JPH01297102A - Heat-resistant porous hollow fiber and its manufacture - Google Patents

Heat-resistant porous hollow fiber and its manufacture

Info

Publication number
JPH01297102A
JPH01297102A JP12582688A JP12582688A JPH01297102A JP H01297102 A JPH01297102 A JP H01297102A JP 12582688 A JP12582688 A JP 12582688A JP 12582688 A JP12582688 A JP 12582688A JP H01297102 A JPH01297102 A JP H01297102A
Authority
JP
Japan
Prior art keywords
hollow fiber
polyvinyl alcohol
porous hollow
dehydration reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12582688A
Other languages
Japanese (ja)
Inventor
Norihisa Miyamatsu
徳久 宮松
Michiaki Sagesaka
提坂 道明
Hisanobu Kobayashi
久展 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIBI KK
Original Assignee
NICHIBI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIBI KK filed Critical NICHIBI KK
Priority to JP12582688A priority Critical patent/JPH01297102A/en
Publication of JPH01297102A publication Critical patent/JPH01297102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat-resistant porous hollow fiber by using a dehydration reaction product of polyvinyl alcohol with a specific weight reduction rate due to dehydration reaction. CONSTITUTION:A hollow fiber is manufactured with an aqueous ammonium sulfate as a coagulating liquid using an aqueous solution of high saponified polyvinyl alcohol with a degree of saponification of 99.0mole% or more and partially saponified polyvinyl alcohol with an exceedingly low degree of polymerization. This hollow fiber is immersed in an aqueous solution of saturated ammonium sulfate and thermally treated. Then it is soaked in water and further, the partially saponified polyvinyl alcohol with an exceedingly low degree of polymerization is removed by washing from the external part of the hollow fiber under the water current pressure of the water pressure system to obtain the porous hollow fiber of highly saponified polyvinyl alcohol. Next, this hollow fiber is impregnated with a mixed solution of methanol of p-toluenesulfonic acid and water, and is allowed to receive an acid catalyst by drying with air or by any other appropriate means. The hollow fiber is placed in an oven with both ends fixed to a constant length, then it is subjected to dehydration reaction so that the weight reduction rate is 5-35wt.%. Thus the porous hollow fiber which is insoluble in a solvent and withstands any pressure at a high temperature, is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、耐熱性に優れた多孔性中空糸に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to porous hollow fibers with excellent heat resistance.

[従来の技術〕 純水の製造や水中のコロイド状物質、雑菌などの濾過に
用いる限外濾過膜や精密濾過膜として種々の高分子材料
が用いられているが、形態的にはコンパクトで大きな濾
過TrrJ積の得られる多孔性中空糸が賞用される傾向
がますます強くなっている、これらの中空糸としては、
賦形性や物性上の観点よりポリエチレン、ポリプロピレ
ン、ポリビニルアルコール、ポリアクリルニトリル、ポ
リスルホン、ポリエーテルスルホン、ポリイミドなどの
曳糸性を有する熱可塑性(あるいは溶剤可溶性)ポリマ
ーが用いられている。
[Conventional technology] Various polymeric materials are used as ultrafiltration membranes and precision filtration membranes for producing pure water and filtering colloidal substances and bacteria in water. Porous hollow fibers that can obtain a filtration TrrJ product are increasingly being used; these hollow fibers include:
From the viewpoint of formability and physical properties, thermoplastic (or solvent-soluble) polymers having stringability such as polyethylene, polypropylene, polyvinyl alcohol, polyacrylonitrile, polysulfone, polyethersulfone, and polyimide are used.

[本発明が解決しようとする問題点] しかし元来[i!鎖の高分子であるこれらの材料は、た
とえ架橋結合を後で導入したとしても、長期間100℃
を超える高温下での使用に対しては限界がある。
[Problems to be solved by the present invention] However, originally [i! These materials, which are chain polymers, can be kept at 100°C for long periods of time, even if cross-linking is introduced later.
There is a limit to its use at high temperatures exceeding .

このため、高温処理や蒸気での殺菌処理が要求される医
療、食品、薬品などの分野で、また火力。
For this reason, thermal power is used in fields such as medicine, food, and medicine, which require high-temperature treatment and steam sterilization.

原子力を始めとする蒸気発生器の給水の除濁、さらには
高温での処理が望まれる油脂や各種溶液の精密濾過など
に対し、高温下で長期間使用できる多孔性中空糸の出現
が強く望まれていた。
The emergence of porous hollow fibers that can be used for long periods of time at high temperatures is strongly desired for clarification of feed water for nuclear power plants and other steam generators, as well as precision filtration of oils and fats and various solutions that require processing at high temperatures. It was rare.

本発明の目的はこうした要求に応えられる阜越した耐熱
性多孔性中空糸を提供することにある。
An object of the present invention is to provide a heat-resistant porous hollow fiber that can meet these demands.

[問題点を解決するための手段] 本発明の目的は、脱水反応による重量減少率が5〜35
w1%であるポリビニルアルコールの脱水反応物より構
成されてなる耐熱性多孔性中空糸によって達成される。
[Means for Solving the Problems] An object of the present invention is to reduce the weight loss rate due to dehydration reaction from 5 to 35
This is achieved by a heat-resistant porous hollow fiber composed of a dehydrated product of polyvinyl alcohol with a w1% content.

また本発明中空糸は、鹸化度が99.0 mole%以
上のポリビニルアルコールより構成された多孔性中空糸
を酸触媒の存在下で加熱し重量を5〜35wt%減少せ
しめることによって得られる。
The hollow fibers of the present invention can be obtained by heating porous hollow fibers made of polyvinyl alcohol with a degree of saponification of 99.0 mole % or more in the presence of an acid catalyst to reduce the weight by 5 to 35 wt%.

本発明中空糸は、ポリビニルアルコールが脱水され主と
してポリエン構造を形成し、同時にエーテル結合や複雑
な酸化反応なども加わった脱水反応物となることにより
、優れた透過性を維持したままで、いかなる溶媒にも不
溶性で高温下の圧力に耐える特性が得られるものと考え
られる。
The hollow fibers of the present invention can be used with any solvent while maintaining excellent permeability, by dehydrating polyvinyl alcohol to form a mainly polyene structure, and at the same time forming a dehydration reaction product with ether bonds and complex oxidation reactions. It is thought that it is insoluble in water and has the property of being able to withstand pressure at high temperatures.

なお、ポリビニルアルコールの脱水反応を利用してポリ
ビニルアルコール繊維の耐水性を向上せしめることにつ
いては、本発明出願人による特公昭53−22106号
などにより知られているが、本発明はこれらの知見を基
にするものではあるが、製法、形態、内部構造、使用条
件など全くことなる多孔性中空糸に対し中空糸として特
筆すべき効果が得られることを見いだし、その最適条件
について追求し遂に本発明に到達したものである。
Note that improving the water resistance of polyvinyl alcohol fibers by utilizing the dehydration reaction of polyvinyl alcohol is known from Japanese Patent Publication No. 53-22106 filed by the applicant of the present invention, etc., but the present invention utilizes these findings. However, we have discovered that a remarkable effect can be obtained as a hollow fiber for porous hollow fibers whose manufacturing method, form, internal structure, and usage conditions are completely different.We pursued the optimal conditions and finally developed the present invention. has been reached.

以下、本発明のffi様についてより詳細に説明する。Hereinafter, the ffi of the present invention will be explained in more detail.

まず2本発明の出発物質となる多孔性中空糸を構成する
ポリビニルアルコールは、IA存酢酸基が多いと脱水反
応が進行し難い傾向があり、  99.0IIo1.a
%以上の高鹸化ポリビニルアルコールであることが肝要
である。
Firstly, the polyvinyl alcohol constituting the porous hollow fiber which is the starting material of the present invention tends to have a tendency for the dehydration reaction to proceed with difficulty when there are many acetic acid groups present in IA. a
% or more of highly saponified polyvinyl alcohol.

このような高鹸化ポリビニルアルコールで構成されてい
る限り、多孔性中空糸の孔径、多孔度については使用目
的に最適の中空糸を選ぶことができ、その製造法に関す
る制限は特にない。
As long as the porous hollow fibers are composed of highly saponified polyvinyl alcohol, the hollow fibers can be selected in terms of the pore diameter and porosity of the porous hollow fibers depending on the purpose of use, and there are no particular restrictions on the manufacturing method.

酸触媒としてはベンゼンスルホン酸、アルキルベンゼン
スルホン酸類、ナフタレンスルボン酸。
Acid catalysts include benzenesulfonic acid, alkylbenzenesulfonic acids, and naphthalenesulfonic acid.

アルキルナフタレンスルホン酸類、アルキルIA酸エス
テル類、などのスルホン酸基や硫酸エステル基を持つ有
機化合物;硫酸、スルファミン酸、などが挙げられる。
Organic compounds having a sulfonic acid group or a sulfuric acid ester group such as alkylnaphthalene sulfonic acids and alkyl IA acid esters; sulfuric acid, sulfamic acid, and the like.

また、プロパンサルトンのように加熱することによりス
ルホン酸基を生成するものも使用可能である。
Moreover, those that generate sulfonic acid groups by heating, such as propane sultone, can also be used.

しかし、カルボキシル基やリン酸およびホスホン酸、ホ
スフィン酸類はポリビニルアルコールとエステル結合を
形成する傾向が強く好ましくない。
However, carboxyl groups, phosphoric acids, phosphonic acids, and phosphinic acids have a strong tendency to form ester bonds with polyvinyl alcohol and are not preferred.

こうした触媒は予め、水溶液として含浸機低温で乾燥す
るなどの方法により、中空糸に付与して、つぎの脱水反
応に供することができる。また、触媒が塩酸などガス化
し得る場合には、直接ガス状の触媒を供給しつつ、脱水
反応を行なうことができる。
Such a catalyst can be applied in advance to the hollow fibers as an aqueous solution by drying at a low temperature in an impregnation machine, and then subjected to the next dehydration reaction. Furthermore, when the catalyst can be gasified, such as hydrochloric acid, the dehydration reaction can be carried out while directly supplying the gaseous catalyst.

ポリビニルアルコールの脱水反応は、このような触媒の
存在下で 100〜250℃、より好ましくは130〜
220℃に加熱することにより行なうことができる。
The dehydration reaction of polyvinyl alcohol is carried out in the presence of such a catalyst at a temperature of 100 to 250°C, more preferably 130 to 250°C.
This can be done by heating to 220°C.

脱水反応は、反応温度1反応時間、触媒の種類。The dehydration reaction depends on the reaction temperature, reaction time, and type of catalyst.

触媒濃度、などの影響を受ける。また、大儀など酸素存
在下では脱水反応とともに複雑な酸化反応が同時に進行
する場合がある。程度の軽い酸化反応は障害にならない
場合もあるが、これを避けたい場合には、%(M素雰囲
気で脱水反応を行なう。
Affected by catalyst concentration, etc. In addition, in the presence of oxygen, such as in the presence of oxygen, complex oxidation reactions may proceed simultaneously with dehydration reactions. A mild oxidation reaction may not be a problem, but if you want to avoid this, the dehydration reaction should be carried out in an M atmosphere.

ポリビニルアルコール製多孔性中空糸は脱水反応の進行
とともに、いかなる溶媒にも不溶性となり、やがて膨潤
すらしなくなるとともに優れた耐熱性を示すようになり
同時に硬く耐圧性も向上するが、さらに脱水反応が進む
と脆(折れやすくなるなどの障害が出る。逆に、脱水反
応の程度が軽いと必要とする耐熱性が得られず好ましく
ない。
As the dehydration reaction progresses, porous hollow fibers made of polyvinyl alcohol become insoluble in any solvent, and eventually stop swelling and exhibit excellent heat resistance. At the same time, they become hard and have improved pressure resistance, but the dehydration reaction progresses further. This causes problems such as brittleness (easiness to break).On the other hand, if the degree of dehydration reaction is too light, the required heat resistance cannot be obtained, which is undesirable.

脱水反応の程度は、重量減少率(wt%]すなわち、1
丁  −X 100÷反応前重量 でもって把握でき、この重量減少率は5〜35vj%の
範囲が好ましく、特に10〜30%が特に好ましい範囲
である。
The degree of dehydration reaction is determined by the weight loss rate (wt%), that is, 1
It can be determined by D-X 100÷weight before reaction, and this weight reduction rate is preferably in the range of 5 to 35%, particularly preferably 10 to 30%.

[実施例〕 以下、実施例を掲げて本発明実施の態様をよす具体的に
説明する9例中、部は重量部を意味する。
[Examples] In the following, nine examples will be given to specifically explain embodiments of the present invention, in which parts mean parts by weight.

実施例1 平均重合度1,200、鹸化度99.9m。Ie%の高
鹸化ポリビニルアルコールを50部、平均重合度50.
鹸化度BB、 5mole%の超低重合度部分鹸化ポリ
ビニルアルコールを50部、水 1110部をニーダ−
(ts解機)に仕込み、密閉下で110℃で2時間かか
フで濃度36.8%、粘度230polsaの水溶液を
:igした。
Example 1 Average degree of polymerization 1,200, degree of saponification 99.9m. 50 parts of Ie% highly saponified polyvinyl alcohol, average degree of polymerization 50.
50 parts of partially saponified polyvinyl alcohol with a saponification degree of BB and a super low degree of polymerization of 5 mole% and 1110 parts of water were kneaded.
(TS disintegration machine), and an aqueous solution having a concentration of 36.8% and a viscosity of 230 polsa was stirred at 110° C. for 2 hours under sealed conditions.

この水溶液を直径700μのノズルより、芯に4011
%の硫安水溶液を供給しつつ、吐出させ、直ちに40℃
、40wI%の硫安水溶液中に導き凝固せしめて中空糸
を得た。これを 130℃の飽和硫安水溶液に3Ω分間
浸漬して熱処理した後、室温水中に一昼夜浸漬後さらに
中空糸の外部を加圧系としアウト−インの水流で超低重
合度部分鹸化ポリビニルアルコールを洗i1J+去し、
はぼ高鹸化ポリビニルアルコールのみよりなる多孔性中
空糸とした。
Apply this aqueous solution to the core through a nozzle with a diameter of 700μ.
% of ammonium sulfate aqueous solution, and then immediately heated to 40°C.
, was introduced into a 40wI% ammonium sulfate aqueous solution and coagulated to obtain a hollow fiber. This was heat-treated by immersing it in a saturated ammonium sulfate aqueous solution at 130°C for 3Ω, and then immersed in room temperature water for a day and night.Then, the outside of the hollow fiber was pressurized and the ultra-low polymerization degree partially saponified polyvinyl alcohol was washed with an out-in water stream. i1J+ left,
The porous hollow fibers were made of only highly saponified polyvinyl alcohol.

得られた多孔性中空糸に、パラトルエンスルホン酸のメ
タノール−水混合溶液を含浸後温風乾燥することにより
、脱水触媒としてのパラトルエンスルホン酸を中空糸に
対し1.3wLX付与した。
The obtained porous hollow fibers were impregnated with a methanol-water mixed solution of para-toluenesulfonic acid and then dried with hot air to impart 1.3 wLX of para-toluenesulfonic acid as a dehydration catalyst to the hollow fibers.

これを両端を固定した定長状態のままオーブンに入れて
それぞれ150℃で30分間、200℃で26分間熱処
理し1本発明中空糸(A) 、(B)を得た。
This was placed in an oven with both ends fixed at a constant length, and heat treated at 150°C for 30 minutes and 200°C for 26 minutes to obtain hollow fibers (A) and (B) of the present invention.

この処理により(A)は19.7%、 (B)は25,
3%の脱水減旦を示した。
With this process, (A) is 19.7%, (B) is 25%,
It showed a 3% reduction in dehydration.

実施例2 両端を細くした内径30mn+長さ3mのステンレス製
パイプに、パイプ中央より少址のガスを連続的に供給し
て窒素ガスとl  vo1%の塩化水素ガス雰囲気に保
ち、内部温度を170℃に保ちつつ、同時にパイプの両
側には酸素の遮断を兼ねた空冷ゾーンを設け、実施例1
で得られた多孔性中空糸20mを10%のオーバーフィ
ード率で】1時間かけて通すことにより脱水反応を行な
った。
Example 2 A small amount of gas was continuously supplied from the center of the pipe to a stainless steel pipe with an inner diameter of 30 mm and a length of 3 m with both ends tapered to maintain a nitrogen gas and 1% VO 1% hydrogen chloride gas atmosphere, and the internal temperature was raised to 170 ml. Example 1
A dehydration reaction was carried out by passing 20 m of the porous hollow fiber obtained in step 1 at an overfeed rate of 10% for 1 hour.

かくして得られた本発明中空糸<C>の脱水減危は14
.9%であった。
The dehydration risk of the thus obtained hollow fiber <C> of the present invention is 14
.. It was 9%.

かくして得られた本発明中空糸を10本束ね、ステンレ
スパイプに入れ開口部をエポキシ樹脂で固めたモジュー
ルを作り、 +40 ”Cのエチレングリコールを送り
込み2.3Kg/cmの圧をかけアウト−インの方向で
の通液試験を行なった。
A module was made by bundling 10 of the hollow fibers of the present invention obtained in this way, placing them in a stainless steel pipe, and hardening the opening with epoxy resin, and then pumping ethylene glycol of +40"C and applying a pressure of 2.3 kg/cm to the module. A liquid flow test was conducted in this direction.

透水率の違いはあるものの、本発明中空糸(A)。Although there is a difference in water permeability, the hollow fiber (A) of the present invention.

(B)、(C)のいずれも−週間の試験期間通液し続け
In both (B) and (C), the fluid continued to be passed for a -week test period.

試験後の断面のつぶれは観察されながった。No crushing of the cross section was observed after the test.

また、いずれも120 ’Cの加圧水および菜種油に1
月間浸漬試験を実施したところ形態上、濾過性能上の変
化は何九も殆ど見られながった。
In addition, both were added to 120'C pressurized water and rapeseed oil.
When a monthly immersion test was conducted, almost no changes in morphology or filtration performance were observed.

[発明の効果コ このように本発明中空糸は優れた耐熱性を有し、高温処
理や蒸気での殺菌処現が要求される医療イ食品、薬品な
どの分野で、また火力、原子力を始めとする蒸気発生器
の給水の除1.さらには高温での処理が望まれる油脂や
各種溶液の精密濾過などの用途に対し、高温下で長期間
使用できることが期待される。
[Effects of the invention] As described above, the hollow fibers of the present invention have excellent heat resistance, and can be used in fields such as medical, food, and pharmaceutical fields that require high-temperature treatment and sterilization with steam, as well as in thermal power, nuclear power, and other fields. Removal of water supply for steam generators 1. Furthermore, it is expected that it can be used for long periods of time at high temperatures for applications such as precision filtration of oils and fats and various solutions that require processing at high temperatures.

Claims (1)

【特許請求の範囲】 1)脱水反応による重量減少率が5〜35wt%である
ポリビニルアルコールの脱水反応物より構成されてなる
耐熱性多孔性中空糸 2)鹸化度が99.0mole%以上のポリビニルアル
コールより構成された多孔性中空糸を酸触媒の存在下で
加熱し重量を5〜35wt%減少せしめることを特徴と
する耐熱性多孔性中空糸の製造方法
[Scope of Claims] 1) A heat-resistant porous hollow fiber composed of a dehydration reaction product of polyvinyl alcohol whose weight loss rate due to dehydration reaction is 5 to 35 wt%. 2) Polyvinyl having a saponification degree of 99.0 mole% or more. A method for producing heat-resistant porous hollow fibers, which comprises heating porous hollow fibers made of alcohol in the presence of an acid catalyst to reduce the weight by 5 to 35 wt%.
JP12582688A 1988-05-25 1988-05-25 Heat-resistant porous hollow fiber and its manufacture Pending JPH01297102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12582688A JPH01297102A (en) 1988-05-25 1988-05-25 Heat-resistant porous hollow fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12582688A JPH01297102A (en) 1988-05-25 1988-05-25 Heat-resistant porous hollow fiber and its manufacture

Publications (1)

Publication Number Publication Date
JPH01297102A true JPH01297102A (en) 1989-11-30

Family

ID=14919899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12582688A Pending JPH01297102A (en) 1988-05-25 1988-05-25 Heat-resistant porous hollow fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPH01297102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155723A (en) * 2015-02-25 2016-09-01 株式会社クラレ Method for producing salt
JP2016155110A (en) * 2015-02-25 2016-09-01 株式会社クラレ Acid recovery method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155723A (en) * 2015-02-25 2016-09-01 株式会社クラレ Method for producing salt
JP2016155110A (en) * 2015-02-25 2016-09-01 株式会社クラレ Acid recovery method

Similar Documents

Publication Publication Date Title
US3930105A (en) Hollow fibres
US20090230053A1 (en) Membrane post treatment
CN101733023A (en) Method for manufacturing polyvinylidene fluoride hollow fiber membrane
KR101461199B1 (en) Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof
JP4051762B2 (en) Method for forming hollow fiber membrane
JPH01297102A (en) Heat-resistant porous hollow fiber and its manufacture
CN109589803A (en) Microbe carrier hydridization MBfR film and preparation method thereof
JPH06165819A (en) Hollow yarn membrane for purifying blood
JP2000061277A (en) Production of cellulosic crosslinked membrane
JP2013144264A (en) Method for producing porous polysulfone-based membrane
JPS59166208A (en) Manufacture of gas separating membrane
JPH0419890B2 (en)
JP2002339155A (en) Method for polyamino acid conjugate fiber production by aqueous solution interfacial spinning process and apparatus for continuous spinning
JPS588504A (en) Gas separation membrane comprising polysulfone hollow fiber
JPS60172312A (en) Preparation of polysulfone hollow yarn film
JPH0120245B2 (en)
CN113019156A (en) Composite nanofiltration membrane
JPH0212611B2 (en)
JPS62149307A (en) Production of external pressure type tubular permselective membrane
JPS61125409A (en) Method for making porous polyolefin hollow yarn hydrophilic
KR20020061017A (en) A polysulfone-based hollow fiber membrane with excellent durability for steam, and a process of preparing for the same
JPS621007B2 (en)
JPS61146302A (en) Composite ultrafiltration membrane
Shi et al. Preparation and Characterization of Sulfonated Polymer/Non-Woven Composite Membrane for Biodiesel Production
CN115430295A (en) Preparation method of composite enhanced polypropylene hollow fiber microporous membrane