JPH01297845A - Package for housing glass-sealed semiconductor device - Google Patents

Package for housing glass-sealed semiconductor device

Info

Publication number
JPH01297845A
JPH01297845A JP12788388A JP12788388A JPH01297845A JP H01297845 A JPH01297845 A JP H01297845A JP 12788388 A JP12788388 A JP 12788388A JP 12788388 A JP12788388 A JP 12788388A JP H01297845 A JPH01297845 A JP H01297845A
Authority
JP
Japan
Prior art keywords
glass
metal layer
insulating base
semiconductor element
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12788388A
Other languages
Japanese (ja)
Inventor
Toshiya Kono
俊哉 河野
Masami Terasawa
寺澤 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12788388A priority Critical patent/JPH01297845A/en
Publication of JPH01297845A publication Critical patent/JPH01297845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To bond outer lead terminals and a cover to an insulating substrate firmly by a method wherein the insulating substrate is composed of a specific sintered unit and a specific metal layer is formed on the surface of the substrate. CONSTITUTION:An insulating substrate 1 is composed of a silicon carbide sintered unit. If an Al metal layer 4 is provided over the whole surface of the substrate 1, the layer 4 is firmly bonded to the substrate 1 by the reaction between free silicon and Al. On the other hand, as the Al metal layer 4 has a high wettability with glass, outer lead terminals 7 and a cover 3 are firmly bonded to the insulating substrate 1 with glass layers 5, so that the reliability of a glass-sealed semiconductor device housing package can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子収納用パッケージに関し、より詳細
には容器として炭化珪素質焼結体を用いたガラス封止型
の半導体素子収納用パッケージに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a package for housing semiconductor elements, and more particularly to a glass-sealed package for housing semiconductor elements using a silicon carbide sintered body as a container. It is something.

〔従来の技術〕[Conventional technology]

従来、半導体素子収納用パンケージは、上面略中央部に
半導体素子を収容するための空所を有し、かつ上面にタ
ングステン(W)等の高融点金属から成るメタライズ金
属層を有するアルミナセラミックス等から成る絶縁基体
と、半導体素子を外部配線回路に電気的に接続するため
のコバール(Fe−Ni−Co系合金)等から成る外部
リード端子と、蓋体とから構成されており、基体及び蓋
体の対向する主面に予め低融点ガラスより成る封止用ガ
ラス層を被着形成しておき、該ガラス間に外部リード端
子を挟持させるとともにガラス層を溶融一体化させるこ
とにより半導体素子を内部に気密封止し半導体装置とな
る。
Conventionally, pancakes for storing semiconductor devices have been made of alumina ceramics, etc., which have a hollow space approximately in the center of the top surface for accommodating the semiconductor device, and have a metallized metal layer made of a high melting point metal such as tungsten (W) on the top surface. It is composed of an insulating base made of aluminum, an external lead terminal made of Kovar (Fe-Ni-Co alloy), etc. for electrically connecting the semiconductor element to an external wiring circuit, and a lid. A sealing glass layer made of low-melting point glass is preliminarily formed on the opposing main surfaces of the glass, and external lead terminals are sandwiched between the glasses and the glass layers are melted and integrated to place the semiconductor element inside. It is hermetically sealed and becomes a semiconductor device.

しかし乍ら、近時、LSI等に代表される高密度大型半
導体集積回路素子はその作動に際し、極めて多くの熱を
発生し、前記従来のアルミナを基体とした半導体素子収
納用パッケージではアルミナの熱伝導率が17W/m−
にと低いことから、放熱が不充分となり、半導体素子が
発する熱によって素子自身に誤動作を生じさせるという
問題があった。
However, in recent years, high-density, large-sized semiconductor integrated circuit devices, such as LSIs, generate an extremely large amount of heat during operation, and the conventional alumina-based semiconductor device storage package is Conductivity is 17W/m-
Since the temperature is very low, there is a problem that heat dissipation is insufficient and the heat generated by the semiconductor element causes the element itself to malfunction.

そこで、上記欠点を解消するため熱伝導率が極めて高い
炭化珪素質焼結体、例えばヘリリウム(Be)を含有し
た炭化珪素質焼結体を半導体素子収納用パッケージの基
体として使用することが提案されている(特開昭59−
156980号公報)。
Therefore, in order to eliminate the above-mentioned drawbacks, it has been proposed to use a silicon carbide sintered body with extremely high thermal conductivity, such as a silicon carbide sintered body containing helium (Be), as the base of a package for housing semiconductor elements. (Unexamined Japanese Patent Publication No. 1983-
156980).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし乍ら、炭化珪素質焼結体はアルミナセラミックス
と異なりガラス成分を含有しないことから、絶縁基体に
封止用ガラスを介して外部リード端子及び蓋体を取着固
定した場合、封止用ガラスのガラス成分と炭化珪素質焼
結体との反応性及び濡れ性が著しく劣り、炭化珪素質焼
結体から成る絶縁基体に外部リード端子及び蓋体を強固
に取着することができず、その結果、蓋体及び外部リー
ド端子等に小さな外力が印加されても該外力により外部
リード端子及び蓋体が絶縁基体より剥がれて半導体素子
収納用パッケージとしての信頼性が著しく低下するとい
う問題があった。
However, unlike alumina ceramics, silicon carbide sintered bodies do not contain glass components, so when external lead terminals and lids are attached and fixed to an insulating base via sealing glass, The reactivity and wettability between the glass component and the silicon carbide sintered body are extremely poor, making it impossible to securely attach the external lead terminals and the lid to the insulating base made of the silicon carbide sintered body. As a result, even if a small external force was applied to the lid, external lead terminals, etc., the external lead terminals and lid would peel off from the insulating base, resulting in a significant decrease in reliability as a package for housing semiconductor elements. .

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点に鑑み案出されたもので、その目的は
絶縁基体と封止用ガラスとの密着性を向上し、絶縁基体
と外部リード端子及び蓋体との取着を強固として信顛性
が極めて高いガラス封止型半導体素子収納用パンケージ
を提供することにある。
The present invention was devised in view of the above-mentioned drawbacks, and its purpose is to improve the adhesion between the insulating base and the sealing glass, and to firmly and securely attach the insulating base to the external lead terminals and the lid. It is an object of the present invention to provide a glass-sealed semiconductor element storage pancase with extremely high properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は相対向する主面にガラス層を被着形成した絶縁
基体及び蓋体とで外部リード端子を挟持し、前記ガラス
層を溶融一体化することにより半導体素子を内部に気密
封止するガラス封止型半導体素子収納用パッケージにお
いて、前記絶縁基体を炭化珪素質焼結体で形成し、かつ
その上面全面にアルミニウム(AI)から成る金属層を
設けたことを特徴とするものである。
The present invention provides a glass structure in which an external lead terminal is sandwiched between an insulating base and a lid having glass layers adhered to their opposing main surfaces, and a semiconductor element is hermetically sealed inside by melting and integrating the glass layers. The sealed package for housing a semiconductor element is characterized in that the insulating base is formed of a sintered body of silicon carbide, and a metal layer made of aluminum (AI) is provided on the entire upper surface of the insulating base.

〔実施例〕〔Example〕

次に本発明を添付図面に示す実施例に基づき詳細に説明
する。
Next, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第1図は本発明の半導体素子収納用パッケージとしてフ
ラット型のパッケージを例に採って示した断面図である
FIG. 1 is a cross-sectional view showing an example of a flat package as a semiconductor element storage package of the present invention.

図において、1は炭化珪素質焼結体から成る絶縁基体で
あり、2ばムライト質焼結体から成る蓋体である。この
絶縁基体1と蓋体2とにより絶縁容器3が構成される。
In the figure, 1 is an insulating base made of a silicon carbide sintered body, and 2 is a lid made of a mullite sintered body. The insulating base 1 and the lid 2 constitute an insulating container 3.

前記絶縁基体1は、例えば炭化珪素(SiC)粉末から
成る主成分にベリリア(BeO)、炭化ホウ素(B4C
)、アルミナ(AlzO:+)等の副成分を混合したセ
ラミック原料粉末にバインダーを添加混合し、メソシュ
パス等により造粒後、プレス成形により薄板状の成形体
を得るとともに、該成形体を高温で焼成することによっ
て製作される。
The insulating substrate 1 includes, for example, silicon carbide (SiC) powder as a main component, beryllia (BeO), and boron carbide (B4C).
), alumina (AlzO:+) and other subcomponents are added and mixed with a binder, and after granulation using a mesh pass or the like, a thin plate-like compact is obtained by press forming, and the compact is heated at a high temperature. It is produced by firing.

前記絶縁基体1及び蓋体2には後述するように相対向す
る主面に封止用のガラス層5.5aがそれぞれ被着形成
されており、該ガラス層5,5aを加熱溶融させ一体化
させることによって絶縁容器3内に半導体素子6を気密
に封止する。
Glass layers 5.5a for sealing are formed on opposing main surfaces of the insulating base 1 and lid 2, respectively, as will be described later, and the glass layers 5, 5a are heated and melted to integrate them. By doing so, the semiconductor element 6 is hermetically sealed within the insulating container 3.

尚、前記ガラス層5,5aは例えば低融点のガラスから
成り、該ガラス粉末に適当な溶剤を添加して得たガラス
ペーストを従来周知の厚膜印刷法により絶縁基体1及び
蓋体2の相対向する主面に所望厚みに被着形成される。
The glass layers 5 and 5a are made of, for example, low melting point glass, and a glass paste obtained by adding an appropriate solvent to the glass powder is applied to the insulating substrate 1 and the lid 2 by a conventionally well-known thick film printing method. It is deposited and formed on the facing main surface to a desired thickness.

また、前記絶縁基体1の上面で、ガラス層5の下にはイ
オンブレーティング法、スパッタリング法等公知の気相
成長法によってアルミニウムから成る金属層4が設けら
れており、該金属層4は絶縁基体1に封止用のガラス層
5を強固に取着させる作用が為す。
Further, on the upper surface of the insulating substrate 1, under the glass layer 5, a metal layer 4 made of aluminum is provided by a known vapor phase growth method such as an ion blasting method or a sputtering method. This serves to firmly attach the sealing glass layer 5 to the base 1.

前記金属層4は絶縁基体1をなす炭化珪素質焼結体の表
面に形成されている極めて薄い珪素(Si)の酸化膜層
または炭化珪素質焼結体中の遊離珪素がアルミニウムと
反応することにより強固に接着すること、及びアルミニ
ウムはガラス成分と反応性及び濡れ性のいずれにも優れ
ていること等から、炭化珪素質焼結体より成る絶縁基体
1にガラス層5を強固に接着できるものと考えられる。
The metal layer 4 is a very thin silicon (Si) oxide film layer formed on the surface of the silicon carbide sintered body forming the insulating substrate 1, or the free silicon in the silicon carbide sintered body reacts with aluminum. The glass layer 5 can be firmly bonded to the insulating substrate 1 made of a silicon carbide sintered body because of the strong adhesion and the fact that aluminum has excellent reactivity and wettability with glass components. it is conceivable that.

前記絶縁基体1と蓋体2との間には導電性材料、例えば
アルミニウム(AI)、銅(Cu)、コバール(Fe−
Ni−Co)等の金属から成る外部リード端子7が配さ
れており、該外部リード端子7は半導体素子6の各電極
がワイヤを介し電気的に接続され、外部リード端子7を
外部回路に接続することにより半導体素子6が外部回路
と接続されることとなる。
A conductive material such as aluminum (AI), copper (Cu), Kovar (Fe-
An external lead terminal 7 made of metal such as Ni-Co) is arranged, and each electrode of the semiconductor element 6 is electrically connected to the external lead terminal 7 via a wire, and the external lead terminal 7 is connected to an external circuit. By doing so, the semiconductor element 6 is connected to an external circuit.

前記外部リード端子7は、絶縁容器3をガラス層5,5
aを溶融一体化させて気密封止する際に同時に絶縁基体
1と蓋体2の間に取着される。
The external lead terminal 7 connects the insulating container 3 to the glass layers 5, 5.
It is attached between the insulating base 1 and the lid 2 at the same time when the parts a are melted and integrated and hermetically sealed.

かくしてこの半導体素子収納用パッケージによれば、絶
縁基体1の上面中央部に半導体素子6を取着固定すると
ともに該半導体素子6の各電極をワイヤにより外部リー
ト端子7に接続させた後、絶縁基体1と蓋体2に予め被
着させておいたガラス層5,5aを加熱溶融させ、一体
化させることによってその内部に半導体素子6を気密に
封止する。
Thus, according to this semiconductor element storage package, after the semiconductor element 6 is attached and fixed to the center of the upper surface of the insulating base 1 and each electrode of the semiconductor element 6 is connected to the external lead terminal 7 by a wire, the insulating base is The glass layers 5 and 5a, which have been previously attached to the glass layer 1 and the lid body 2, are heated and melted to integrate them, thereby airtightly sealing the semiconductor element 6 therein.

尚、上述の第1図に示す実施例では半導体素子6を取着
する部位に金(Au)から成る金属層8を設けており、
該金属層8は絶縁基体1の主面にガラス層5を厚膜印刷
法により被着形成し、該絶縁基体1に外部リード端子7
を溶融固着した後に、絶縁基板1」二のアルミニウム(
AI)から成る金属層4上に設けると金の金属層8上に
封止用ガラスが付着し、半導体素子6の取着強度が低下
してしまうのを有効に防止することができ、同時に絶縁
基体1に外部リード端子7を固着する際の熱により金の
金属層8と下地のアルミニウムから成る金属層4が相互
拡散し、金属間化合物を形成して、半導体素子6の取着
強度を低下させるのが有効に防止できることから絶縁基
体1に設けた金属層4上に半導体素子6を取着固定する
ための金から成る層8を設ける場合は、該金の金属層8
を絶縁基体l上に外部リート端子7を封止用のガラス層
5を介し取着固定した後に設けるのが良い。
In the embodiment shown in FIG. 1 described above, a metal layer 8 made of gold (Au) is provided at the portion where the semiconductor element 6 is attached.
The metal layer 8 is formed by depositing a glass layer 5 on the main surface of the insulating base 1 by thick film printing, and forming external lead terminals 7 on the insulating base 1.
After melting and fixing the insulating substrate 1'' aluminum (
When provided on the metal layer 4 made of gold (Al), it is possible to effectively prevent the sealing glass from adhering to the gold metal layer 8 and reducing the bonding strength of the semiconductor element 6. The heat generated when the external lead terminals 7 are fixed to the base 1 causes the gold metal layer 8 and the underlying metal layer 4 made of aluminum to interdiffuse, forming an intermetallic compound and reducing the bonding strength of the semiconductor element 6. If a layer 8 made of gold for attaching and fixing the semiconductor element 6 is provided on the metal layer 4 provided on the insulating substrate 1, the metal layer 8 made of gold can be effectively prevented.
It is preferable to provide this after the external lead terminal 7 is attached and fixed on the insulating substrate l via the sealing glass layer 5.

また、本発明におけるアルミニウムから成る金属層4の
厚みはその目的を十分に達成し得る程度に形成されるべ
きであって、例えば0.1〜10μW、好適には2〜5
μmの厚みとするのが望ましい。
Further, the thickness of the metal layer 4 made of aluminum in the present invention should be set to such an extent that the purpose can be fully achieved, for example, 0.1 to 10 μW, preferably 2 to 5 μW.
It is desirable to have a thickness of μm.

〔実験例〕[Experiment example]

次に実験例に基づき本発明の作用効果を説明する。 Next, the effects of the present invention will be explained based on experimental examples.

(評価試料の作成) 炭化珪素粉末に酸化ベリリウムを2.0重量%添加した
成形体を2000℃で焼成して炭化珪素質焼結体を製作
し、これを洗浄して絶縁基体を準備した。
(Preparation of evaluation sample) A silicon carbide sintered body was produced by firing a molded body of silicon carbide powder to which 2.0% by weight of beryllium oxide was added at 2000°C, and this was washed to prepare an insulating base.

次いで封止面積を種々設定した基体表面にイオンブレー
ティング法によってアルミニウムを被着形成した後、低
融点のガラス粉末に適当な溶剤を添加して得た封止用ガ
ラスペーストを従来周知のスクリーン印刷等の厚膜印刷
法により絶縁基体表面に0.3mmの厚みに被着形成し
、しかる後、同一封止面積を有する絶縁基体一対をその
封止用ガラスペースト面が対向するように当接させると
ともに460°Cの温度で加熱し、封止用ガラスペース
トを溶融一体化させて接合する。
Next, aluminum is deposited on the surface of the substrate with various sealing areas by ion blasting, and then glass paste for sealing obtained by adding an appropriate solvent to low melting point glass powder is applied by screen printing using the conventional well-known method. It is deposited on the surface of an insulating substrate to a thickness of 0.3 mm using a thick film printing method such as the above, and then a pair of insulating substrates having the same sealing area are brought into contact with each other so that the glass paste surfaces for sealing face each other. At the same time, they are heated at a temperature of 460° C. to melt and integrate the sealing glass paste and join together.

(評価方法) 上記評価試料の炭化珪素質焼結体から成る2枚の基体の
夫々に固定治具を装着するとともに該治具を介して評価
試料にネジレトルクを加え、トルクの印加面と平行な方
向に破断した最低トルク値を測定し、これを炭化珪素質
焼結体から成る基体とアルミニウム及び封止用ガラスと
の密着力として評価した。
(Evaluation method) A fixing jig is attached to each of the two substrates made of the silicon carbide sintered body of the above evaluation sample, and a torsion torque is applied to the evaluation sample via the jig, and a torsion torque is applied to the evaluation sample parallel to the torque application surface. The lowest torque value at which the specimen broke in the direction was measured, and this was evaluated as the adhesion strength between the base made of the silicon carbide sintered body, aluminum and the sealing glass.

その結果を第1表に示す。The results are shown in Table 1.

尚、試料番号L6,11は従来例を示す。Incidentally, sample numbers L6 and 11 indicate conventional examples.

第1表 (以下余白) 第1表から明らかなように、炭化珪素質焼結体から成る
基体にアルミニウムの金属層を設けない試料番号1.6
.11(従来例)では、封止面積を種々変えたとしても
基体とガラスとの濡れ性、反応性が悪いことからトルク
強度が低い。
Table 1 (blank below) As is clear from Table 1, sample number 1.6 does not have an aluminum metal layer on the base made of silicon carbide sintered body.
.. In No. 11 (conventional example), even if the sealing area is varied, the torque strength is low due to poor wettability and reactivity between the base and glass.

従って、絶縁基体に外部リード端子や蓋体を封止用ガラ
スを介して強固に取着することができず実用的でない。
Therefore, the external lead terminals and the lid cannot be securely attached to the insulating base via the sealing glass, which is impractical.

これに対し、本発明品はいずれも絶縁基体とガラスとの
濡れ性、反応性が優れており大きなトルク強度を示した
In contrast, all of the products of the present invention had excellent wettability and reactivity between the insulating substrate and glass, and exhibited large torque strength.

従って、絶縁基体に封止用ガラスを介して外部り′−ド
端子及び蓋体を強固に取着し得ることが判る。
Therefore, it can be seen that the external lead terminal and the lid can be securely attached to the insulating substrate via the sealing glass.

尚、本発明は上記実施例及び実験例に限定されるもので
はなく、絶縁基体として他の公知の炭化珪素質焼結体を
使用しても同様の結果が得られることを確認している。
It should be noted that the present invention is not limited to the above embodiments and experimental examples, and it has been confirmed that similar results can be obtained even if other known silicon carbide sintered bodies are used as the insulating substrate.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明のガラス封止型半導体素子収
納用パッケージは、炭化珪素質焼結体より成る絶縁基体
の上面全面にアルミニウムから成る金属層を被着形成し
たことから、上記絶縁基体と封止用のガラス層との密着
性を著しく向上させることができる。従って、本発明の
ガラス封止形半導体素子収納用パッケージは外部リード
端子を強固に取着することができると共に内部に半導体
素子を気密に封入することが可能となり長期間にわたり
正常、かつ安定に作動させることができる。
As described in detail above, the glass-sealed semiconductor device storage package of the present invention has a metal layer made of aluminum deposited on the entire upper surface of the insulating base made of sintered silicon carbide. The adhesion between the glass layer and the sealing glass layer can be significantly improved. Therefore, the glass-sealed semiconductor device storage package of the present invention can securely attach external lead terminals, and can also hermetically encapsulate the semiconductor device inside, allowing it to operate normally and stably for a long period of time. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガラス封止型半導体素子収納用パンケ
ージの一実施例を示す拡大断面図である。 1・・・絶縁基体 2・・・蓋体 4・・・金属層 5.5a・・・ガラス層 6・・・半導体素子 7・・・外部リード端子
FIG. 1 is an enlarged sectional view showing an embodiment of a glass-sealed semiconductor element storage pancake of the present invention. 1... Insulating base 2... Lid body 4... Metal layer 5.5a... Glass layer 6... Semiconductor element 7... External lead terminal

Claims (1)

【特許請求の範囲】[Claims]  相対向する主面にガラス層を被着形成した絶縁基体及
び蓋体とで外部リード端子を挟持し、前記ガラス層を溶
融一体化することにより半導体素子を内部に気密封止す
るガラス封止型半導体素子収納用パッケージにおいて、
前記絶縁基体を炭化珪素質焼結体で形成し、かつその上
面全面にアルミニウム(Al)から成る金属層を設けた
ことを特徴とするガラス封止型半導体素子収納用パッケ
ージ。
A glass-sealed type in which an external lead terminal is sandwiched between an insulating base and a lid, which have a glass layer adhered to their opposing main surfaces, and the semiconductor element is hermetically sealed inside by melting and integrating the glass layer. In packages for storing semiconductor elements,
A glass-sealed package for housing a semiconductor element, characterized in that the insulating base is formed of a silicon carbide sintered body, and a metal layer made of aluminum (Al) is provided on the entire upper surface of the insulating base.
JP12788388A 1988-05-25 1988-05-25 Package for housing glass-sealed semiconductor device Pending JPH01297845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12788388A JPH01297845A (en) 1988-05-25 1988-05-25 Package for housing glass-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12788388A JPH01297845A (en) 1988-05-25 1988-05-25 Package for housing glass-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH01297845A true JPH01297845A (en) 1989-11-30

Family

ID=14971008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12788388A Pending JPH01297845A (en) 1988-05-25 1988-05-25 Package for housing glass-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH01297845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632890B1 (en) 1999-03-19 2003-10-14 Dow Global Technologies Inc. Hydrogenated block copolymer compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632890B1 (en) 1999-03-19 2003-10-14 Dow Global Technologies Inc. Hydrogenated block copolymer compositions

Similar Documents

Publication Publication Date Title
US4577056A (en) Hermetically sealed metal package
JPH01297845A (en) Package for housing glass-sealed semiconductor device
JP2750237B2 (en) Electronic component storage package
JP2685083B2 (en) Manufacturing method of semiconductor device storage package
JP2750232B2 (en) Electronic component storage package
JP2538846Y2 (en) Package for storing semiconductor elements
JP2548964Y2 (en) Package for storing semiconductor elements
JP2866962B2 (en) Manufacturing method of semiconductor device storage package
JP2538845Y2 (en) Package for storing semiconductor elements
JP3426741B2 (en) Package for storing semiconductor elements
JP2631397B2 (en) Package for storing semiconductor elements
JP2783735B2 (en) Package for storing semiconductor elements
JP2514910Y2 (en) Package for storing semiconductor devices
JP2740605B2 (en) Manufacturing method of semiconductor device storage package
JP2515659Y2 (en) Package for storing semiconductor devices
JP2740606B2 (en) Package for storing semiconductor elements
JP2813072B2 (en) Package for storing semiconductor elements
JP2552554Y2 (en) Package for storing semiconductor elements
JP2813073B2 (en) Package for storing semiconductor elements
JP2514911Y2 (en) Package for storing semiconductor devices
JP2555178Y2 (en) Package for storing semiconductor elements
JP2545400Y2 (en) Package for storing semiconductor elements
JP2813074B2 (en) Package for storing semiconductor elements
JPH0629330A (en) Semiconductor device
JP3292609B2 (en) Package for storing semiconductor elements