JPH01290690A - Method for removing volatile content in saccharide fatty acid ester producing reaction mixture - Google Patents
Method for removing volatile content in saccharide fatty acid ester producing reaction mixtureInfo
- Publication number
- JPH01290690A JPH01290690A JP12037788A JP12037788A JPH01290690A JP H01290690 A JPH01290690 A JP H01290690A JP 12037788 A JP12037788 A JP 12037788A JP 12037788 A JP12037788 A JP 12037788A JP H01290690 A JPH01290690 A JP H01290690A
- Authority
- JP
- Japan
- Prior art keywords
- fatty acid
- reaction mixture
- salt
- water
- sucrose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000014113 dietary fatty acids Nutrition 0.000 title claims abstract description 42
- 229930195729 fatty acid Natural products 0.000 title claims abstract description 42
- 239000000194 fatty acid Substances 0.000 title claims abstract description 42
- 239000011541 reaction mixture Substances 0.000 title claims abstract description 37
- -1 saccharide fatty acid ester Chemical class 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 32
- 235000002639 sodium chloride Nutrition 0.000 claims abstract description 37
- 150000003839 salts Chemical class 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000007810 chemical reaction solvent Substances 0.000 claims abstract description 27
- 230000007935 neutral effect Effects 0.000 claims abstract description 24
- 235000019387 fatty acid methyl ester Nutrition 0.000 claims abstract description 19
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 15
- 239000003054 catalyst Substances 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000002244 precipitate Substances 0.000 claims abstract description 11
- 239000000344 soap Substances 0.000 claims abstract description 11
- 239000002253 acid Substances 0.000 claims abstract description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 3
- 239000011780 sodium chloride Substances 0.000 claims abstract description 3
- 229930006000 Sucrose Natural products 0.000 claims description 31
- 239000005720 sucrose Substances 0.000 claims description 31
- 235000000346 sugar Nutrition 0.000 claims description 29
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 18
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 239000008346 aqueous phase Substances 0.000 claims description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical group CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- PHZLMBHDXVLRIX-UHFFFAOYSA-M potassium lactate Chemical compound [K+].CC(O)C([O-])=O PHZLMBHDXVLRIX-UHFFFAOYSA-M 0.000 claims description 5
- 239000001521 potassium lactate Substances 0.000 claims description 5
- 235000011085 potassium lactate Nutrition 0.000 claims description 5
- 229960001304 potassium lactate Drugs 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 150000005690 diesters Chemical class 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 239000004310 lactic acid Substances 0.000 claims description 4
- 235000014655 lactic acid Nutrition 0.000 claims description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 claims description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 3
- 239000010446 mirabilite Substances 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 2
- 238000006386 neutralization reaction Methods 0.000 claims description 2
- 235000011056 potassium acetate Nutrition 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000010979 pH adjustment Methods 0.000 claims 1
- 125000000185 sucrose group Chemical group 0.000 claims 1
- 239000002904 solvent Substances 0.000 abstract description 20
- 238000000746 purification Methods 0.000 abstract description 10
- 150000001720 carbohydrates Chemical class 0.000 abstract 1
- 150000004702 methyl esters Chemical class 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 9
- 150000008163 sugars Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Saccharide Compounds (AREA)
Abstract
Description
本発明は、溶媒法にて合成された粗製の蔗糖脂肪酸エス
テルの10製に際して、蔗糖脂肪酸エステルを含む反応
混合物中の揮発分(反応溶媒)を溶媒を用いないで工業
的に除去する方法に関する。゛The present invention relates to a method for industrially removing volatile components (reaction solvent) in a reaction mixture containing a sucrose fatty acid ester without using a solvent when producing a crude sucrose fatty acid ester synthesized by a solvent method.゛
今日、有用なイオン性界面活性として広く利用されてい
る1砧脂肪酸エステル(以下″SE’と略記することが
ある)は、現在(a) Z4糖を水の存在下に脂肪酸石
鹸と共に溶融混合物とし、触媒の存在下に高級脂肪酸メ
チルエステルと反応させる方法(水媒法:特公昭昭5l
−14485)及び(b)蔗糖と高級脂肪酸メチルエス
テルなジメチルホルムアミドやジメチルスルホキシドな
どの溶媒を用いて反応させる方法(溶媒法:特公昭35
−13102)のいずれかにより合成されている。
これら両方法の中、前者の(a)法では溶媒の問題は起
こらないが、介添用として要求される高純度のSE型製
造場合(b)法では1反応混合物中に残留している揮発
分、つまり残存反応溶媒の除去が問題である。近来、こ
の揮発分(以下、“反応溶媒”と呼ぶ)の規制が厳しく
なり、例えば米国FDAの規制によると、SE中の残存
反応溶媒(ジメチルスルホキシド)は2 PP@以下と
されている(Fed、Regist、 、51(214
) 、40160−1)。
従来から、ジメチルスルホキシドやジメチルホルムアミ
ド等の反応溶媒を1反応混合物(S E。
石齢、脂肪酸、未反応脂肪酸メチルエステル、未反応の
糖及び触媒等の混合物)から除去するには煩雑な操作を
必要としていた。
例えば1代表的な特開昭51−29417によれば、水
と“精製溶媒″(反応溶媒と区別するために、特にそう
呼ぶ)の混合溶液が軽液層(上層)と出液P:j(下層
)に分相する性質が利用される。
即ち、一般に重液層(下層)には水が多く含まれている
ので、親水性の未反応糖、触媒由来の塩などがこのm液
層(下層)に溶解している。一方軽液層(上層)は、精
製溶媒が多く含まれているので、SE、脂肪酸、未反応
脂肪酸メチルエステル等の極性の小さいものは、この軽
液層に溶解してくる。
ところが、ジメチルスルホキシドなど反応溶媒は、下層
の重液層にも溶解するが、都合の悪いことに上音の軽液
層にも溶解するので、この方法で反応溶媒を完全分離す
るのは不可能である。従って、微量の反応溶媒を除去す
るだけの目的で、非常に多量の精製溶媒が必要であった
。しかるに精製溶媒の多用は、以下の難点を生じ、これ
は、小規模な場合はともかく、工業的規模でのSE型製
造当る工場に於ては、溶媒取扱いに因る不利、不便は目
に余るものであった。
■ 爆発、火災の危険性。
・■ 上の■に備えた電気装置の防爆化。
■ 上の■に備えた製造装首の密閉化。
■ 上の■に備えた建物全体の耐火構造化。
■ 上の■、■、■による固定費の上昇。
■ 溶媒の損耗による原価の上昇。
■ 製品蔗糖脂肪酸エステル中に残留する残留溶媒の負
効果。
■ 従業員の健康上へのg影響、ひいてはこれによる工
数の増大と原価の上昇。
このような事情から、SE精製時における精製溶媒の使
用を不必要化する精製技術の開発は、当業界における切
実な要望であった。Today, fatty acid esters (hereinafter sometimes abbreviated as "SE's"), which are widely used as useful ionic surfactants, are currently produced by (a) Z4 sugars in a molten mixture with fatty acid soaps in the presence of water; , a method of reacting with higher fatty acid methyl ester in the presence of a catalyst (aqueous method: Special Publication Showa 5l)
-14485) and (b) A method of reacting sucrose with higher fatty acid methyl ester using a solvent such as dimethylformamide or dimethyl sulfoxide (solvent method: Japanese Patent Publication No. 35
-13102). Of these two methods, the former (a) method does not cause solvent problems, but in the case of high-purity SE type production required as a carrier additive, method (b) eliminates the volatile matter remaining in the reaction mixture. In other words, the problem is the removal of the residual reaction solvent. In recent years, regulations on this volatile matter (hereinafter referred to as "reaction solvent") have become stricter. For example, according to US FDA regulations, the residual reaction solvent (dimethyl sulfoxide) in SE is limited to 2 PP@ or less (Fed. ,Regist, ,51(214
), 40160-1). Conventionally, complicated operations have been required to remove reaction solvents such as dimethyl sulfoxide and dimethyl formamide from a single reaction mixture (SE, a mixture of stone ages, fatty acids, unreacted fatty acid methyl esters, unreacted sugars, catalysts, etc.). I needed it. For example, according to 1 representative Japanese Patent Application Laid-Open No. 51-29417, a mixed solution of water and a "purification solvent" (especially referred to as such to distinguish it from a reaction solvent) has a light liquid layer (upper layer) and an ejected liquid P:j The property of phase separation in the (lower layer) is utilized. That is, since the heavy liquid layer (lower layer) generally contains a large amount of water, hydrophilic unreacted sugars, catalyst-derived salts, etc. are dissolved in this m liquid layer (lower layer). On the other hand, since the light liquid layer (upper layer) contains a large amount of purified solvent, substances with low polarity such as SE, fatty acids, and unreacted fatty acid methyl esters are dissolved in this light liquid layer. However, reaction solvents such as dimethyl sulfoxide dissolve in the lower heavy liquid layer, but unfortunately they also dissolve in the upper light liquid layer, making it impossible to completely separate the reaction solvent using this method. It is. Therefore, a very large amount of purified solvent was required just for the purpose of removing trace amounts of reaction solvent. However, the heavy use of purified solvents causes the following difficulties, and this is because, although it may be small-scale, in factories that manufacture SE type on an industrial scale, the disadvantages and inconveniences caused by handling solvents are noticeable. It was something. ■ Risk of explosion or fire.・■ Explosion-proofing of electrical equipment in preparation for ■ above. ■ Seal the manufacturing neck in preparation for the above ■. ■ The entire building will be made into a fire-resistant structure in preparation for ■ above. ■ Increase in fixed costs due to ■, ■, and ■ above. ■ Increased cost due to solvent wastage. ■ Negative effects of residual solvent remaining in the product sucrose fatty acid ester. ■ Impact on employees' health, which in turn increases man-hours and costs. Under these circumstances, there has been a pressing need in the industry to develop a purification technique that makes it unnecessary to use a purification solvent during SE purification.
本発明は、粗製SHの精製に際し、精製用有機溶媒の使
用を無くすことによって、溶媒の使用に起因する全ての
問題を解決するのを目的とする。The present invention aims to solve all the problems caused by the use of solvents by eliminating the use of organic solvents for purification during the purification of crude SH.
以上の目的を達成するため1本発明に係る蔗糖脂肪酸エ
ステル生成反応混合物中の揮発分の除去法は、未反応の
糖、未反応の脂肪酸メチルエステル、触奴1石齢、@肋
酸及び揮発分(残留する反応溶媒)を含む蔗糖脂肪酸エ
ステル生成反応混合物に酸を加えて中性領域のpHに調
整後、水、中性塩及び蔗糖を加え、加熱して揮発分(残
留する反応溶媒)を水相側に移行させると共に、蔗糖脂
肪酸エステル、未反応の脂肪酸メチルエステル、石齢及
び脂肪酸を含む沈殿を析出させ、これを水和から分別す
ることを特徴とする。
(発明の経過)
精製溶媒を用いずに反応混合物中のSEを沈殿させて未
反応糖などの親木性物質から分離する方法自体は公知で
あって1例えば代表的なものとして、
(+) m性水溶液によるSHの沈殿方法(英国特許8
0!9,815 (1959)
(2)一般の中性塩水溶液によるSHの沈澱法(特公昭
42−8850)
などが知られている。
しかし方法(1)のように例えば塩酸水溶液を反応混合
物中に加えると、成る程SEは直ちに沈澱するが、未反
応のJ21糖は容易にグルコースと果糖とに分解、転化
し、たとえ低温(0〜5℃)で行っても分解を避けるこ
とができない、このため未反応糖の回収、再利用が困難
となる。
また、方法(2)のように1食塩や芒硝などの中性塩の
水溶液を反応混合物中に加えてもSEは直ちに沈澱する
。この場合、未反応糖の分解は起こらないが、SE中の
有用な成分であるモノエステルが水層側に溶解してしま
うため、大きなロスを生じるのみでなく、特に、高HL
BのSEを得たいとき妨げとなる。
そこで本発明者は、(イ)水層側に溶解するSE量を最
少限に押えるのみならず、可能ならば該量を零として全
量のSEを沈澱させること、(a)未反応糖の分解を避
けること、及び(ハ)残留する反応溶媒を水層外に溶解
させることにより、SEから分離することの3点を目標
に、多くの塩析実験を行なった結果、tjtBと中性塩
の2物質の水溶液を反応混合物中に溶解させたとき、適
当なF)I、温度、中性塩の濃度、蔗糖の濃度及び水量
の組合せの下で、SEの略々全量が沈殿するのみならず
。
意外なことに、水相には未反応の糖以外に反応溶媒が溶
解するに至るという都合の良い現象を見出した0本発明
は、以上の新規知見を基礎とするものである。以下1発
明の詳細に付き記述する。
(SE反応混合物)
上記溶媒法によるSEの合成においては1通常、蔗糖と
脂肪酸メチルエステルとの混合物に対し数倍量の反応溶
媒1例えばジメチルスルホキシドを添加溶解させ、炭酸
カリウム等のアルカリ性触媒の存在下に真空20〜30
Torr、近辺で数時間80〜80℃に保持する。こ
れにより1反応率90%以上(脂肪酸メチルエステル基
準)でSE反応混合物が得られる0次いで、本反応混合
物中のアルカリ性触媒の活性を消失させるため、これに
中和当量の乳酸、酢酸等の有機酸又は塩酸、硫酸等の鉱
酸を添加する。この中和によって触媒、例えば炭酸カリ
ウムは、乳酸カリウム等の対応する酸のカリウム塩に変
化する。
最後に1反応溶媒、例えばジメチルスルホキシドを真空
下に留去すると、大略下記組成のSE反応混合物となる
。
蔗糖脂肪酸エステル =15〜82z未反応糖
=1.0 〜80%未反応脂肪酸メチ
ルエステル=0.5 〜10%KzCCh O)中性塩
= 0.05〜7%石鹸
=1.0 〜10%脂肪酸
=0.5 〜10%揮発分(残留する反応溶媒) =
5.0 〜30%このとき、SEのエステル分布はモノ
エステル10〜75%(ジエステル以上が80〜25z
)である。
本発明は、脂肪酸メチルエステル、石齢、脂肪酸の夫々
が、主として共通の飽和脂肪酸根を持ち。
かつ、その炭素数が16〜22である場合に好適である
。
(加水)
本発明では、先ず上記反応混合物に水を添加すると共に
、そのP)Iが6.2〜8.2の範囲内にないときは、
該範囲内に、好ましくはpH7,5に調整する。添加さ
るべき水の量は、好ましくはff1flL比として、水
:反応混合物=5:l〜40:1(重量比)、更に望ま
しくは、水:反応混合物=5:l〜20:1に相当する
量である。加水量が上の範囲から外れた場合1例えば水
:反応混合物の量比が5以下の場合は、加水後の水溶液
の粘度が過大となり、以後の操作が実質的に困難となる
。
逆に、水:反応混合物の量比が40以上となる程の過剰
の水をえた場合は、粘度が低下して事後の操作も容易と
なり、かつ目的とする反応溶媒の除去も良好に行なわれ
るが、未反応糖等を回収するための脱水に多大のエネル
ギーコストを必要とするようになるので好ましくない。
既述の通り、対象水溶液のpH値は、6.2〜8.2の
中性領域内に維持されるのが好ましい、 pH値が8.
2を越えるとアルカリによる定量的なSEの分解が懸念
され、また6、2未満でも、例えば90℃以上の高温に
晒されれば酸分解を起こす危険がある。
(中性塩及び蔗糖の添加)
次に、以上の如く加水(及びpH,it!]整)された
SE反応混合物の水溶液に中性塩及び蔗糖を加える。こ
の際、添加さるべき中性塩としては、食塩、芒硝、乳酸
カリウム又は酢酸カリウムが好ましいが、水溶性で、か
つ無害のものであれば、別段例示のもののみに限る訳で
はない、より重要なことは、この場合添加すべき中性塩
の量が、好ましくは先ず下式(3)を満たしていること
である。
=0.015〜0.12 (重量比)・・・・・・・■
ここで、
合計塩量=加えるべき中性塩量子
触媒から形成される塩・・・・・・・■合計tI量=加
えるべきrA糖十
当初から存在した未反応糖・・■
を意味する。
次に、加えるべき蔗糖量は下式■を満たすように定めら
れるのがよい。
= 0.025〜0.20 (重量比)・・・・・・・
・0以上に加えて、上記式■及び式■に従って添加さる
べき合計基量:合計糖量の比率も0.4〜0.6゜さら
に望ましくは0,5.即ち下式■を満足しているのが好
ましい。
本発明者らは、前記反応混合物に、上記式■、式■及び
式■を全部溝たすように中性塩及び蔗糖を加えた水溶液
(SEの沈澱を含む)を50℃〜80℃まで加熱、昇温
させると、系、内に存在するSEが実質的に水相側に溶
解せずに、略々全量沈澱側に移行し、他方揮発分(残留
する反応溶媒)は水相内に留まることを見出した。この
現象は、SE反応混合物中に含まれる揮発分の量が5〜
30%といった大幅の変動を示す場合でも認められる特
異なものであって、これにより、精製用溶媒を用いない
で、SHの損失を招くことなしに揮発分を除去するとい
う目的が達成される。
以上の現象をより詳しく図示したのが添付第1図である
。即ち、本図は、
水相側に溶解しているSEの重M=Y [gl沈澱して
いるSEの重量=X [gl
全S E (X+Y)[gl に対して、水相側に溶解
しているSEの重量割合=φ[%]
としたとき、以下の実験条件で示される条件の下で、下
式■で定義されるφの値がどのように変化するかを、三
角座標で示したものである。
〔実験条件〕
温度=80℃、 pH: 7.5
水:反応混合物・=7.4:1’(重量比)宰[反応混
合物の組成]
蔗糖脂肪酸エステル・−=29!
未反応糖 =351
未反応脂肪酸メチルエステル:=2z
触媒由来の塩 = 1z石鹸
= 3%
脂肪酸 = tX揮発分(残留す
る反応溶媒)=29X
φ・[蔗糖脂肪酸エステルの組成]
七ノエステル=?31 ジエステル以上=27zなお、
ここに合計塩は式(2)により、また合計糖は式(3)
により夫々定義された量であって、水+合計塩十合計糖
=100として表示しである。
本図中の斜線の部分が、発明者の見出した式01式■及
び式■を同時に満たす発明の好適な実施領域である。モ
してこの斜agA域内に入るように中性塩及び蔗糖の溶
解量を決めることによって、実質的にφ=0、即ち近似
的に全部のSEを沈澱化すると同時に、水相側に、残留
揮発分を溶解させることができる。In order to achieve the above objects, 1. the method of removing volatile matter from the sucrose fatty acid ester producing reaction mixture according to the present invention is to remove unreacted sugars, unreacted fatty acid methyl esters, unreacted fatty acid methyl esters, After adding an acid to the sucrose fatty acid ester production reaction mixture containing 50% (residual reaction solvent) and adjusting the pH to a neutral range, water, neutral salts and sucrose were added, and the mixture was heated to remove volatile components (remaining reaction solvent). is transferred to the aqueous phase side, and a precipitate containing sucrose fatty acid ester, unreacted fatty acid methyl ester, stone age, and fatty acid is precipitated, and the precipitate is separated from the hydrated one. (Progress of the Invention) The method of precipitating SE in a reaction mixture and separating it from woody substances such as unreacted sugars without using a purification solvent is known. Precipitation method of SH using aqueous solution (British Patent No. 8)
0!9,815 (1959) (2) A method of precipitation of SH using a general neutral salt aqueous solution (Japanese Patent Publication No. 42-8850) is known. However, if, for example, an aqueous hydrochloric acid solution is added to the reaction mixture as in method (1), SE will immediately precipitate, but unreacted J21 sugar will easily decompose and convert into glucose and fructose, even at low temperatures (0. Decomposition cannot be avoided even if the reaction is carried out at a temperature of ~5°C), making it difficult to recover and reuse unreacted sugar. Furthermore, even if an aqueous solution of a neutral salt such as monosalt or mirabilite is added to the reaction mixture as in method (2), SE will immediately precipitate. In this case, unreacted sugars do not decompose, but monoesters, which are useful components in SE, are dissolved in the aqueous layer, resulting in not only large losses but also especially high HL
It becomes a hindrance when you want to obtain SE of B. Therefore, the present inventor aimed to (a) not only minimize the amount of SE dissolved in the aqueous layer side, but also reduce the amount to zero if possible to precipitate the entire amount of SE, and (a) decompose unreacted sugars. As a result of conducting many salting-out experiments with the following three goals: (c) separating the residual reaction solvent from the SE by dissolving it outside the aqueous layer, we found that the relationship between tjtB and the neutral salt was When aqueous solutions of the two substances are dissolved in a reaction mixture, under appropriate combinations of F)I, temperature, concentration of neutral salt, concentration of sucrose, and amount of water, not only almost the entire amount of SE will precipitate. . Surprisingly, we discovered a convenient phenomenon in which the reaction solvent was dissolved in addition to the unreacted sugar in the aqueous phase. The present invention is based on the above novel findings. The details of one invention will be described below. (SE reaction mixture) In the synthesis of SE by the above solvent method, 1. Usually, several times the amount of reaction solvent 1, for example, dimethyl sulfoxide, is added and dissolved in a mixture of sucrose and fatty acid methyl ester, and the presence of an alkaline catalyst such as potassium carbonate. Vacuum 20-30 below
Hold at 80-80°C for several hours at around Torr. As a result, an SE reaction mixture is obtained with a reaction rate of 90% or more (based on fatty acid methyl ester).Next, in order to eliminate the activity of the alkaline catalyst in this reaction mixture, add a neutralizing amount of lactic acid, acetic acid, or other organic Add acid or mineral acids such as hydrochloric acid or sulfuric acid. This neutralization converts the catalyst, eg potassium carbonate, to the corresponding potassium salt of the acid, such as potassium lactate. Finally, one reaction solvent, such as dimethyl sulfoxide, is distilled off under vacuum, resulting in an SE reaction mixture having approximately the following composition. Sucrose fatty acid ester = 15-82z unreacted sugar
= 1.0 ~ 80% unreacted fatty acid methyl ester = 0.5 ~ 10% KzCCh O) Neutral salt = 0.05 ~ 7% soap
=1.0 ~10% fatty acid
=0.5 to 10% volatile content (residual reaction solvent) =
5.0 to 30% At this time, the ester distribution of SE is monoester 10 to 75% (diester or more is 80 to 25%
). In the present invention, each of the fatty acid methyl ester, stone age, and fatty acid mainly has a common saturated fatty acid root. Moreover, it is suitable when the number of carbon atoms is 16 to 22. (Addition of water) In the present invention, first, water is added to the above reaction mixture, and when the P)I is not within the range of 6.2 to 8.2,
The pH is adjusted within this range, preferably to pH 7.5. The amount of water to be added preferably corresponds to water:reaction mixture = 5:l to 40:1 (weight ratio), more preferably water:reaction mixture = 5:l to 20:1, as a ff1flL ratio. It's the amount. When the amount of water added is out of the above range 1 For example, when the ratio of water to reaction mixture is less than 5, the viscosity of the aqueous solution after adding water becomes excessive, making subsequent operations substantially difficult. On the other hand, if an excess of water is obtained such that the water:reaction mixture ratio is 40 or more, the viscosity decreases, making subsequent operations easier, and the desired reaction solvent can be removed well. However, this is not preferable because dehydration for recovering unreacted sugars and the like requires a large amount of energy cost. As mentioned above, the pH value of the target aqueous solution is preferably maintained within the neutral range of 6.2 to 8.2;
If it exceeds 2, there is a risk of quantitative decomposition of SE by alkali, and even if it is less than 6.2, there is a risk of acid decomposition if exposed to high temperatures of, for example, 90° C. or higher. (Addition of Neutral Salt and Sucrose) Next, a neutral salt and sucrose are added to the aqueous solution of the SE reaction mixture that has been hydrated (and pH adjusted!) as described above. At this time, the neutral salt to be added is preferably common salt, mirabilite, potassium lactate, or potassium acetate, but it is not limited to the exemplified salts as long as they are water-soluble and harmless. What is important is that the amount of neutral salt to be added in this case preferably first satisfies the following formula (3). =0.015~0.12 (weight ratio)・・・・・・■
Here, the total amount of salt = the salt formed from the neutral salt quantum catalyst to be added...■ The total amount of tI = the rA sugar to be added and the unreacted sugar present from the beginning...■. Next, the amount of sucrose to be added is preferably determined so as to satisfy the following formula (2). = 0.025 to 0.20 (weight ratio)...
- In addition to 0 or more, the ratio of total base amount to total sugar amount to be added according to the above formulas (1) and (2) is also 0.4 to 0.6°, more preferably 0.5°. That is, it is preferable that the following formula (2) be satisfied. The present inventors added an aqueous solution (containing SE precipitate) to the reaction mixture so as to satisfy all the formulas (1), (2), and (2) above at a temperature of 50°C to 80°C. When the system is heated and the temperature is raised, the SE present in the system is not substantially dissolved in the aqueous phase and almost all of it migrates to the precipitation side, while the volatile components (residual reaction solvent) are deposited in the aqueous phase. I found it to stay. This phenomenon is due to the fact that the amount of volatiles contained in the SE reaction mixture is
It is unique in that it is observed even when the variation is as large as 30%, thereby achieving the objective of removing volatiles without using purification solvents and without incurring loss of SH. The attached FIG. 1 illustrates the above phenomenon in more detail. In other words, this figure shows that the weight of SE dissolved in the aqueous phase M = Y [gl The weight of precipitated SE = X [gl Total SE (X + Y) [gl When the weight percentage of SE = φ [%], how the value of φ defined by the following formula ■ changes under the experimental conditions shown below can be expressed using triangular coordinates This is what is shown. [Experimental conditions] Temperature = 80°C, pH: 7.5 Water: Reaction mixture = 7.4:1' (weight ratio) [Composition of reaction mixture] Sucrose fatty acid ester - = 29! Unreacted sugar = 351 Unreacted fatty acid methyl ester: = 2z Catalyst-derived salt = 1z Soap
= 3% Fatty acid = tX volatile matter (residual reaction solvent) = 29X φ・[Composition of sucrose fatty acid ester] Seven esters =? 31 Diester or more = 27z
Here, the total salt is calculated by equation (2), and the total sugar is calculated by equation (3).
The amounts are respectively defined by , and are expressed as water + total salt and total sugar = 100. The shaded area in this figure is a preferred implementation area of the invention that simultaneously satisfies Formula 01 Formula (2) and Formula (2) found by the inventor. By determining the dissolved amounts of neutral salt and sucrose so that they fall within this oblique agA region, it is possible to substantially precipitate φ=0, that is, to precipitate approximately all of the SE, and at the same time, to precipitate the remaining SE in the aqueous phase. Volatile matter can be dissolved.
未反応の糖、未反応の脂肪酸メチルエステル。
触媒1石鹸、脂肪酸及び揮発分(残留する反応溶媒)を
含む1砧脂肪酸エステル生成反応混合物に酸を加えて中
性領域のpHに調整し水、中性塩及びrMSSを加えて
加熱すると、蔗糖脂肪酸エステル。
未反応の脂肪酸メチルエステル、石鹸及び脂肪酸が沈殿
すると共に、揮発分(残留する反応溶媒)が水相側に移
行するので、全く有機溶媒を使用せずに残留揮発分を除
去することができる。特に。
式■〜■の条件を満足させるように操作することによっ
て、SEの損失が実質的に絶無の状態で残留溶媒を除去
することができる。Unreacted sugar, unreacted fatty acid methyl ester. Catalyst 1 Acid is added to the reaction mixture containing soap, fatty acid, and volatile matter (residual reaction solvent) to form a fatty acid ester, the pH is adjusted to a neutral range, and water, neutral salt, and rMSS are added and heated, resulting in sucrose. Fatty acid ester. Unreacted fatty acid methyl ester, soap, and fatty acid are precipitated, and volatile components (residual reaction solvent) are transferred to the aqueous phase, so that residual volatile components can be removed without using any organic solvent. especially. By operating so as to satisfy the conditions of formulas (1) to (2), the residual solvent can be removed with virtually no loss of SE.
以下、実施例により発明実施の態様を説明するが、例示
は単に説明用のものであって、発明の技術的amを限定
するためのものではない。
衷凰輿ユ
下表−Aの組成で表わされる溶媒法SE反応混合物から
常法通り溶媒を留去した残渣を乳酸で中和して得た乾燥
物100gに、水2,000gを加えて攪拌、溶解させ
た後、この水溶液に蔗糖82.5g及び50%乳酸カリ
ウム97.8gを加えて、75℃まで加熱、昇温させ、
沈澱したケーキを濾別し、真空下に80℃で乾爆させた
。得られた固形物の組成は下表−Bの通りであった。
また、ケーキから濾別された濾液中のSEIをゲル波過
クロマトグラフィー(出願会社刊(シュガーエステル物
語)63頁参照)で測定した結果、SEは全く検出され
なかったの反し、反応溶媒として用いたジメチルスルホ
キシドの85%が除去されていた。
表−A
# SEのエステル分1モノエステル70%、ジエステ
ル以上30%
(以下余白)
表−B
実施例2
別表−Aの組成で表わされる溶媒法SE反応混合物から
常法通り反応溶媒を留去した後、乳酸で中和、乾燥させ
た固形物100gに、水2,000gを加え攪拌、溶解
させた後、この水溶液に蔗糖28.5.及び50%乳酸
カリウム65.8.を加え、75℃まで加熱、昇温させ
た。これに、以後実施例1と同様の操作を加え、下表−
〇記載の組成の固形物を得た。
一方、ケーキより謹別された症液中に損失として含まれ
ているSEの量をゲル症過クロマトグラフィー(前出)
で定量したところ、SEの損失は0.02g(当初量の
O,Offりであったのに対し2反応溶媒であるジメチ
ルスルホキシドの95%が水相中に溶去されていた。
(以下余白)Hereinafter, embodiments of the invention will be described with reference to Examples, but the examples are merely for illustration and are not intended to limit the technical aspects of the invention. Add 2,000 g of water to 100 g of a dry product obtained by neutralizing the residue obtained by distilling off the solvent in a conventional manner from the solvent method SE reaction mixture represented by the composition shown in Table A below with lactic acid, and stir. , After dissolving, 82.5 g of sucrose and 97.8 g of 50% potassium lactate were added to this aqueous solution, heated to 75 ° C.,
The precipitated cake was filtered off and dried under vacuum at 80°C. The composition of the obtained solid was as shown in Table B below. In addition, as a result of measuring SEI in the filtrate filtered from the cake by gel wave chromatography (see page 63 of Sugar Ester Monogatari, published by the applicant company), no SE was detected. 85% of the dimethyl sulfoxide present had been removed. Table-A # Ester content of SE 1 Monoester 70%, diester or more 30% (blank below) Table-B Example 2 The reaction solvent was distilled off from the solvent method SE reaction mixture represented by the composition of Attached Table-A in a conventional manner. After that, 2,000 g of water was added to 100 g of the solid material which was neutralized with lactic acid and dried, stirred and dissolved, and 28.5 g of sucrose was added to this aqueous solution. and 50% potassium lactate 65.8. was added and heated to 75°C. To this, the same operations as in Example 1 were added, and the table below-
A solid substance having the composition described in ○ was obtained. On the other hand, the amount of SE contained as a loss in the liquid separated from the cake was measured by gelatin hyperchromatography (see above).
When quantitatively determined, the loss of SE was 0.02 g (the initial amount was O, Off, but 95% of the dimethyl sulfoxide, which was the reaction solvent for the second reaction, was eluted into the aqueous phase. )
以上説明した通り、本発明は、粗製蔗糖脂肪酸エステル
の精製に当り、精製用有機溶媒の使用を全く使用せず、
しかも蔗糖脂肪酸エステルの損失なしに残留反応溶媒を
除去する技術を提供し得たことにより、有機溶媒の使用
に起因する全ての問題の解決を通じて関連産業に寄与し
うる。As explained above, the present invention does not use any organic solvent for purification in purifying crude sucrose fatty acid ester,
Moreover, by providing a technique for removing residual reaction solvent without loss of sucrose fatty acid ester, the present invention can contribute to related industries by solving all problems caused by the use of organic solvents.
tjS1図は、水、合計糖及び合計塩の各量の変化と水
相中に溶存するff1L脂肪酸エステル量との関係を示
す三角グラフである。
特許出願人 第一工業製薬株式会社
−シ合寸塩(%)The tjS1 diagram is a triangular graph showing the relationship between changes in the amounts of water, total sugar, and total salt and the amount of ff1L fatty acid ester dissolved in the aqueous phase. Patent applicant: Daiichi Kogyo Seiyaku Co., Ltd. - Shigosunshio (%)
Claims (1)
、石鹸、脂肪酸及び揮発分を含む蔗糖脂肪酸エステル生
成反応混合物に酸を加えて中性領域のpHに調整し、水
、中性塩及び蔗糖を加え、加熱して揮発分を水相側に移
行させると共に、蔗糖脂肪酸エステル、未反応の脂肪酸
メチルエステル、石鹸及び脂肪酸を含む沈殿を析出させ
、これを水相から分別することを特徴とする蔗糖脂肪酸
エステル生成反応混合物中の揮発分の除去法。 2 調整後のpHが6.2〜8.2である請求項1記載
の方法。 3 水、中性塩及び蔗糖を加えた水溶液の加熱温度が5
0〜80℃である請求項1記載の方法。 4 加えるべき水と反応混合物の重量比が、水:反応混
合物:5:1〜40:1である請求項1記載の方法。 5 水、中性塩及び蔗糖を加えた水溶液中の塩、糖及び
水の割合が、 合計塩/(水+合計塩+合計糖)=0.015〜0.1
2かつ、 合計糖/(水+合計塩+合計糖)=0.025〜0.2
0かつ、 合計塩/合計糖=0.4〜0.8 合計塩=加えられるべき中性塩+触媒の 中和によって生成する塩 合計糖=加えられるべき蔗糖+当初から の未反応糖 なる関係を有する請求項1記載の方法。 6 pHの調整に使用する酸類が、乳酸、酢酸、塩酸又
は硫酸のいずれかである請求項1記載の方法。 7 反応混合物の組成が、 蔗糖脂肪酸エステル=15〜92% 未反応糖=1.0〜80% 未反応脂肪酸メチルエステル=0.5〜10%触媒(K
_2CO_3として)=0.05〜7%石鹸=1.0〜
10% 脂肪酸=0.5〜10% 揮発分(残留する反応溶媒)=5.0〜30%なる請求
項1又は4記載の方法。 8 反応混合物中の脂肪酸メチルエステル、石鹸、脂肪
酸の夫々に主として含まれる脂肪酸根が、共通の飽和脂
肪酸根を持ち、かつその炭素数が、18〜22である請
求項1、4又は7記載の方法。 9 反応混合物中の揮発分(残留する反応溶媒)が、ジ
メチルスルホキシド又はジメチルホルムアミドのいづれ
かである請求項1又は7記載の方法。 10、加えるべき中性塩が、 食塩、芒硝、乳酸カリウム又は酢酸カリウムのいずれか
である請求項1又は5記載の方法。 11、蔗糖脂肪酸エステルのエステル分布が、モノエス
テル含分として、10%〜75%(ジエステル以上が9
0%〜25%)である請求項1又は7記載の方法。[Claims] 1. Add acid to a sucrose fatty acid ester producing reaction mixture containing unreacted sugar, unreacted fatty acid methyl ester, catalyst, soap, fatty acid and volatile components to adjust the pH to a neutral range, and add water to the reaction mixture. Add neutral salt and sucrose and heat to transfer volatile components to the aqueous phase, precipitate a precipitate containing sucrose fatty acid ester, unreacted fatty acid methyl ester, soap and fatty acids, and separate this from the aqueous phase. A method for removing volatile matter in a sucrose fatty acid ester producing reaction mixture. 2. The method according to claim 1, wherein the pH after adjustment is 6.2 to 8.2. 3 The heating temperature of the aqueous solution containing water, neutral salt and sucrose is 5.
The method according to claim 1, wherein the temperature is 0 to 80°C. 4. The process according to claim 1, wherein the weight ratio of water to be added to the reaction mixture is from 5:1 to 40:1 water:reaction mixture. 5 The ratio of salt, sugar, and water in an aqueous solution containing water, neutral salt, and sucrose is: Total salt/(Water + Total salt + Total sugar) = 0.015 to 0.1
2 and total sugar/(water + total salt + total sugar) = 0.025-0.2
0 and total salt/total sugar = 0.4 to 0.8 Total salt = neutral salt to be added + salt generated by neutralization of catalyst Total sugar = sucrose to be added + unreacted sugar from the beginning The method according to claim 1, comprising: 6. The method according to claim 1, wherein the acid used for pH adjustment is lactic acid, acetic acid, hydrochloric acid, or sulfuric acid. 7 The composition of the reaction mixture is: sucrose fatty acid ester = 15-92% unreacted sugar = 1.0-80% unreacted fatty acid methyl ester = 0.5-10% catalyst (K
_2CO_3) = 0.05~7% Soap = 1.0~
5. The method according to claim 1, wherein: 10% fatty acid = 0.5-10% volatile content (residual reaction solvent) = 5.0-30%. 8. The fatty acid radical according to claim 1, 4 or 7, wherein the fatty acid radicals mainly contained in each of the fatty acid methyl ester, soap, and fatty acid in the reaction mixture have a common saturated fatty acid radical and have a carbon number of 18 to 22. Method. 9. The method according to claim 1 or 7, wherein the volatile component (residual reaction solvent) in the reaction mixture is either dimethyl sulfoxide or dimethyl formamide. 10. The method according to claim 1 or 5, wherein the neutral salt to be added is any one of common salt, mirabilite, potassium lactate, or potassium acetate. 11. The ester distribution of sucrose fatty acid ester is 10% to 75% as monoester content (diester or more is 9
8. The method according to claim 1 or 7, wherein the amount is 0% to 25%).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12037788A JP2686959B2 (en) | 1988-05-17 | 1988-05-17 | Method for removing volatile matter from sucrose fatty acid ester formation reaction mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12037788A JP2686959B2 (en) | 1988-05-17 | 1988-05-17 | Method for removing volatile matter from sucrose fatty acid ester formation reaction mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01290690A true JPH01290690A (en) | 1989-11-22 |
JP2686959B2 JP2686959B2 (en) | 1997-12-08 |
Family
ID=14784702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12037788A Expired - Fee Related JP2686959B2 (en) | 1988-05-17 | 1988-05-17 | Method for removing volatile matter from sucrose fatty acid ester formation reaction mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2686959B2 (en) |
-
1988
- 1988-05-17 JP JP12037788A patent/JP2686959B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2686959B2 (en) | 1997-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2013034A (en) | Sugar acylation | |
US4995911A (en) | Process for recovering unreacted sucrose from reaction mixture in synthesis of sucrose fatty acid esters | |
JPH02117691A (en) | Production of powdery saccharide fatty acid ester | |
JPH03128392A (en) | Method for purification of 3 alpha, 7 beta- dihydroxy-12-keto cholanic acid compound | |
UA79741C2 (en) | Method for removing impurities from 2-nitro-4-methylsulfonylbenzoic acid, purified 2-nitro-4-methylsulphonylbenzoic acid and process for preparation of mesotrione | |
EP0062565B1 (en) | Process for the preparation of sugar esters and especially esters of saccharose | |
JPH01290690A (en) | Method for removing volatile content in saccharide fatty acid ester producing reaction mixture | |
JP2812792B2 (en) | Process for producing pure guanine with improved color | |
JPH0421693A (en) | Decoloring of sucrose fatty acid ester | |
JP2686960B2 (en) | Purification method of sucrose fatty acid ester | |
JP2688985B2 (en) | Method for purifying high HLB sucrose fatty acid ester | |
JP2000095728A (en) | Production of sorbic acid | |
JP2686966B2 (en) | Method for recovering unreacted sugar in powder form from sucrose fatty acid ester synthesis reaction mixture | |
JPS6055052B2 (en) | Method for producing benzenecarboxylic acid ester | |
US3239556A (en) | Purification of hydroxyethyl terephthalate | |
JP2688937B2 (en) | Method for producing powdery sucrose fatty acid ester | |
US2630434A (en) | Purification and hydrolysis of esters of folic acid | |
SU833250A1 (en) | Method of obtaining beta-d-mannose | |
JPH029892A (en) | Method for purifying sucrose ester of fatty acid | |
JPS61212593A (en) | Purification of sucrose fatty acid ester | |
SU349162A1 (en) | ||
JPH0253792A (en) | Method for purifying sucrose ester of fatty acid | |
JPH0240393A (en) | Purification of sucrose fatty acid ester | |
JPS5826856A (en) | Purification of n-benzyloxycarbonylaspartic acid | |
JPH0137984B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |