JPH0129683B2 - - Google Patents

Info

Publication number
JPH0129683B2
JPH0129683B2 JP2524283A JP2524283A JPH0129683B2 JP H0129683 B2 JPH0129683 B2 JP H0129683B2 JP 2524283 A JP2524283 A JP 2524283A JP 2524283 A JP2524283 A JP 2524283A JP H0129683 B2 JPH0129683 B2 JP H0129683B2
Authority
JP
Japan
Prior art keywords
pipe
inner layer
outer layer
ceramic
ceramic wool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2524283A
Other languages
Japanese (ja)
Other versions
JPS59150711A (en
Inventor
Koji Kitazawa
Masaru Yamaguchi
Tsutomu Kuwabara
Chikashi Inazumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2524283A priority Critical patent/JPS59150711A/en
Publication of JPS59150711A publication Critical patent/JPS59150711A/en
Publication of JPH0129683B2 publication Critical patent/JPH0129683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【発明の詳細な説明】 本発明はパイプ状積層セラミツクスの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing pipe-shaped laminated ceramics.

セラミツクスは金属材料に比べて、耐熱性、耐
摩耗性、耐食性および耐圧縮性に優れている。し
たがつてこの点からはパイプ材料として金属より
格段に適している。しかし引張応力に弱いため、
パイプ材料としてほとんど用いられていない。そ
こで内側層よりも外側層の方が焼成における収縮
量の大きくて内側層に圧縮残留応力を発生させた
パイプ状積層セラミツクスを用いることが考えら
れるが、セラミツクス粉体を固めて内側層と外側
層とを成形する際に、その内側層および外側層の
各部分の厚さを均一にすることが困難で、もしも
その厚さが均一でない場合には内側層に発生する
圧縮残留応力が不揃いとなり、その不揃の圧縮残
留応力によつてクラツクが発生しやすくなる。
Ceramics have superior heat resistance, wear resistance, corrosion resistance, and compression resistance compared to metal materials. Therefore, from this point of view, it is much more suitable as a pipe material than metal. However, it is weak against tensile stress,
It is rarely used as a pipe material. Therefore, it is possible to use pipe-shaped laminated ceramics in which the outer layer shrinks more during firing than the inner layer and generates compressive residual stress in the inner layer. When molding, it is difficult to make the thickness of each part of the inner layer and outer layer uniform, and if the thickness is not uniform, the compressive residual stress generated in the inner layer will be uneven, Cracks are more likely to occur due to the uneven compressive residual stress.

そこで本発明はかかる問題点を解消したパイプ
状積層セラミツクスの製造方法を提供するもので
あつて、その特徴とするところは、パイプ状セラ
ミツクスウールの内周面にセラミツクス粉体から
なるパイプ状内側層を形成し、セラミツクスウー
ルの外周面に焼成時に内側層より収縮量の大なる
セラミツクス粉体からなるパイプ状外側層を形成
し、内側層、セラミツクスウールおよび外側層を
一体的に冷間成形した後、焼成することにあり、
かかる方法によれば、セラミツクスウールを利用
して各部分の厚さが均一な内側層と外側層とを成
形することができ、しかもセラミツクスウールを
取外すことなくそのセラミツクスウールと内側層
および外側層を一体として焼成するものであるか
ら、内側層および外側層の各部分の均一の厚さを
そのまま保持することができる。したがつて焼成
によつて外側層が内側層よりも大きく収縮して内
側層に発生する圧縮残留応力をその各部分におい
て均一にすることができるものである。故にこの
パイプ状積層セラミツクをパイプとして用いた場
合に、たとえそのパイプに引張応力が作用して
も、その引張応力と圧縮残留応力とが相殺しあう
ので、パイプにクラツクが発生したり、損傷させ
られたりすることはない。したがつて耐熱性、耐
摩耗性、耐食性および耐圧縮性に優れ、しかも引
張応力にも強いパイプを提供することができるも
のである。
Therefore, the present invention provides a method for manufacturing pipe-shaped laminated ceramics that solves these problems, and is characterized in that a pipe-shaped inner layer made of ceramic powder is formed on the inner peripheral surface of the pipe-shaped ceramic wool. A pipe-shaped outer layer made of ceramic powder that shrinks more than the inner layer during firing is formed on the outer peripheral surface of the ceramic wool, and the inner layer, ceramic wool, and outer layer are integrally cold-formed. , to be fired,
According to this method, it is possible to mold an inner layer and an outer layer with uniform thickness in each part using ceramic wool, and furthermore, the ceramic wool, inner layer and outer layer can be formed without removing the ceramic wool. Since they are fired as a single unit, the uniform thickness of each portion of the inner layer and outer layer can be maintained as is. Therefore, the outer layer shrinks more than the inner layer by firing, and the compressive residual stress generated in the inner layer can be made uniform in each part. Therefore, when this tubular laminated ceramic is used as a pipe, even if tensile stress acts on the pipe, the tensile stress and compressive residual stress cancel each other out, so there is no chance of cracking or damage to the pipe. You won't be disappointed. Therefore, it is possible to provide a pipe that has excellent heat resistance, abrasion resistance, corrosion resistance, and compression resistance, and is also strong against tensile stress.

以下、本発明の一実施例を図に基づいて説明す
る。すなわち第1図に示すごとく、底板1Aと心
棒1Bと外筒1Cとからなる金型1内にパイプ状
セラミツクスウール2を心棒1Bと同心状に挿入
し、次に心棒1Bとセラミツクスウール2との間
にAl2O3系セラミツクス粉体を充填して内側層3
を形成し、次にセラミツクスウール2と外筒1C
との間に安定化剤を添加したZrO2系セラミツク
ス粉体を充填して外側層4を形成し、次に第3図
に示すごとくリング状ラム5を心棒1Bに外嵌さ
せると共に外筒1C内に挿入し、内外層3,4を
一体的に冷間成形する。次に金型1内から一体成
形された内外層3,4およびセラミツクスウール
2を取出し、次にそれを1400〜1700℃で焼成し、
第4図に示すパイプ状積層セラミツクス6を得る
ものである。前記外側層4のZrO2はAl2O3に比べ
て焼成の際の収縮率が大きく、内側層3に圧縮残
留応力が発生するものである。外側層4に添加し
た安定化剤としてはY2O3、MgO、CaOなどがあ
り、これらを単独でまたは同時に1〜10mol%添
付する。この安定化剤により酸化ジルコン
(ZrO2)の焼成時の結晶構造を室温まで冷却した
状態でも保持することができるものである。また
内側層3と外側層4の厚みの比には制約があり、
外側層4が薄すぎると焼成したときに外側層4に
クラツクが入り、外側層4の厚さが所定値をこえ
ると、それ以上厚くしても残留応力の大きさは変
らない。したがつて内側層3の厚さを1とした場
合、外側層4の厚さは0.9〜3.3が適当である。
Hereinafter, one embodiment of the present invention will be described based on the drawings. That is, as shown in FIG. 1, a pipe-shaped ceramic wool 2 is inserted concentrically with the mandrel 1B into a mold 1 consisting of a bottom plate 1A, a mandrel 1B, and an outer cylinder 1C, and then the mandrel 1B and the ceramic wool 2 are Inner layer 3 is filled with Al 2 O 3 ceramic powder in between.
, then ceramic wool 2 and outer cylinder 1C
ZrO 2 ceramic powder added with a stabilizer is filled between the outer layer 4 and the outer layer 4. Next, as shown in FIG. The inner and outer layers 3 and 4 are cold-formed integrally. Next, the integrally molded inner and outer layers 3, 4 and ceramic wool 2 are taken out from the mold 1, and then fired at 1400 to 1700°C,
A pipe-shaped laminated ceramic 6 shown in FIG. 4 is obtained. The ZrO 2 of the outer layer 4 has a larger shrinkage rate during firing than Al 2 O 3 , and compressive residual stress is generated in the inner layer 3. Stabilizers added to the outer layer 4 include Y 2 O 3 , MgO, CaO, etc., and these are added in an amount of 1 to 10 mol% either singly or simultaneously. This stabilizer makes it possible to maintain the crystal structure of zircon oxide (ZrO 2 ) during firing even when it is cooled to room temperature. In addition, there are restrictions on the ratio of the thickness of the inner layer 3 and the outer layer 4,
If the outer layer 4 is too thin, cracks will occur in the outer layer 4 when fired, and if the thickness of the outer layer 4 exceeds a predetermined value, the magnitude of the residual stress will not change even if the outer layer 4 is made thicker. Therefore, when the thickness of the inner layer 3 is 1, the appropriate thickness of the outer layer 4 is 0.9 to 3.3.

上記構成において、冷間成形後の内側層3の厚
みを4mmとし、外側層4の厚みを6mmとし、1600
℃で常圧焼成して得られたパイプ状積層セラミツ
クス6を土砂(細骨材を含む)の輪送用パイプと
して用いた。その結果、従来の10mm厚さのAl2O3
パイプであれば、内面側からの疲れにともなうク
ラツク発生により損傷する例が使用パイプの約50
%も占めていたのに対し、本パイプではクラツク
発生により損傷する例は0%であつた。
In the above configuration, the thickness of the inner layer 3 after cold forming is 4 mm, the thickness of the outer layer 4 is 6 mm, and 1600
Pipe-shaped laminated ceramics 6 obtained by firing at normal pressure at ℃ was used as a pipe for transporting earth and sand (including fine aggregate). As a result, the conventional 10mm thick Al 2 O 3
In the case of pipes, there are approximately 50 cases of pipes being damaged due to cracks occurring due to fatigue from the inner surface.
However, in this pipe, 0% of cases were damaged due to cracking.

以上述べたごとく本発明のパイプ状積層セラミ
ツクスの製造方法によれば、セラミツクスウール
を利用して各部分の厚さが均一な内側層と外側層
とを成形することができ、しかもセラミツクスウ
ールを取外すことなくそのセラミツクスウールと
内側層および外側層を一体として焼成するもので
あるから、内側層および外側層の各部分の均一の
厚さをそのまま保持することができる。したがつ
て焼成によつて外側層が内側層よりも大きく収縮
して内側層に発生する圧縮残留応力をその各部分
において均一にすることができるものである。故
にこのパイプ状積層セラミツクスをパイプとして
用いた場合に、たとえそのパイプに引張応力が作
用しても、その引張応力と圧縮残留応力とが相殺
しあうので、パイプにクラツクが発生したり、損
傷させられたりすることはない。したがつて耐熱
性、耐摩耗性、耐食性および耐圧縮性に優れ、し
かも引張応力にも強いパイプを提供することがで
きるものである。
As described above, according to the method for manufacturing pipe-shaped laminated ceramics of the present invention, it is possible to mold the inner layer and outer layer with uniform thickness in each part using ceramic wool, and moreover, the ceramic wool can be removed. Since the ceramic wool, the inner layer, and the outer layer are fired as a unit without any heat loss, the uniform thickness of each portion of the inner layer and the outer layer can be maintained as is. Therefore, the outer layer shrinks more than the inner layer by firing, and the compressive residual stress generated in the inner layer can be made uniform in each part. Therefore, when this pipe-shaped laminated ceramic is used as a pipe, even if tensile stress acts on the pipe, the tensile stress and compressive residual stress cancel each other out, so there is no chance of cracks or damage to the pipe. You won't be disappointed. Therefore, it is possible to provide a pipe that has excellent heat resistance, abrasion resistance, corrosion resistance, and compression resistance, and is also strong against tensile stress.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示し、第1図は金型内
にセラミツクス粉体を充填した状態の縦断面図、
第2図は第1図の−矢視図、第3図は冷間成
形状態の断面図、第4図はパイプ状積層セラミツ
クスの縦断面図である。 1……金型、1A……底板、1B……心棒、1
C……外筒、2……セラミツクスウール、3……
内側層、4……外側層、5……ラム、6……パイ
プ状積層セラミツクス。
The figure shows one embodiment of the present invention, and FIG. 1 is a longitudinal cross-sectional view of a mold filled with ceramic powder;
2 is a view taken along the - arrow in FIG. 1, FIG. 3 is a sectional view of the cold-formed state, and FIG. 4 is a longitudinal sectional view of the pipe-shaped laminated ceramic. 1...mold, 1A...bottom plate, 1B...mandrel, 1
C...Outer cylinder, 2...Ceramics wool, 3...
Inner layer, 4...Outer layer, 5...Ram, 6...Pipe-shaped laminated ceramics.

Claims (1)

【特許請求の範囲】[Claims] 1 パイプ状セラミツクスウールの内周面にセラ
ミツクス粉体からなるパイプ状内側層を形成し、
セラミツクスウールの外周面に焼成時に内側層よ
り収縮量の大なるセラミツクス粉体からなるパイ
プ状外側層を形成し、内側層、セラミツクスウー
ルおよび外側層を一体的に冷間成形した後、焼成
することを特徴とするパイプ状積層セラミツクス
の製造方法。
1. Forming a pipe-like inner layer made of ceramic powder on the inner peripheral surface of pipe-like ceramic wool,
A pipe-shaped outer layer made of ceramic powder that shrinks more than the inner layer during firing is formed on the outer peripheral surface of the ceramic wool, and the inner layer, the ceramic wool, and the outer layer are integrally cold-formed, and then fired. A method for producing pipe-shaped laminated ceramics characterized by:
JP2524283A 1983-02-16 1983-02-16 Manufacture of pipy laminated ceramics Granted JPS59150711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2524283A JPS59150711A (en) 1983-02-16 1983-02-16 Manufacture of pipy laminated ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2524283A JPS59150711A (en) 1983-02-16 1983-02-16 Manufacture of pipy laminated ceramics

Publications (2)

Publication Number Publication Date
JPS59150711A JPS59150711A (en) 1984-08-29
JPH0129683B2 true JPH0129683B2 (en) 1989-06-13

Family

ID=12160511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2524283A Granted JPS59150711A (en) 1983-02-16 1983-02-16 Manufacture of pipy laminated ceramics

Country Status (1)

Country Link
JP (1) JPS59150711A (en)

Also Published As

Publication number Publication date
JPS59150711A (en) 1984-08-29

Similar Documents

Publication Publication Date Title
US3568723A (en) Metal-ceramic composite structures
JPH06500272A (en) Production of rigid, lightweight monolithic ceramic articles
JPH0681655B2 (en) How to make ceramic investment casting shell molds
US20060211564A1 (en) Ceramic matrix composite utilizing partially stabilized fibers
EP0190114B1 (en) Molded metal object and method to manufacture the same
EP0370751B1 (en) Shell moulds for casting metals
JPH0129683B2 (en)
US2301062A (en) Article made of sponge glass and method of manufacturing the same
US2184601A (en) Manufacture of ceramic ware
GB1571297A (en) Glass tnak furnace
JPH0829576B2 (en) Method for manufacturing ceramic structure
EP0191008A1 (en) Shell or tubular object and method to manufacture the same
JPS59150710A (en) Manufacture of pipy laminated ceramics
JPS6021173A (en) Production of ceramic-inserted casting
JPH10122756A (en) Multilayer fire-resistant wear material
JP3152677B2 (en) Crucible with thermal shock resistance
JPS6123822A (en) Joint body of metal and ceramic
JPS6331384B2 (en)
JPH089142Y2 (en) Glass mold
JPH04246266A (en) Heat insulating type intake/exhaust port and manufacture thereof
JPS60216966A (en) Composite ceramic-iron-base alloy body
JPS61172625A (en) Production of exhaust pipe of three layers structure
JPH0475113B2 (en)
JPS59147740A (en) Refractory tubular body of sprue system for casting
JPH04270178A (en) Production of long ceramic pipe