JPH05383B2 - - Google Patents

Info

Publication number
JPH05383B2
JPH05383B2 JP20843587A JP20843587A JPH05383B2 JP H05383 B2 JPH05383 B2 JP H05383B2 JP 20843587 A JP20843587 A JP 20843587A JP 20843587 A JP20843587 A JP 20843587A JP H05383 B2 JPH05383 B2 JP H05383B2
Authority
JP
Japan
Prior art keywords
salt
weight
isomer
monometallic
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20843587A
Other languages
Japanese (ja)
Other versions
JPS6450856A (en
Inventor
Eiji Ogata
Koji Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konishi Chemical Ind Co Ltd
Original Assignee
Konishi Chemical Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konishi Chemical Ind Co Ltd filed Critical Konishi Chemical Ind Co Ltd
Priority to JP20843587A priority Critical patent/JPS6450856A/en
Priority to DE3890647A priority patent/DE3890647C2/en
Priority to PCT/JP1988/000813 priority patent/WO1989001469A1/en
Priority to GB8908173A priority patent/GB2216125B/en
Priority to DE19883890647 priority patent/DE3890647T1/en
Priority to US07/362,411 priority patent/US5097074A/en
Publication of JPS6450856A publication Critical patent/JPS6450856A/en
Publication of JPH05383B2 publication Critical patent/JPH05383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、4′−ゞヒドロキシゞプニルス
ルホン粗補品から高玔床4′−ゞヒドロキシゞ
プニルスルホンモノ金属塩を高収率で補造する
新芏な方法に関する。 埓来の技術 4′−ゞヒドロキシゞプニルスルホン以
䞋、4′䜓ずいうは、優れた耐熱性、耐酞化
性、耐光安定性等を有するこずから、近幎ポリ゚
ステル暹脂、゚ポキシ暹脂、ポリカヌボネヌト暹
脂、ポリ゚ヌテルスルホン暹脂等の高分子化孊工
業の分野においお倚甚されるに至぀おいる。この
堎合、4′−ゞヒドロキシゞプニルスルホン
以䞋、4′䜓ずいう、トリヒドロキシトリフ
゚ニルゞスルホン以䞋、トリ䜓ずいう等の䞍
玔物を含有する4′䜓を原料ずしお合成した高
分子生成物は分子量が小さくな぀お機械的性質が
䜎䞋する傟向があり、この傟向は4′䜓、トリ
䜓等の䞍玔物が倚い皋顕著ずなる。埓぀お、
4′䜓、トリ䜓等の䞍玔物ができる限り陀去された
高玔床の4′䜓の䟛絊が芁望されおいる。た
た、4′䜓は、カラヌ写真甚カツプラヌ原料、
感熱蚘録玙甚顕色剀等ずしおも有甚であり、この
堎合にも高玔床であるこずが望たしい。 4′䜓は、工業的には䞻にプノヌルず硫酞等
のスルホン化剀ずの脱氎反応により補造されおお
り、反応生成物䞭には䞍玔物ずしお、4′䜓、
トリ䜓等のスルホン類ずその他のスルホン酞類等
が含たれおおり、これからスルホン酞類等を陀い
た4′䜓粗補品䞭の4′䜓の玔床は通垞70〜
80重量皋床である。 たた、4′䜓の副生を抑制し、玔床の高い
4′䜓を埗る方法が開発されおいる。䟋えば脱
氎反応により生成する4′䜓を析出せしめ぀぀
副生物の4′䜓を4′䜓に異性化させるこず
により、高玔床4′䜓を収埗する方法特公昭
55−8972号が提案されおいる。この堎合の反応
生成物からスルホン酞類等を陀いた4′䜓粗補
品䞭の4′䜓の玔床は、通垞90〜95重量皋床
である。然るに、前蚘各皮甚途のための4′䜓
の玔床は。近幎の暹脂に察する高品質化の芁求等
のため、97重量皋床以䞊であるこずが芁望され
るに至぀おいる。埓぀お、前者の方法により補造
したものは曎に粟補するこずが必芁であり、埌者
の方法により補造したものも曎に粟補するこずが
望たしい。 4′䜓の粟補法ずしおは、䟋えば−ゞクロ
ルベンれン−プノヌル特公昭51−36264号、
−ゞクロルベンれン−酢酞特公昭57−48152
号、−ゞクロルベンれン−酢酞゚チル特公
昭57−48153号、−ゞクロルベンれン−アルコ
ヌル特公昭58−2234号等の各皮混合有機溶剀
を甚いお凊理する方法が提案されおいる。しかし
ながら、これらの方法には、いずれも有機溶剀を
甚いるため、取扱いが䞍䟿で䜜業衛生䞊の危険が
あり、又環境を汚染するずいう問題がある。 たた、有機溶剀を甚いない粟補法ずしおは、埓
来から、氎酞化ナトリりム等のアルカリ氎溶液に
4′䜓粗補品を溶解した埌、掻性炭凊理し、次
いで䞭和量以䞊の硫酞等の酞を加えお4′䜓を
析出させる方法が行なわれおいる。この方法は、
4′䜓が氎に難溶性であるが、塩基性物質の氎
溶液にはモノ又はゞ金属塩等ずな぀お容易に溶解
する性質を利甚するものである。しかしながら、
この方法では、スルホン酞類は陀去できるものの
4′䜓、トリ䜓等のスルホン類は殆んど陀去で
きず、埌蚘比范䟋に瀺すように粟補品の玔床が䞍
充分であり、前蚘芁望には到底応え埗ない。 発明が解決しようずする問題点 本発明の目的は、有機溶剀を甚いるこずなく、
しかも高い粟補収率粟補前の4′䜓に察する
収率で䞔぀高玔床の4′䜓を埗るための粟補
䞭間䜓ずしお有甚であり、前蚘芁望に充分に応え
埗る高玔床4′䜓モノ金属塩の新芏な補造方法
を提䟛するこずにある。 問題点を解決するための手段 本発明者は、䞊蚘目的を達成するべく鋭意研究
した結果、4′䜓粗補品を塩基性物質の氎溶液
に溶解凊理した埌塩析するずきには通垞90皋床
以䞊ずいう高収率で䞔぀98重量皋床以䞊ずいう
高玔床の4′䜓のモノ金属塩が析出するずいう
ナニヌクな事実を発芋し、曎にこれを酞凊理する
こずにより通垞85皋床以䞊ずいう高い粟補収率
で䞔぀99重量皋床以䞊ずいう高玔床の4′䜓
が埗られるこずを芋出した。この様に4′䜓が
特定条件䞋で高玔床のモノ金属塩ずしお塩析でき
るずいう事実は、4′䜓のモノ乃至ゞ金属塩が
氎に易溶性であるずいう垞識を利甚しおいる圓業
者にず぀お党く予期し埗ないこずである。本発明
は、かかる新知芋に基づいお完成されたものであ
る。 即ち本発明は、4′䜓粗補品を、塩基性物質
の氎溶液に溶解凊理した埌塩析しお4′䜓のモ
ノ金属塩を析出、分離するこずを特城ずする
4′䜓モノ金属塩の補造方法に係る。 本明现曞においおは、モノ金属塩ずは、モノア
ルカリ金属塩、モノアルカリ土類金属塩等
を意味する。 本発明方法は、皮々の4′䜓合成反応生成
物、該反応生成物からスルホン酞類等を陀いたも
の及び4′䜓垂販品を含めたいかなる玔床の
4′䜓粗補品にも適甚できる。 本発明においお、4′䜓粗補品を、たず塩基
性物質の氎溶液に、通垞攪拌䞋に溶解凊理する。
塩基性物質ずしおは、ナトリりム、カリりム等の
アルカリ金属、カルシりム、マグネシりム等のア
ルカリ土類金属等の氎酞化物、炭酞塩等を奜たし
く䜿甚できる。特に奜たしいのは、氎酞化ナトリ
りム、炭酞ナトリりム等である。塩基性物質の䜿
甚量は、スルホン酞類等の匷酞分の䞭和量に加え
お、4′䜓、4′䜓、トリ䜓等のスルホン類
モル圓り圓量皋床以䞊圓量皋床以䞋ずする
のが適圓である。この範囲より少ない堎合は、
4′䜓のモノ金属塩の塩析時に遊離の4′䜓
が混入しお結晶圢が悪くなり䞍玔物の陀去効果が
䜎䞋する傟向にあるので奜たしくない。たたこの
範囲より倚い堎合で䞔぀そのたた塩析剀を加える
こずは、塩析されない4′䜓のゞ金属塩が倚量
に生成しお収率が䜎䞋する傟向にあるので奜たし
くない。䜆し、塩基性物質を4′䜓等のスルホ
ン類モル圓り圓量を越えお䜿甚するこず自䜓
は、䜕ら差し支えなく、本発明の有利な実斜態様
の䞀぀である。即ち、塩基性物質を圓量を越え
お過剰に䜿甚しお塩析されない4′䜓のゞ金属
塩を倚く生成させた溶解状態ずするこずにより、
必芁ならば掻性炭凊理等を奜適に行なうこずがで
き、次いで酞を加えおゞ金属塩をモノ金属塩に倉
換するず同時に塩析剀を生成させ、必芁に応じお
曎に塩析剀を加えおモノ金属塩を塩析するこずが
できる。 䞊蚘の4′䜓粗補品の溶解凊理においおは、
凊理液は、塩基性物質や氎の䜿甚量に察応しお溶
液乃至懞濁状態を呈する。懞濁状態の堎合は、抂
しお液盞郚分は4′䜓モノ金属塩ず少量の
4′䜓ゞ金属塩が溶解し、固盞郚分は䞀旊溶解埌過
飜和ずな぀お析出した4′䜓モノ金属塩を䞻䜓
ずする状態であり、その埌の塩析により液盞郚分
から4′䜓モノ金属塩が曎に析出し結晶が成長
しおいくものず考えられる。 溶解凊理の際の氎の䜿甚量は、広い範囲から遞
択できるが、4′䜓粗補品に察しお通垞1.8〜
8.0重量郚皋床ずするのが適圓である。この範囲
よりも氎量が少ないず固盞郚分の倚い懞濁状態を
呈しお流動性が乏しくなり攪拌が困難になる傟向
にあり、又この範囲よりも氎量が倚いず粟補収率
が䜎䞋する傟向にあるので奜たしくない。特に奜
たしい氎量は、4′䜓粗補品に察しお1.3〜3.0
重量倍皋床である。 たた、溶解凊理の際の枩床は、特に限定されな
いが、40℃〜沞点皋床ずするのが4′䜓のモノ
金属塩の生成速床を倧きくできる点で有利であ
る。 次に、䞊蚘で4′䜓粗補品を凊理した溶液又
は懞濁液を、通垞攪拌䞋に塩析しお4′䜓のモ
ノ金属塩を析出させる。これにより、通垞玔床98
重量皋床以䞊ずいう高玔床の4′䜓モノ金属
塩が通垞原料粗補品䞭の4′䜓に察しお87以
䞊ずいう高い収率で析出しおくる。この事実は、
本発明者により初めお発芋されたものである。 塩析は、塩析剀を添加するか、前蚘塩基性物質
を過剰に加え、これに塩酞、硫酞等の酞を加えお
塩析剀を生成させるか、又はこれらの方法を䜵甚
するこずにより行なわれる。塩析剀ずしおは、ナ
トリりム、カリりム等のアルカリ金属、カルシり
ム、マグネシりム等のアルカリ土類金属等の塩化
物、硫酞塩等を奜たしく䜿甚できる。たた、塩析
剀の䜿甚量は、広い範囲から遞択でき、通垞濃床
ずしお重量以䞊飜和濃床以䞋ずなる量ずする
のが適圓である。この範囲より少ないず塩析効果
が䜎く収率が䜎䞋するので奜たしくない。たた、
飜和濃床以䞊では塩析剀の結晶が析出するので奜
たしくない。塩析剀の奜たしい䜿甚量は、通垞
〜15重量皋床ずなる量である。 塩析剀投入の際の枩床は、特に限定されない
が、40℃〜沞点皋床ずするのが、4′䜓モノ金
属塩の結晶圢を良くしお収率、玔床を向䞊させる
点から有利である。塩析剀投入埌は、その枩床で
0.2〜12時間皋床熟成させおも良い。 次いで、析出した4′䜓モノ金属塩を過等
により分離し、必芁に応じお適宜掗浄しお高玔床
の4′䜓モノ金属塩を埗る。 本発明により補造される4′䜓モノ金属塩
は、高玔床4′䜓を埗るための粟補䞭間䜓ずし
お極めお有甚であり、通垞は、これを酞凊理しお
遊離の4′䜓を埗る。酞凊理は、垞法に埓぀お
行なえば良く、4′䜓モノ金属塩を氎又はアル
カリ氎溶液に溶解し、必芁に応じお掻性炭凊理を
行぀た埌、硫酞、塩酞等の酞を添加しおPHを〜
皋床ずし、析出する4′䜓を過等により分
離するこずにより、ほが定量的に行なわれる。 かくしお、4′䜓を高い粟補収率䞔぀高玔床
で粟補するこずができる。 たた、本発明により埗られる高玔床4′䜓モ
ノ金属塩は、甚途によ぀おは、そのたた工業原料
ずしお䜿甚するこずもできる。 発明の効果 本発明法により埗られる高玔床4′䜓モノ金
属塩を4′䜓粟補䞭間䜓ずしお甚いるこずによ
り、䞋蚘の劂き栌別顕著な効果が奏される。 (1) 有機溶剀を甚いないので、取扱いが容易で、
䜜業衛生䞊、環境䞊の問題がない。 (2) 通垞、85以䞊ずいう高い粟補収率で、99重
量以䞊ずいう高玔床の4′䜓を収埗でき、
前蚘業界の芁望に充分に応え埗るものである。 (3) 埓来法に比しお、少量の液量で倚量の粟補が
効率的に実斜できる。たた、蚭備をコンパクト
にでき、䜜業性が良い。 実斜䟋 以䞋、参考䟋、実斜䟋及び比范䟋を挙げお本発
明を曎に具䜓的に説明する。 参考䟋  特公昭55−8972号の方法により、4′䜓粗補
品を補造した。 即ち、プノヌル290g、98重量硫酞146g及
び−ゞクロルベンれンODCB150gの混合
物を、攪拌䞋加熱した。150℃付近より反応液が
沞隰し、ODCBず共に反応生成氎が留出し始め
た。留出液を凝瞮し、ODCB盞を連続的に反応系
内に戻し、氎盞の液量が52mlに達した時点より反
応枩床を175〜185℃に保ち、枛圧床を調敎しなが
ら生成氎及びプノヌルを少量含有するODCBを
時間を芁しお反応物が也固するたで、蒞留回収
した。 ここで埗た反応也固物の高速液䜓クロマトグラ
フむヌによる分析結果は、4′䜓84.6重量、
4′䜓2.0重量、トリ䜓4.5重量及びその他
のスルホン酞類等が8.9重量であ぀た。 実斜䟋  参考䟋で埗た4′䜓粗補品である反応也固
物100gを、氎155gず氎酞化ナトリりム18.1gスル
ホン酞分の䞭和に必芁な量ず4′䜓、4′䜓
及びトリ䜓のスルホン類の総和に察しお1.2倍圓
量の量ずの合蚈に盞圓する。に加えお、攪拌䞋
昇枩し、95℃ずした。液は完党には溶解せず懞濁
状態であ぀た。 次に、食塩10gを加え、同枩床で30分間保持し
お熟成した埌冷华した。50℃時間保枩した埌、
析出物を取し、重量食塩氎50mlで掗浄しお
4′䜓モノナトリりム塩84.0g粟補収率91.3
を埗た。 埗られた4′䜓モノナトリりム塩を塩酞凊理
埌、高速液䜓クロマトグラフむヌにより分析した
結果を第衚に瀺す。 䞊蚘で埗られた4′䜓モノナトリりム塩を氎
900mlに溶解し、90〜95℃の枩床で78重量硫酞
を加え、PH4.0迄䞭和し4′䜓を析出させた。
40℃たで冷华した埌、取、也燥しお、4′䜓
粟補品76.6gを埗た。粟補収率は90.4察 原
料䞭の4′䜓であ぀た。 高速液䜓クロマトグラフむヌによる分析結果
は、第衚の通りであ぀た。 実斜䟋  実斜䟋においお塩析剀である食塩10gに代え
お無氎硫酞ナトリりム15gを甚いた他は実斜䟋
ず同様に塩析凊理しお4′䜓モノナトリりム塩
83.2g粟補収率90.4を埗、曎に同様に硫酞凊
理しお4′䜓粟補品75.9gを埗た。 粟補収率は、89.5であり、高速液䜓クロマト
グラフむヌにより分析した結果は、第衚の通り
であ぀た。 実斜䟋  参考䟋で埗た4′䜓粗補品たる反応也固物
100gを、氎280gず氎酞化ナトリりム31.6gスルホ
ン酞分の䞭和に必芁な量ず4′䜓等のスルホン
類の総和、に察しお2.1倍圓量の量ずの合蚈に盞
圓する。に加えお、攪拌䞋昇枩し、95℃ずした。
液は完党に溶解しおいた。 次に、78重量硫酞24.1gを埐々に加えた埌、
冷华し50℃で時間保枩した埌、析出結晶を取
し、重量硫酞ナトリりム氎で掗浄しお
4′䜓モノナトリりム塩81.0g粟補収率88.0を
埗た。 埗られた4′䜓モノナトリりム塩の高速液䜓
クロマトグラフむヌによる分析の結果、その組成
比は、第衚の通りであ぀た。 䞊蚘で埗られた4′䜓モノナトリりム塩を、
実斜䟋ず同様に硫酞凊理したずころ、4′䜓
粟補品73.9gを埗た。粟補収率は87.3であり、
高速液䜓クロマトグラフむヌによる分析結果は、
第衚の通りであ぀た。 実斜䟋  垂販の4′䜓粗補品の組成を高速液䜓クロマ
トグラフむヌにより分析したずころ4′䜓、
4′䜓、トリ䜓が、それぞれ82.6重量。14.0
重量。3.4重量であ぀た。 この粗補品100gを、氎160gず氎酞化ナトリり
ム33.2g4′䜓等のスルホン類の総和に察しお
2.1倍圓量に加え、攪拌䞋97℃に昇枩した。液
は完党に溶解せず懞濁状態であ぀た。 次に、78重量硫酞25.1gを埐々に加えた埌、
冷华し50℃で時間保枩した埌、析出結晶を取
し、重量硫酞ナトリりム氎で掗浄しお、
4′䜓モノナトリりム塩80.4g粟補収率87.4を
埗た。 埗られた4′䜓モノナトリりム塩の高速液䜓
クロマトグラフむヌによる分析の結果、その組成
比は、第衚の通りであ぀た。 䞊蚘で埗られた4′䜓モノナトリりム塩を、
実斜䟋ず同様に凊理したずころ、4′䜓粟補
品71.5gを埗た。粟補収率は85.8重量であり、
高速液䜓クロマトグラフむヌによる分析の結果
は、第衚の通りであ぀た。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a novel method for producing high-purity 4,4'-dihydroxydiphenylsulfone monometallic salts in high yields from crude 4,4'-dihydroxydiphenylsulfone products. Conventional technology 4,4'-dihydroxydiphenyl sulfone (hereinafter referred to as 4,4' body) has excellent heat resistance, oxidation resistance, light stability, etc., so it has recently been used in polyester resins, epoxy resins, and polycarbonates. It has come to be widely used in the field of polymer chemical industry, such as resins and polyethersulfone resins. In this case, synthesis is performed using 4,4'-form as a raw material containing impurities such as 2,4'-dihydroxydiphenylsulfone (hereinafter referred to as 2,4'-form) and trihydroxytriphenyldisulfone (hereinafter referred to as "tri-form"). The resulting polymer product tends to have a lower molecular weight and lower mechanical properties, and this tendency becomes more pronounced as the amount of impurities such as 2,4' and tri-isomers increases. Therefore, 2,
There is a demand for the supply of highly pure 4,4'-isomers from which impurities such as 4'-isomers and tri-isomers have been removed as much as possible. In addition, the 4,4′ body is a coupler raw material for color photography,
It is also useful as a color developer for heat-sensitive recording paper, and in this case as well, high purity is desirable. Industrially, the 4,4'-isomer is mainly produced by a dehydration reaction between phenol and a sulfonating agent such as sulfuric acid, and the reaction product contains impurities such as the 2,4'-isomer,
Contains sulfones such as tri-isomers and other sulfonic acids, etc., and the purity of the 4,4'-isomer in the 4,4'-isomer crude product after removing sulfonic acids, etc. is usually 70~70~
It is about 80% by weight. In addition, a method has been developed to suppress the by-product of 2,4'-isomer and obtain highly pure 4,4'-isomer. For example, a method of obtaining highly pure 4,4' isomer by precipitating the 4,4' isomer produced by a dehydration reaction and isomerizing the by-product 2,4' isomer into 4,4' isomer.
No. 55-8972) has been proposed. In this case, the purity of the 4,4' product in the crude 4,4' product obtained by removing sulfonic acids and the like from the reaction product is usually about 90 to 95% by weight. However, the purity of the 4,4' form for the various uses mentioned above. Due to recent demands for higher quality resins, a content of about 97% by weight or more has come to be desired. Therefore, it is necessary to further purify those produced by the former method, and it is desirable to further refine those produced by the latter method. As a method for purifying the 4,4'-isomer, for example, o-dichlorobenzene-phenol (Japanese Patent Publication No. 51-36264),
o-dichlorobenzene-acetic acid (Special Publication No. 57-48152
Treatment methods using various mixed organic solvents such as o-dichlorobenzene-ethyl acetate (Japanese Patent Publication No. 57-48153), and o-dichlorobenzene-alcohol (Japanese Patent Publication No. 58-2234) have been proposed. ing. However, since all of these methods use organic solvents, they are inconvenient to handle, pose a health hazard, and pollute the environment. In addition, conventional purification methods that do not use organic solvents include dissolving the 4,4' crude product in an alkaline aqueous solution such as sodium hydroxide, treating it with activated carbon, and then adding an acid such as sulfuric acid in an amount greater than the neutralizing amount. In addition, a method of precipitating the 4,4' isomer has been used. This method is
The 4,4' form is poorly soluble in water, but it takes advantage of the property that it easily dissolves in aqueous solutions of basic substances in the form of mono- or di-metal salts. however,
Although this method can remove sulfonic acids, it cannot remove most of the 2,4'- and tri-sulfones, and as shown in the comparative example below, the purity of the purified product is insufficient to meet the above requirements. cannot be answered at all. Problems to be Solved by the Invention The purpose of the present invention is to solve the problem without using an organic solvent.
In addition, it is useful as a purification intermediate for obtaining the 4,4'-isomer with a high purification yield (yield relative to the 4,4'-isomer before purification) and high purity, and can sufficiently meet the above-mentioned needs. , 4' monometallic salts. Means for Solving the Problems As a result of intensive research to achieve the above object, the present inventor has found that when a crude 4,4' product is dissolved in an aqueous solution of a basic substance and then salted out, the percentage is usually about 90%. We discovered the unique fact that a 4,4' monometallic salt can be precipitated with a high yield of 98% by weight or higher, and by further treating it with an acid, a purity of 85% or higher is usually obtained. It has been found that the 4,4' isomer can be obtained with a high purification yield and a high purity of about 99% by weight or more. The fact that the 4,4'-isomer can be salted out as a highly pure monometallic salt under specific conditions is based on the common knowledge that 4,4'-isomer mono- and dimetallic salts are easily soluble in water. This is completely unexpected for those skilled in the art. The present invention was completed based on this new knowledge. That is, the present invention is characterized in that the 4,4' crude product is dissolved in an aqueous solution of a basic substance and then salted out to precipitate and separate the 4,4' monometallic salt.
This invention relates to a method for producing a 4' monometallic salt. As used herein, monometallic salts refer to monoalkali metal salts, mono1/2 alkaline earth metal salts, and the like. The method of the present invention can be applied to various 4,4' synthesis reaction products, 4,4' crude products of any purity, including products from which sulfonic acids have been removed, and commercially available 4,4' products. It can also be applied to In the present invention, the crude 4,4' product is first dissolved in an aqueous solution of a basic substance, usually under stirring.
As the basic substance, hydroxides and carbonates of alkali metals such as sodium and potassium, alkaline earth metals such as calcium and magnesium, etc. can be preferably used. Particularly preferred are sodium hydroxide, sodium carbonate, and the like. The amount of the basic substance to be used is approximately 1 equivalent or more and approximately 2 equivalents per mole of sulfones such as 4,4', 2,4', and tri-isomers, in addition to the neutralizing amount of strong acids such as sulfonic acids. The following is appropriate. If it is less than this range,
This is not preferable since free 4,4' is mixed in during salting out of a monometallic salt of 4,4', which tends to deteriorate the crystal shape and reduce the impurity removal effect. Further, if the amount exceeds this range and the salting-out agent is added as is, a large amount of 4,4' dimetal salts that are not salted out tend to be produced, resulting in a decrease in yield, which is not preferable. However, the use of the basic substance in an amount exceeding 2 equivalents per mole of sulfones such as 4,4' sulfones does not pose any problem and is an advantageous embodiment of the present invention. That is, by using an excess of more than 2 equivalents of a basic substance to create a dissolved state in which a large amount of 4,4' dimetal salt that is not salted out is produced,
If necessary, activated carbon treatment etc. can be suitably carried out, and then an acid is added to convert the dimetal salt into a monometallic salt, at the same time a salting-out agent is generated, and if necessary, a salting-out agent is further added to convert the dimetallic salt into a monometallic salt. Salt can be salted out. In the above-mentioned dissolution treatment of the 4,4′ crude product,
The processing liquid exhibits a solution or suspension state depending on the amount of basic substance and water used. In a suspended state, the liquid phase generally consists of a 4,4' monometallic salt and a small amount of 4,4' monometallic salt.
The 4' dimetal salt is dissolved, and the solid phase is mainly composed of the 4,4' monometal salt that becomes supersaturated and precipitates after dissolution, and the subsequent salting out removes the 4,4' dimetal salt from the liquid phase. It is thought that the 4′ monometallic salt further precipitates and the crystals grow. The amount of water used during dissolution treatment can be selected from a wide range, but it is usually 1.8 to
Approximately 8.0 parts by weight is appropriate. If the amount of water is less than this range, a suspension state with a large amount of solid phase will occur, resulting in poor fluidity and stirring will tend to become difficult, and if the amount of water is more than this range, the purification yield will tend to decrease. I don't like it because it is. A particularly preferable amount of water is 1.3 to 3.0 for the 4,4′ crude product.
It is about twice the weight. Further, the temperature during the dissolution treatment is not particularly limited, but it is advantageous to set it to about 40° C. to the boiling point in that the production rate of the 4,4′ monometallic salt can be increased. Next, the solution or suspension obtained by treating the crude 4,4' product as described above is salted out, usually with stirring, to precipitate the monometallic salt of the 4,4' product. This typically results in a purity of 98
The 4,4' monometallic salt with a high purity of about % by weight or more is usually precipitated in a high yield of 87% or more based on the 4,4' monometal salt in the crude raw material. This fact is
This was discovered for the first time by the present inventor. Salting out is carried out by adding a salting out agent, adding an excess of the basic substance and adding an acid such as hydrochloric acid or sulfuric acid to generate a salting out agent, or using a combination of these methods. It will be done. As the salting-out agent, chlorides and sulfates of alkali metals such as sodium and potassium, alkaline earth metals such as calcium and magnesium, etc. can be preferably used. Further, the amount of the salting-out agent to be used can be selected from a wide range, and it is usually appropriate to set the amount to be at least 2% by weight and at most the saturation concentration. If the amount is less than this range, the salting-out effect will be low and the yield will decrease, which is not preferable. Also,
If the concentration exceeds the saturation concentration, crystals of the salting-out agent will precipitate, which is not preferable. The preferred usage amount of the salting-out agent is usually 4
The amount is approximately 15% by weight. The temperature when adding the salting-out agent is not particularly limited, but it is advantageous to set it to about 40°C to the boiling point in order to improve the crystal form of the 4,4' monometallic salt and improve the yield and purity. It is. After adding salting out agent, at that temperature
It may be aged for about 0.2 to 12 hours. Next, the precipitated 4,4' monometallic salt is separated by filtration and, if necessary, washed appropriately to obtain a highly purified 4,4' monometallic salt. The 4,4' monometallic salt produced by the present invention is extremely useful as a purification intermediate for obtaining highly purified 4,4' monometallic salts, and is usually acid-treated to form free 4,4' monometallic salts. ' Get a body. Acid treatment can be carried out according to a conventional method, and the 4,4' monometal salt is dissolved in water or an alkaline aqueous solution, treated with activated carbon if necessary, and then an acid such as sulfuric acid or hydrochloric acid is added. and pH 3~
6, and the precipitated 4,4' isomer is separated by filtration, etc., and the result is almost quantitative. In this way, the 4,4'-isomer can be purified with high purification yield and high purity. Further, the highly purified 4,4' monometallic salt obtained by the present invention can be used as it is as an industrial raw material depending on the application. Effects of the Invention By using the highly purified 4,4' monometallic salt obtained by the method of the present invention as a 4,4' monometallic intermediate, the following particularly remarkable effects can be achieved. (1) Easy to handle because no organic solvent is used.
There are no occupational hygiene or environmental problems. (2) Usually, the 4,4′ isomer can be obtained with a high purification yield of 85% or more and a high purity of 99% by weight or more.
This can fully meet the demands of the industry. (3) Compared to conventional methods, a large amount of purification can be efficiently carried out using a small amount of liquid. Additionally, the equipment can be made compact and workability is good. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to reference examples, examples, and comparative examples. Reference Example 1 A 4,4' crude product was produced by the method described in Japanese Patent Publication No. 55-8972. That is, a mixture of 290 g of phenol, 146 g of 98% by weight sulfuric acid, and 150 g of o-dichlorobenzene (ODCB) was heated with stirring. The reaction solution boiled around 150°C, and reaction product water began to distill out along with ODCB. The distillate is condensed, the ODCB phase is continuously returned to the reaction system, and from the point when the liquid volume of the aqueous phase reaches 52 ml, the reaction temperature is maintained at 175 to 185°C, and the produced water and The ODCB containing a small amount of phenol was recovered by distillation over a period of 4 hours until the reaction product was dried to dryness. The analysis results of the dried reaction product obtained here by high performance liquid chromatography showed that 84.6% by weight of the 4,4′ isomer;
2.0% by weight of 2,4'-isomer, 4.5% by weight of tri-isomer, and 8.9% by weight of other sulfonic acids. Example 1 100 g of the reaction dry product, which is the crude 4,4' product obtained in Reference Example 1, was mixed with 155 g of water and 18.1 g of sodium hydroxide (the amount necessary for neutralizing the sulfonic acid content and the 4,4' product). , 1.2 times the equivalent of the total amount of 2,4'- and tri-sulfones), and the temperature was raised to 95° C. with stirring. The liquid was not completely dissolved and remained in a suspended state. Next, 10 g of common salt was added, and the mixture was kept at the same temperature for 30 minutes to age and then cooled. After keeping warm at 50℃ for 1 hour,
The precipitate was collected and washed with 50 ml of 5% brine to obtain 84.0 g of 4,4' monosodium salt (purification yield 91.3%).
I got it. The obtained 4,4' monosodium salt was treated with hydrochloric acid and analyzed by high performance liquid chromatography. The results are shown in Table 1. The 4,4′ monosodium salt obtained above was dissolved in water.
The solution was dissolved in 900 ml, and 78% by weight sulfuric acid was added at a temperature of 90 to 95°C to neutralize the pH to 4.0 to precipitate the 4,4' isomer.
After cooling to 40°C, it was taken and dried to obtain 76.6 g of a purified 4,4' product. The purification yield was 90.4% (based on the 4,4' isomer in the raw material). The analysis results by high performance liquid chromatography were as shown in Table 1. Example 2 Example 1 except that 15 g of anhydrous sodium sulfate was used in place of 10 g of common salt as a salting-out agent in Example 1.
Salting out in the same manner as 4,4′ monosodium salt
83.2g (purification yield: 90.4%) was obtained, which was further treated with sulfuric acid in the same manner to obtain 75.9g of a 4,4' purified product. The purification yield was 89.5%, and the results of analysis by high performance liquid chromatography were as shown in Table 1. Example 3 Reaction dried product as 4,4' crude product obtained in Reference Example 1
100g corresponds to the sum of 280g of water and 31.6g of sodium hydroxide (an amount equivalent to 2.1 times the amount required for neutralizing the sulfonic acid component and the total amount of sulfones such as 4,4' bodies). ), and the temperature was raised to 95°C while stirring.
The liquid was completely dissolved. Next, after gradually adding 24.1 g of 78 wt% sulfuric acid,
After cooling and keeping at 50°C for 1 hour, the precipitated crystals were collected and washed with 5% by weight sodium sulfate water.
81.0 g (purification yield: 88.0%) of 4' monosodium salt was obtained. As a result of analysis of the obtained 4,4' monosodium salt by high performance liquid chromatography, the composition ratio was as shown in Table 1. The 4,4' monosodium salt obtained above was
When treated with sulfuric acid in the same manner as in Example 1, 73.9 g of a purified 4,4' product was obtained. The purification yield is 87.3%,
The analysis results by high performance liquid chromatography are
It was as shown in Table 1. Example 4 The composition of a commercially available crude product of 4,4' body was analyzed by high performance liquid chromatography, and it was found that 4,4' body,
2,4' and tri-isomers each account for 82.6% by weight. 14.0
weight%. It was 3.4% by weight. 100g of this crude product was mixed with 160g of water and 33.2g of sodium hydroxide (based on the total amount of sulfones such as 4,4'-sulfones).
2.1 times equivalent) and the temperature was raised to 97°C while stirring. The liquid was not completely dissolved and remained in a suspended state. Next, after gradually adding 25.1 g of 78 wt% sulfuric acid,
After cooling and keeping at 50°C for 1 hour, the precipitated crystals were collected and washed with 5% by weight sodium sulfate water.
80.4 g (purification yield: 87.4%) of 4' monosodium salt was obtained. As a result of analysis of the obtained 4,4' monosodium salt by high performance liquid chromatography, its composition ratio was as shown in Table 1. The 4,4' monosodium salt obtained above was
When treated in the same manner as in Example 1, 71.5 g of a purified 4,4' product was obtained. The purification yield is 85.8% by weight,
The results of analysis by high performance liquid chromatography are shown in Table 1.

【衚】 比范䟋  参考䟋で埗た4′䜓粗補品100g、氎酞化ナ
トリりム31.6g及び氎280gを攪拌䞋昇枩溶解し、
95℃にお78重量硫酞48.0gを加え、PHずし
た埌、冷华し50℃で時間保枩した埌、別、也
燥し4′䜓89.9gを埗た。収率は99.3であり、
高速液䜓クロマトグラフむヌによる分析結果は
4′䜓93.4重量、4′䜓1.7重量、トリ䜓
4.9重量であ぀た。
[Table] Comparative Example 1 100 g of the 4,4′ crude product obtained in Reference Example 1, 31.6 g of sodium hydroxide, and 280 g of water were dissolved at elevated temperature with stirring.
After adding 48.0 g of 78% by weight sulfuric acid at 95°C to adjust the pH to 4, the mixture was cooled, kept at 50°C for 1 hour, and dried separately to obtain 89.9 g of 4,4' compound. The yield is 99.3%,
Analysis results by high-performance liquid chromatography showed 93.4% by weight of 4,4′ form, 1.7% by weight of 2,4′ form, and 1.7% by weight of tri form.
It was 4.9% by weight.

Claims (1)

【特蚱請求の範囲】 4′−ゞヒドロキシゞプニルスルホン粗
補品を、塩基性物質の氎溶液に溶解凊理した埌塩
析しお4′−ゞヒドロキシゞプニルスルホン
のモノ金属塩を析出、分離するこずを特城ずする
4′−ゞヒドロキシゞプニルスルホンモノ金
属塩の補造法。
[Claims] A crude product of 4,4'-dihydroxydiphenylsulfone is dissolved in an aqueous solution of a basic substance and then salted out to precipitate and separate a monometallic salt of 4,4'-dihydroxydiphenylsulfone. A method for producing 4,4'-dihydroxydiphenylsulfone monometallic salt, characterized in that:
JP20843587A 1987-08-21 1987-08-21 Production of 4,4'-dihydroxydiphenylsulfone monometallic salt Granted JPS6450856A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20843587A JPS6450856A (en) 1987-08-21 1987-08-21 Production of 4,4'-dihydroxydiphenylsulfone monometallic salt
DE3890647A DE3890647C2 (en) 1987-08-21 1988-08-17 Process for the purification of crude 4,4'-dihydroxydiphenyl sulfone
PCT/JP1988/000813 WO1989001469A1 (en) 1987-08-21 1988-08-17 Process for purifying 4,4'-dihydroxydiphenyl sulfone
GB8908173A GB2216125B (en) 1987-08-21 1988-08-17 Process for purifying 4,4'-dihydroxydiphenylsulfone
DE19883890647 DE3890647T1 (en) 1987-08-21 1988-08-17 METHOD FOR PURIFYING 4,4'-DIHYDROXYDIPHENYL SULPHONE
US07/362,411 US5097074A (en) 1987-08-21 1988-08-17 Process for purifying 4,4'-dihydroxydiphenylsulfone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20843587A JPS6450856A (en) 1987-08-21 1987-08-21 Production of 4,4'-dihydroxydiphenylsulfone monometallic salt

Publications (2)

Publication Number Publication Date
JPS6450856A JPS6450856A (en) 1989-02-27
JPH05383B2 true JPH05383B2 (en) 1993-01-05

Family

ID=16556160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20843587A Granted JPS6450856A (en) 1987-08-21 1987-08-21 Production of 4,4'-dihydroxydiphenylsulfone monometallic salt

Country Status (1)

Country Link
JP (1) JPS6450856A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071045A1 (en) 2008-12-19 2010-06-24 公立倧孊法人倧阪府立倧孊 Capillary for immunoassay, and capillary immunoassay method using same

Also Published As

Publication number Publication date
JPS6450856A (en) 1989-02-27

Similar Documents

Publication Publication Date Title
EP0220855B1 (en) Process for recovering 4,4' dihydroxydiphenyl sulfone from an isomer mixture
KR100392740B1 (en) Manufacturing method of adipic acid
JPH05383B2 (en)
JPH0512344B2 (en)
JPH0478609B2 (en)
US5097074A (en) Process for purifying 4,4'-dihydroxydiphenylsulfone
GB2109369A (en) Process for purifying guanine
KR830001465B1 (en) Isoleucine Purification Method
JPH04145061A (en) Production of highly pure 4,4'-dihydroxydiphenyl sulfone
US5001270A (en) Process for recovering 4,4' dihydroxydiphenyl sulfone from an isomer mixture
US4246180A (en) Process for separating off 1-amino-4-bromoanthraquinone-2-sulphonic acid
US3994963A (en) Schaeffer salt purification
US2414303A (en) Recovery of cysteine
JPH0574583B2 (en)
JPH10139756A (en) Purification of 2,4'-dihydroxyphenylsulfone
JP4840750B2 (en) Method for producing high purity 4,4'-dihydroxydiphenylsulfone
JP2000095728A (en) Production of sorbic acid
JP4124319B2 (en) Method for producing 2,4'-dihydroxydiphenylsulfone
JP4520591B2 (en) Method for producing 3,3'-diallyl-4,4'-dihydroxydiphenylsulfone
US3355485A (en) Preparation of sodium cyclohexyl sulfamate free of sulfate ions
JPH01131143A (en) Optical resolution of d,l-carnitinenitrile chloride
JP3003288B2 (en) Method for producing sodium N-alkylaminoethanesulfonate
JPH05194311A (en) Purification of 4,4'-bisnaphthalic acid
JP2641022B2 (en) Purification method of 4,4'-dihydroxydiphenyl sulfone
JP2003089673A (en) Method for separating and purifying iodo-2-methylbenzoic acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080105