JPH01298128A - Intermetallic compound ti3al-base lightweight heat-resisting alloy - Google Patents

Intermetallic compound ti3al-base lightweight heat-resisting alloy

Info

Publication number
JPH01298128A
JPH01298128A JP12964388A JP12964388A JPH01298128A JP H01298128 A JPH01298128 A JP H01298128A JP 12964388 A JP12964388 A JP 12964388A JP 12964388 A JP12964388 A JP 12964388A JP H01298128 A JPH01298128 A JP H01298128A
Authority
JP
Japan
Prior art keywords
alloy
strength
ti3al
phase
obtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12964388A
Other languages
Japanese (ja)
Inventor
Hisashi Maeda
尚志 前田
Minoru Okada
稔 岡田
Yoshiaki Shida
志田 善明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12964388A priority Critical patent/JPH01298128A/en
Publication of JPH01298128A publication Critical patent/JPH01298128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve the cold ductility of the title alloy without impairing the excellent high temp. strength of Ti3Al by adding specific amt. of V to Ti3Al of which specific amt. of Al is incorporated into Ti. CONSTITUTION:The lightweight heat-resisting alloy is constituted of, by weight, 12-16% Al, 3-12% V and the balance Ti. In the Ti alloy, since Ti3Al which does not show the drastical lowering of strength even if the range of high temp. is regulated to the base, it has excellent high temp. strength, and since the two-phase structure of (Ti3Al+beta) can be obtd. by the addition of V, its cold ductility is ensured. In the Ti alloy, at the time of <12% Al content, even if the above two-phase structure is obtd., strength is lowered, and, at the time of >16% Ti3Al single phase is easy to form and cold ductility can not be ensured, and even if the above two-phase structure is obtd., a large amt. of V addition is required to impair its lightweight characteristics. As for the V content, the above two-phase structure can not be obtd. at the time of <3%, and a beta phase is run to excess at the time of >15% to reduce the high temp. strength and to lose the lightweight characteristics.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、軽量な上に高温強度に優れ、しかも良好な
常温延性を示す宇宙・航空機用エンジンに係る部材や発
電用ガスタービン部材等として好適な金属間化合物Ti
:+Aj!を基とする耐熱合金に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to parts for space/aircraft engines, gas turbine parts for power generation, etc., which are lightweight, have excellent high-temperature strength, and have good room-temperature ductility. Suitable intermetallic compound Ti
:+Aj! This relates to heat-resistant alloys based on

〈従来技術とその課題〉 Ti−Al!2元合金系にはTizA l 、 TiA
j!及びT i Aj! 2なる3種の金属間化合物の
存在が知られているが、このうちのrTi3AlJは“
α2相”とも呼ばれていてDol、型の結晶構造を有し
ており、化学量論組成(Ti −15,8重量%Aλ)
からへ2側に広い固溶範囲を形成すると共に、高温では
α+β相を経てβ相に変態するものである。そして、こ
のTi3Aj!金属間化合物はチタンよりも軽い上、強
度も高く、しかもその強度は750℃程度までは大きく
低下することがないことに加え、該温度付近まででは耐
酸化性も良好であるとの好ましい特性を有するものであ
った。
<Prior art and its problems> Ti-Al! Binary alloys include TizAl, TiA
j! and T i Aj! The existence of three types of intermetallic compounds is known, among which rTi3AlJ is “
It is also called "α2 phase" and has a Dol-type crystal structure, with a stoichiometric composition (Ti -15,8% by weight Aλ).
It forms a wide solid solution range on the 2 side, and transforms into the β phase via the α+β phase at high temperatures. And this Ti3Aj! Intermetallic compounds are lighter than titanium and have higher strength, and in addition to not significantly decreasing their strength up to about 750°C, they also have favorable properties such as good oxidation resistance up to around this temperature. It was something that I had.

従って、現在実用されている高温用チタン合金の使用上
限温度が約600℃であることからして、Ti3A I
!金属間化合物を利用すれば実用チタン合金の使用限界
温度をより向上させることが可能であるとの推測もなさ
れ、これによってジェットエンジン用部材やタービン用
部材等へのチタン合金応用の幅を更に広げ得るとの期待
が持たれた。
Therefore, considering that the upper limit temperature for use of high-temperature titanium alloys currently in practical use is approximately 600°C, Ti3A I
! It has also been speculated that the use of intermetallic compounds can further improve the operating temperature limits of practical titanium alloys, which will further expand the range of applications of titanium alloys to jet engine parts, turbine parts, etc. I was hopeful that I would get it.

ところが、Ti*A Rは強度が高い反面で常温延性が
非常に乏しいと言う問題を抱えるものであり、このため
工業製品としての実際的応用が制限されているのが現状
であった。
However, although Ti*AR has high strength, it has a problem of extremely poor cold ductility, and for this reason, its practical application as an industrial product is currently limited.

このようなことから、Ti3Alの実用化を目指し、こ
れにNbを11〜16原子%(19,5〜30重千%)
添加して常温及び低温域における延性を改善する提案も
なされた(米国特許第4,292.077号明細書)。
For this reason, we aim to put Ti3Al into practical use, and add 11 to 16 at% of Nb (19.5 to 30,000% by weight) to it.
A proposal has also been made to improve the ductility in the room temperature and low temperature range by adding it (US Pat. No. 4,292.077).

この提案は、β安定化元素であるNbを添加して合金組
織を(TizAj!+β〕組織とし、これによってTi
3八fの延性改善を図るものであり、具体的にはチタン
合金の化学組成を(Ti −(13〜15)重量%Aj
! −(]、9.5〜30)重量%Nb)に構成するも
のであって、このうちNbについてはVにより4原子%
まで置換させ得るものとされている。
This proposal involves adding Nb, which is a β-stabilizing element, to make the alloy structure (TizAj!+β), thereby increasing the Ti
The purpose is to improve the ductility of 38f, and specifically, the chemical composition of the titanium alloy is changed to (Ti - (13-15) wt% Aj
! - (], 9.5 to 30) weight% Nb), of which Nb is composed of 4 atomic% by V.
It is said that it is possible to replace up to

しかしながら、米国特許第4,292,077号明細書
に記載された上記提案は、Nbを19.5〜30重量%
と大量に含有させるためにTi3A Iの魅力的な特長
である“軽量性”を大きく損なうものであり、更には、
Nbは高価な金属であることから製品価格の上昇を余儀
無くされる等の経済的な問題をも抱えるものであって、
実用面では少なからぬ不満を残すものであった。
However, the above proposal described in U.S. Pat. No. 4,292,077 contains 19.5 to 30% by weight of Nb.
Because it contains a large amount of Ti3A I, it greatly impairs the attractive feature of Ti3A I, which is its lightness.
Since Nb is an expensive metal, it also has economic problems such as an unavoidable increase in product prices.
In practical terms, this left quite a bit of dissatisfaction.

そこで、本発明は、常温延性が2%以上で、かつ700
℃での引張強さが33kgf/−以上を示す軽量合金の
提供を目的としてなされたものである。
Therefore, the present invention has a cold ductility of 2% or more and a
This was made for the purpose of providing a lightweight alloy exhibiting a tensile strength of 33 kgf/- or more at °C.

〈課題を解決するための手段〉 本発明者等は、上述のような観点から、比重増大や高温
強度の低下を極力抑制してTi3A I!に見られる軽
量で耐熱性に優れると言う好ましい特長を維持しながら
、かつ格別なコストアップなくその常温延性を改善し、
軽量で優れた耐熱性を示す安価なTi3Aj?系実用合
金を提供すべく研究を行ったところ、次に示すような知
見が得られた。
<Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors suppressed the increase in specific gravity and the decrease in high-temperature strength as much as possible to produce Ti3A I! While maintaining the favorable features of lightweight and excellent heat resistance found in
Cheap Ti3Aj that is lightweight and has excellent heat resistance? As a result of research aimed at providing a practical alloy, the following findings were obtained.

即ち、前述したように、Ti、^lの延性改善にはTi
3Δlマトリツクス中に少量のβ相を分散させるのが有
効であるが、このβ相の出現は、特にへ2配合量との関
係で厳密に調整された■をTiJ j!に対する第3添
加元素として選択することによっても実現することがで
き、価格の比較的低度な八!と■とを特定の配合割合で
Tiに含有せしめた場合にはTi3A e金属間化合物
に見られる前述の特長が失われることなくその常温延性
が改善され、実用上十分に満足できる高温強度と常温延
性とを兼備した低比重の耐熱合金が得られることを見出
したのである。
That is, as mentioned above, to improve the ductility of Ti,
Although it is effective to disperse a small amount of β phase in the 3Δl matrix, the appearance of this β phase is strictly controlled especially in relation to the amount of He2 added. This can also be achieved by selecting it as the third additive element for 8!, which is relatively inexpensive. When Ti contains (1) and (2) in a specific proportion, the room-temperature ductility is improved without losing the above-mentioned features of the Ti3A e intermetallic compound, and the high-temperature strength and room-temperature strength are sufficiently satisfactory for practical use. They discovered that it is possible to obtain a heat-resistant alloy with low specific gravity that also has good ductility.

本発明は、上記知見に基づいてなされたものであり、 [12〜16重量%のA1と3〜12重量%の■とを含
有する共に、残部がTi及び不可避不純物から成る化学
組成にTi3A Eを基とする合金を構成することによ
り、軽量・低価格にして優れた耐熱性と常温延性とを兼
備せしめた点」 に特徴を有するものである。
The present invention has been made based on the above findings, and includes Ti3A E in a chemical composition containing 12 to 16% by weight of A1 and 3 to 12% by weight of By constructing an alloy based on , it is lightweight and inexpensive, and has excellent heat resistance and room-temperature ductility.

さて、本発明に係る上記チタン合金は600〜750℃
の温度範囲においても十分な強度を維持し得るものであ
るが、その理由は上記高温域においても格別な強度低下
を示さないTi3J1をベースとしているためである。
Now, the above titanium alloy according to the present invention has a temperature of 600 to 750°C.
It is possible to maintain sufficient strength even in the above temperature range, because it is based on Ti3J1 which does not show any particular decrease in strength even in the above-mentioned high temperature range.

更に、本発明に係るチタン合金では、上記耐熱特性に加
えて常温延性をも確保するため、■を添加することによ
って少量のβ相がTizA lマトリックス中に分散さ
れるように図られている。しかし、β相が過剰になると
高温強度が低下するため、β相の量については不本意な
高温強度の低下をもたらさないように注意深く調節する
必要がある。そして、このためには合金の化学組成を厳
密に調整することが重要となる。
Furthermore, in the titanium alloy according to the present invention, in order to ensure room-temperature ductility in addition to the above-mentioned heat resistance properties, by adding ■, a small amount of β phase is dispersed in the TizAl matrix. However, if the β-phase is in excess, the high-temperature strength decreases, so the amount of the β-phase must be carefully controlled so as not to cause an undesired decrease in the high-temperature strength. For this purpose, it is important to precisely adjust the chemical composition of the alloy.

本発明においてチタン合金の化学組成を前記の如くに数
値限定したのは、上記β相の量を精力的な探索によって
解明された“最適範囲”に収めるためであり、以下、添
加成分量の限定理由を各成分の作用と共に説明する。
In the present invention, the chemical composition of the titanium alloy is numerically limited as described above in order to keep the amount of the β phase within the "optimal range" determined through vigorous exploration. The reason will be explained together with the effects of each component.

〈作用〉 fa)  Af 本発明に係る合金においてAf含有量が12重重量を下
回ると、例えCTiJII+β〕2相組織が得られた場
合であってもTiJlの量が少なく、合金の高温強度が
著しく低下する。一方、16重看%を超えてAfを含有
させるとTiz^l単相組織になり易くて十分な常温延
性が確保できなくなり、また例え[TiJp+β〕 2
相組織が得られるとしてもその場合には大量の■添加を
必要とすることとなって(炉冷材の場合で20重量%以
上)、合金の軽量特性を損なうこととなる。従って、I
V金含有12〜16重量%と定めた。
<Function> fa) Af When the Af content is less than 12 weight in the alloy according to the present invention, even if a CTiJII+β] two-phase structure is obtained, the amount of TiJl is small and the high-temperature strength of the alloy is significantly reduced. descend. On the other hand, if Af is contained in excess of 16%, it tends to become a Tizz^l single phase structure, making it impossible to ensure sufficient room temperature ductility.
Even if a phase structure can be obtained, in that case a large amount of (2) must be added (20% by weight or more in the case of a furnace cooling material), which impairs the lightweight properties of the alloy. Therefore, I
The V gold content was determined to be 12 to 16% by weight.

(b)  V ■含有量が3重量%未満では、(Ti3Ai!+β〕2
和組織が得られないので実用合金として望まれる常温延
性が確保できず、一方、15重量%を超えて■を含有さ
せるとβ相の量が過剰となり、高温強度が低下すると共
に軽量性も失われる。従って、■含有量は3〜15重量
%と定めた。
(b) V ■If the content is less than 3% by weight, (Ti3Ai!+β]2
Since a Japanese structure cannot be obtained, the room-temperature ductility desired for a practical alloy cannot be secured. On the other hand, if the content of ■ exceeds 15% by weight, the amount of β phase becomes excessive, resulting in a decrease in high-temperature strength and a loss of lightness. be exposed. Therefore, the content of (1) was determined to be 3 to 15% by weight.

なお、本発明に係るチタン合金はVの添加を要するもの
の、■源として割安な「合金原料として市販されている
Af −V合金」を使用することが可能であり、1扁折
の減少や経済性等、何れをとっても前記米国特許第4,
292,077号として提案されたNb含有合金より蟲
かに有利であることは言うまでもない。
Although the titanium alloy according to the present invention requires the addition of V, it is possible to use an inexpensive "Af-V alloy commercially available as an alloy raw material" as a source, which reduces the number of single flats and improves economy. No. 4 of the above-mentioned U.S. Pat.
Needless to say, this is significantly more advantageous than the Nb-containing alloy proposed in No. 292,077.

続いて、本発明の効果を実施例により更に具体的に説明
する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 純度99.7重世%のスポンジチタン、純度99.99
重量%のAffi、及びV−16重量%AN母合金を原
料として用い、真空アーク溶解によって第1表に示す如
き化学組成のインゴット(1,2kg)を溶製した。
<Example> Sponge titanium with a purity of 99.7%, purity 99.99
An ingot (1.2 kg) having a chemical composition as shown in Table 1 was melted by vacuum arc melting using Affi of % by weight and AN master alloy of V-16% by weight as raw materials.

次に、これを熱間鍛造して外径1511mの丸棒とし、
更に真空中で700℃X2hrの焼鈍を施した。
Next, this was hot forged into a round bar with an outer diameter of 1511 m,
Furthermore, annealing was performed at 700°C for 2 hours in a vacuum.

次いで、この丸棒焼鈍材から外径4朋、標点問罪l=’
d、 16 mmの丸棒引張試験片を採取して引張試験
を実施した。
Next, from this round bar annealed material, the outer diameter is 4 mm, and the gauge mark l='
d. A 16 mm round bar tensile test piece was taken and a tensile test was conducted.

引張試験は、それぞれ“室温”及び“7oo℃”の両温
度下で実施し、このときの歪速度は破断に至るまで0.
5χ/minとした。
The tensile test was carried out at both "room temperature" and "700°C", and the strain rate at this time was 0.000000000000000000000000000000000000000000 until rupture.
The speed was set at 5χ/min.

上記引張試験の結果を第1表に併せて示した。The results of the above tensile test are also shown in Table 1.

なお、第1表には、比較のためにT3−15.8重量%
(TiJi!華体)材につき同様の試験を実施した結果
も併記した。
In addition, Table 1 shows T3-15.8% by weight for comparison.
(TiJi! Huatai) The results of a similar test conducted on the material are also listed.

第1表に示される結果からも明らかなように、本発明合
金はTiJj2単体材に比べて室温で数段良好な延性を
示し、また700℃における強度も該Ti2Al単体材
にほぼ匹敵する値を示しており、実用性に優れた軽量耐
熱合金であることが確認できる。
As is clear from the results shown in Table 1, the alloy of the present invention exhibits much better ductility at room temperature than TiJj2 alone, and its strength at 700°C is almost comparable to that of Ti2Al alone. It can be confirmed that this is a lightweight, heat-resistant alloy with excellent practicality.

更に、第1表に示される結果は、合金の化学組成が本発
明で規定する条件から外れるとバランスの良い強度・常
温延性特性を確保できなくなることをも明示している。
Furthermore, the results shown in Table 1 clearly show that if the chemical composition of the alloy deviates from the conditions specified in the present invention, well-balanced strength and cold ductility properties cannot be ensured.

〈効果の総括〉 以上に説明した如く、この発明によれば、軽量であって
、しかも耐熱性並びに常温延性が共に優れた合金を安価
に提供することが可能となり、宇宙・航空機や発電用ガ
スタービン等に係る機器類の性能向」二を図ることが期
待できるなど、産業上極めて有用な効果がもたらされる
<Summary of Effects> As explained above, according to the present invention, it is possible to provide an alloy that is lightweight and has excellent heat resistance and cold ductility at a low cost, and is suitable for use in space/aircraft and power generation gas. It can be expected to improve the performance of equipment related to turbines, etc., resulting in extremely useful effects industrially.

Claims (1)

【特許請求の範囲】 重量割合にて Al:12〜16%、 V:3〜12% Ti及び不可避不純物:残り から成る、Ti_3Alを基とする軽量耐熱合金。[Claims] By weight percentage Al: 12-16%, V: 3-12% Ti and inevitable impurities: remainder A lightweight heat-resistant alloy based on Ti_3Al.
JP12964388A 1988-05-27 1988-05-27 Intermetallic compound ti3al-base lightweight heat-resisting alloy Pending JPH01298128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12964388A JPH01298128A (en) 1988-05-27 1988-05-27 Intermetallic compound ti3al-base lightweight heat-resisting alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12964388A JPH01298128A (en) 1988-05-27 1988-05-27 Intermetallic compound ti3al-base lightweight heat-resisting alloy

Publications (1)

Publication Number Publication Date
JPH01298128A true JPH01298128A (en) 1989-12-01

Family

ID=15014587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12964388A Pending JPH01298128A (en) 1988-05-27 1988-05-27 Intermetallic compound ti3al-base lightweight heat-resisting alloy

Country Status (1)

Country Link
JP (1) JPH01298128A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185045A (en) * 1990-07-27 1993-02-09 Deutsche Forschungsanstalt fur Luftund Raumfahrt e.V. Linder Hohe Thermomechanical process for treating titanium aluminides based on Ti3

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185045A (en) * 1990-07-27 1993-02-09 Deutsche Forschungsanstalt fur Luftund Raumfahrt e.V. Linder Hohe Thermomechanical process for treating titanium aluminides based on Ti3

Similar Documents

Publication Publication Date Title
US5286443A (en) High temperature alloy for machine components based on boron doped TiAl
JPH01298127A (en) Intermetallic compound tial-base lightweight heat-resisting alloy
US4842819A (en) Chromium-modified titanium aluminum alloys and method of preparation
US4879092A (en) Titanium aluminum alloys modified by chromium and niobium and method of preparation
CA2230732C (en) Titanium aluminide which can be used at high temperature
JPH0593234A (en) Microalloyed nial intermetalic compound having improved ductility
JPH04107233A (en) Ti-al series lightweight heat resistant material
JPH02118043A (en) Titanium-aluminum alloy improved with manganese niobium
US4857268A (en) Method of making vanadium-modified titanium aluminum alloys
US5108700A (en) Castable nickel aluminide alloys for structural applications
JPH09165634A (en) Heat resistant titanium alloy
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
US4613480A (en) Tri-nickel aluminide composition processing to increase strength
US5730931A (en) Heat-resistant platinum material
JPH0578769A (en) Heat resistant alloy on intermetallic
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US4902474A (en) Gallium-modified titanium aluminum alloys and method of preparation
US5422070A (en) Oxidation-resistant and corrosion-resistant alloy based on doped iron aluminide, and use of said alloy
JPH01298128A (en) Intermetallic compound ti3al-base lightweight heat-resisting alloy
US4606888A (en) Inhibition of grain growth in Ni3 Al base alloys
US5348595A (en) Process for the preaparation of a Ti-Al intermetallic compound
US5368660A (en) High temperature TiAl2 -based ternary alloys
JPH0222435A (en) Heat-resistant titanium alloy
JPH01242743A (en) Heat-resistant titanium alloy
JPH04268037A (en) Ni3(si,ti)-base heat resisting alloy excellent in creep resistance