0〜80% 未反応脂肪酸メチルエステル=0.5〜10%触媒(K
_2CO_3として)=0.05〜7%石鹸=1.0〜
10% 脂肪酸=0.5〜10% 揮発分(残留する反応溶媒)=5.0〜30%である請
求項1〜5のいずれかに記載の方法。 8、反応混合物中の脂肪酸メチルエステル、石鹸及び脂
肪酸の各々に主として含まれる脂肪酸根が、共通の飽和
脂肪酸根であって、その炭素数が16〜22である請求
項1〜7のいずれかに記載の方法。 9、反応混合物中の揮発分(残留する反応溶媒)の成分
がジメチルスルホキシド又はジメチルホルムアミドであ
る請求項1記載の方法。 10、加えるべき中性塩が、食塩、芒硝、乳酸カリウム
及び酢酸カリウムからなる群から選ばれた塩のいずれか
である請求項1、3又は5のいずれかに記載の方法。 11、ショ糖脂肪酸エステルのエステル分布が、モノエ
ステル含分として10%〜75%(ジエステル以上が9
0%〜25%)である請求項1又は7記載の方法。 12、酸性の水のpH値が、3.0〜5.5である請求
項1記載の方法。 13、酸性の水の温度が、10℃〜40℃である請求項
1又は12記載の方法。
[Claims] 1. A sucrose fatty acid ester-containing reaction mixture containing unreacted sugar, unreacted fatty acid methyl ester, catalyst, soap, fatty acid, and volatile components is adjusted to a pH in the neutral range, and then mixed with water, The precipitate formed by adding salt and sucrose is collected by filtration,
A method for purifying sucrose fatty acid ester, which comprises washing the precipitate with acidic water. 2. The method according to claim 1, wherein the reaction mixture is adjusted to pH 6.2 to 8.2. 3. The method of claim 1, wherein water, neutral salts and sucrose are added to the reaction mixture maintained at 50-80C. 4. The method according to claim 1, wherein the weight ratio of water to reaction mixture to be added is water:reaction mixture = 5:1 to 40:1. 5. The method according to claim 1 or 3, wherein the neutral salt and sucrose are added to the reaction mixture according to the following relationship: Total salt amount/water amount + total salt amount + total sugar amount = 0.015 to 0
.. 12 and total sugar amount/water amount + total salt amount + total sugar amount = 0.025 to 0
.. 20 and total amount of salt/total amount of sugar = 0.4 to 0.6 where, total amount of salt = amount of neutral salt to be added + amount of salt produced by neutralization of catalyst Total amount of sugar = amount of SHORT to be added Amount of sugar + amount of unreacted sugar from the beginning 6, the acid used to adjust the pH of the reaction mixture is lactic acid,
2. The method according to claim 1, wherein the acid is any acid selected from the group consisting of acetic acid, hydrochloric acid and sulfuric acid. 7. The composition of the reaction mixture is: Sucrose fatty acid ester = 15-92% Unreacted sugar = 1.0-80% Unreacted fatty acid methyl ester = 0.5-10% Catalyst (K
_2CO_3) = 0.05~7% Soap = 1.0~
6. The method according to claim 1, wherein: 10% fatty acid = 0.5-10% volatile content (residual reaction solvent) = 5.0-30%. 8. Any one of claims 1 to 7, wherein the fatty acid radicals mainly contained in each of the fatty acid methyl ester, soap, and fatty acid in the reaction mixture are common saturated fatty acid radicals, and have a carbon number of 16 to 22. Method described. 9. The method according to claim 1, wherein the volatile component (residual reaction solvent) in the reaction mixture is dimethyl sulfoxide or dimethylformamide. 10. The method according to claim 1, 3 or 5, wherein the neutral salt to be added is any salt selected from the group consisting of common salt, mirabilite, potassium lactate and potassium acetate. 11. The ester distribution of sucrose fatty acid ester is 10% to 75% as monoester content (diester or more is 9%).
8. The method according to claim 1 or 7, wherein the amount is 0% to 25%). 12. The method according to claim 1, wherein the acidic water has a pH value of 3.0 to 5.5. 13. The method according to claim 1 or 12, wherein the temperature of the acidic water is 10°C to 40°C.
JP12733388A 1988-05-25 1988-05-25 Purification method of sucrose fatty acid ester Expired - Fee Related JP2686960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12733388A JP2686960B2 (en) 1988-05-25 1988-05-25 Purification method of sucrose fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12733388A JP2686960B2 (en) 1988-05-25 1988-05-25 Purification method of sucrose fatty acid ester

Publications (2)

Publication Number Publication Date
JPH01299295A true JPH01299295A (en) 1989-12-04
JP2686960B2 JP2686960B2 (en) 1997-12-08

Family

ID=14957330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12733388A Expired - Fee Related JP2686960B2 (en) 1988-05-25 1988-05-25 Purification method of sucrose fatty acid ester

Country Status (1)

Country Link
JP (1) JP2686960B2 (en)

Also Published As

Publication number Publication date
JP2686960B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JPS62161798A (en) 3 alpha, 7 beta-dihydroxy-12-ketocholanic acid and its production
JPH0667953B2 (en) Method for producing powdery sucrose fatty acid ester
UA79741C2 (en) Method for removing impurities from 2-nitro-4-methylsulfonylbenzoic acid, purified 2-nitro-4-methylsulphonylbenzoic acid and process for preparation of mesotrione
JPH01313494A (en) Recovery of unreacted sucrose from reaction mixture for synthesizing sucrose fatty acid ester
EP0062565B1 (en) Process for the preparation of sugar esters and especially esters of saccharose
JP3836162B2 (en) Method for producing sucrose fatty acid ester
EP0220855B1 (en) Process for recovering 4,4' dihydroxydiphenyl sulfone from an isomer mixture
JPH01299295A (en) Method for purifying sucrose ester of fatty acid
KR100392740B1 (en) Manufacturing method of adipic acid
JPH0421693A (en) Decoloring of sucrose fatty acid ester
JPH09110824A (en) Purification of acloxybenzenesulfonic acid or its salt
JP2688985B2 (en) Method for purifying high HLB sucrose fatty acid ester
KR100346882B1 (en) Purification of sugar ester
JP3001097B1 (en) Method for producing sorbic acid
JPH01290690A (en) Method for removing volatile content in saccharide fatty acid ester producing reaction mixture
JPH029892A (en) Method for purifying sucrose ester of fatty acid
JP2722570B2 (en) How to recover sucrose
JPH029038B2 (en)
JP2686966B2 (en) Method for recovering unreacted sugar in powder form from sucrose fatty acid ester synthesis reaction mixture
JP3164691B2 (en) Method for producing β-naphthalene sulfonate
JPH01190661A (en) Purification of 4,4'-dihydroxydiphenylsulfone
JPH0327342A (en) Production of shikonin
JP2686972B2 (en) Method for producing powdery high HLB sucrose fatty acid ester
JPH0667955B2 (en) Method for producing powdery high HLB sucrose fatty acid ester
JPH05383B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees