JPS6331384B2 - - Google Patents

Info

Publication number
JPS6331384B2
JPS6331384B2 JP2524083A JP2524083A JPS6331384B2 JP S6331384 B2 JPS6331384 B2 JP S6331384B2 JP 2524083 A JP2524083 A JP 2524083A JP 2524083 A JP2524083 A JP 2524083A JP S6331384 B2 JPS6331384 B2 JP S6331384B2
Authority
JP
Japan
Prior art keywords
layer
metal
ceramics
laminated
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2524083A
Other languages
Japanese (ja)
Other versions
JPS59152277A (en
Inventor
Koji Kitazawa
Masaru Yamaguchi
Tsutomu Kuwabara
Chikashi Inazumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2524083A priority Critical patent/JPS59152277A/en
Publication of JPS59152277A publication Critical patent/JPS59152277A/en
Publication of JPS6331384B2 publication Critical patent/JPS6331384B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は積層セラミツクスの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing laminated ceramics.

内燃機関のシリンダとしてセラミツクスが注目
されている。このセラミツクスによれば、耐熱
性,耐摩耗性,耐食性に優れているものの、引張
応力に弱く、壊れやすいものである。そこで金属
製シリンダの内周面にセラミツクスを配設するこ
とが考えられているが、通常のセラミツクスでは
金属と接合しにくく、短時間の運転で金属製シリ
ンダの内周面からセラミツクスが剥離してしまう
ものである。
Ceramics are attracting attention as cylinders for internal combustion engines. Although this ceramic has excellent heat resistance, abrasion resistance, and corrosion resistance, it is weak against tensile stress and easily breaks. Therefore, it has been considered to arrange ceramics on the inner circumferential surface of the metal cylinder, but ordinary ceramics are difficult to bond with metal, and the ceramics may peel off from the inner circumferential surface of the metal cylinder after a short period of operation. It's something to put away.

そこで本発明はかかる問題点を解消した積層セ
ラミツクスの製造方法を提供するものであつて、
その特徴とするところは、ジルコニアセラミツク
ス粉体からなる第1層と、ジルコニアセラミツク
ス粉体にSi3N4粉体を1〜20mol%均一混合した
第2層とを互いに当接させ、その第1,第2の層
を冷間成形した後、1400〜1700℃で焼成し、さら
に真空または大気中において1750〜1880℃で熱処
理したことにあり、かかる方法によれば、第1層
側の側面を緻密な面とし、第2層側の側面を多孔
質な面とした積層セラミツクスを得ることができ
るものであつて、たとえば金属製シリンダの内周
面に金属スペーサを介して積層セラミツクスの第
2層側の側面をあてがい、加熱して上記金属スペ
ーサを溶解させると、その金属スペーサからなる
溶融金属が積層セラミツクスの第2層側の側面の
孔内に入り込んでアンカー効果が生じると共にSi
と反応して合金化しかつ金属製シリンダの内周面
に接着させられる。したがつて耐熱性,耐摩耗
性,耐食性に優れかつ引張応力にも強いシリンダ
を提供することができ、しかも長期間の運転にも
十分耐えて、積層セラミツクスが金属製シリンダ
内周面から剥離しないものである。
Therefore, the present invention provides a method for manufacturing laminated ceramics that solves these problems.
The feature is that the first layer made of zirconia ceramic powder and the second layer made of zirconia ceramic powder uniformly mixed with 1 to 20 mol% of Si 3 N 4 powder are brought into contact with each other, and the first layer , after cold-forming the second layer, it is fired at 1400-1700°C and further heat-treated at 1750-1880°C in vacuum or in the atmosphere. According to this method, the side surface of the first layer is It is possible to obtain a laminated ceramic having a dense surface and a porous side surface on the second layer side. When the metal spacer is melted by heating, the molten metal from the metal spacer enters the hole in the side surface of the second layer of the laminated ceramic, creating an anchor effect and
It reacts with the metal to form an alloy and is bonded to the inner circumferential surface of the metal cylinder. Therefore, it is possible to provide a cylinder that has excellent heat resistance, wear resistance, corrosion resistance, and is resistant to tensile stress. Furthermore, it can withstand long-term operation, and the laminated ceramic will not peel off from the inner peripheral surface of the metal cylinder. It is something.

以下、本発明の一実施例を図に基づいて説明す
る。すなわち第1図に示すごとく金型1の底面上
に、安定化剤を添加したジルコニアセラミツクス
粉体からなる第1層2と、安定化剤を添加したジ
ルコニアセラミツクス粉体にSi3N4粉体を1〜
20mol%均一混合した第2層3とを入れ、次に金
型1内にラム4を入れて第1,第2の層2,3を
冷間成形し、次に第2図に示すごとく金型1内か
ら積層セラミツクス5を取出し、次にその積層セ
ラミツクス5を1400〜1700℃で焼成する。これに
よつてSi3N4を分散させたジルコニア焼結体がで
きる。次に真空または大気中において1750〜1880
℃で熱処理する。これによつてSi3N4はSiとN2
スに分解し、この分解過程において第2層3のSi
が生成するとともに微細孔が生成する。ここで熱
処理温度が1750℃以下ではSi3N4の分解が不活発
であり、1880℃以上では分解が十分におこなわれ
るが、分解後に一次的に発生していた微細孔が合
体して粗大化してしまうものである。またSi3N4
の添加量が1mol%以下では熱処理の際の多孔質
化が十分でなく、その添加量が20mol%以上では
得られた多孔質体の強度が小さくなる。さらにジ
ルコニアセラミツクス粉体に添加された安定化剤
としては、Y2O3,MgO,CaOなどがあり、これ
らを単独でまたは同時に1〜10mol%添加する。
この安定化剤により酸化ジルコニウム(ZrO2
の熱処理時の結晶構造を室温まで冷却した状態で
も保持することができるものである。
Hereinafter, one embodiment of the present invention will be described based on the drawings. That is, as shown in Fig. 1, a first layer 2 made of zirconia ceramic powder to which a stabilizer has been added is placed on the bottom surface of a mold 1, and a first layer 2 made of zirconia ceramic powder to which a stabilizer has been added, and Si 3 N 4 powder to the zirconia ceramic powder to which a stabilizer is added. 1~
A 20 mol% homogeneously mixed second layer 3 is then placed in the mold 1, and the first and second layers 2 and 3 are cold-formed. The laminated ceramic 5 is taken out from the mold 1, and then the laminated ceramic 5 is fired at 1400 to 1700°C. This produces a zirconia sintered body in which Si 3 N 4 is dispersed. Then 1750~1880 in vacuum or atmosphere
Heat treat at ℃. As a result, Si 3 N 4 is decomposed into Si and N 2 gas, and in this decomposition process, Si in the second layer 3 is
is generated and micropores are also generated. Here, if the heat treatment temperature is below 1750℃, the decomposition of Si 3 N 4 is inactive, and if it is above 1880℃, the decomposition is sufficient, but the micropores that were initially generated after decomposition coalesce and become coarse. It is something that will happen. Also Si 3 N 4
If the amount added is less than 1 mol%, the formation of porosity during heat treatment will not be sufficient, and if the amount added is more than 20 mol%, the strength of the obtained porous body will be reduced. Further, stabilizers added to the zirconia ceramic powder include Y 2 O 3 , MgO, CaO, etc., and these are added singly or simultaneously in an amount of 1 to 10 mol %.
This stabilizer allows zirconium oxide (ZrO 2 )
The crystal structure during heat treatment can be maintained even when cooled to room temperature.

次に上記の積層セラミツクス5をシリンダ内壁
として用いる場合には、第3図に示すごとく金属
製シリンダ6の内周面にたとえばモリブデン―マ
ンガン合金からなる金属スペーサ7を介して積層
セラミツクス5を配設し、次に加熱して金属スペ
ーサ7を溶解する。すると、その溶融金属が積層
セラミツクス5の第2層3側の側面の孔内に入り
込んでアンカー効果が生じると共にSiと反応して
合金化しかつ金属製シリンダ6の内周面に接着さ
せられるものである。
Next, when the above laminated ceramic 5 is used as the inner wall of the cylinder, the laminated ceramic 5 is arranged on the inner peripheral surface of the metal cylinder 6 via a metal spacer 7 made of, for example, a molybdenum-manganese alloy, as shown in FIG. Then, the metal spacer 7 is melted by heating. Then, the molten metal enters the hole in the side surface of the second layer 3 side of the laminated ceramics 5 and produces an anchor effect, reacts with Si, becomes alloyed, and is bonded to the inner peripheral surface of the metal cylinder 6. be.

上記構成では、金属スペーサ7からなる溶融金
属が多孔質セラミツクスの孔に入り込むと共にSi
と反応することから、その溶融金属が多孔質セラ
ミツクスの孔に入り込むだけの場合に比べて40%
以上も接合強度が増大するのが実験で確められ
た。
In the above configuration, the molten metal made of the metal spacer 7 enters the pores of the porous ceramic and the Si
40% compared to when the molten metal simply enters the pores of porous ceramics.
It has been confirmed through experiments that the bonding strength increases as well.

以上述べたごとく本発明の積層セラミツクス製
造方法によれば、第1層側の側面を緻密な面と
し、第2層側の側面を多孔質な面とした積層セラ
ミツクスを得ることができるものであつて、たと
えば金属製シリンダの内周面に金属スペーサを介
して積層セラミツクスの第2層側の側面をあてが
い、加熱して上記金属スペーサを溶解させると、
その金属スペーサからなる溶融金属が積層セラミ
ツクスの第2層側の側面の孔内に入り込んでアン
カー効果が生じると共にSiと反応して合金化しか
つ金属製シリンダの内周面に接着させられる。し
たがつて耐熱性,耐摩耗性,耐食性に優れかつ引
張応力にも強いシリンダを提供することができ、
しかも長期間の運転にも十分耐えて、積層セラミ
ツクスが金属製シリンダ内周面から剥離しないも
のである。
As described above, according to the laminated ceramic manufacturing method of the present invention, it is possible to obtain a laminated ceramic in which the side surface on the first layer side is a dense surface and the side surface on the second layer side is a porous surface. For example, if the second layer side side of the laminated ceramic is applied to the inner peripheral surface of a metal cylinder via a metal spacer and heated to melt the metal spacer,
The molten metal made of the metal spacer enters the hole in the side surface of the second layer side of the laminated ceramic to produce an anchor effect, reacts with Si, becomes alloyed, and is bonded to the inner peripheral surface of the metal cylinder. Therefore, it is possible to provide a cylinder that has excellent heat resistance, wear resistance, corrosion resistance, and is resistant to tensile stress.
In addition, it can withstand long-term operation, and the laminated ceramics will not peel off from the inner peripheral surface of the metal cylinder.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し、第1図は冷間成
形状態の縦断面図、第2図は積層セラミツクスの
縦断面図、第3図は金属製シリンダ内周面に配設
した状態の縦断面図である。 1……金型、2……第1層、3……第2層、4
……ラム、5……積層セラミツクス、6……金属
製シリンダ、7……金属スペーサ。
The figures show an embodiment of the present invention, in which Fig. 1 is a longitudinal cross-sectional view of a cold-formed state, Fig. 2 is a longitudinal cross-sectional view of laminated ceramics, and Fig. 3 is a state in which it is disposed on the inner peripheral surface of a metal cylinder. FIG. 1... Mold, 2... First layer, 3... Second layer, 4
... Ram, 5 ... Laminated ceramics, 6 ... Metal cylinder, 7 ... Metal spacer.

Claims (1)

【特許請求の範囲】[Claims] 1 安定化剤を添加したジルコニアセラミツクス
粉体からなる第1層と、安定化剤を添加したジル
コニアセラミツクス粉体にSi3N4粉体を1〜
20mol%均一混合した第2層とを互いに当接さ
せ、その第1,第2の層を冷間成形した後、1400
〜1700℃で焼成し、さらに真空または大気中にお
いて1750〜1880℃で熱処理したことを特徴とする
積層セラミツクスの製造方法。
1. A first layer consisting of zirconia ceramic powder to which a stabilizer has been added, and a layer of Si 3 N 4 powder to the zirconia ceramic powder to which a stabilizer has been added.
The second layer uniformly mixed with 20 mol% was brought into contact with each other, and the first and second layers were cold-formed.
1. A method for producing laminated ceramics, characterized in that the ceramics are fired at ~1700°C and further heat treated at 1750~1880°C in vacuum or in the atmosphere.
JP2524083A 1983-02-16 1983-02-16 Manufacture of laminate ceramics Granted JPS59152277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2524083A JPS59152277A (en) 1983-02-16 1983-02-16 Manufacture of laminate ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2524083A JPS59152277A (en) 1983-02-16 1983-02-16 Manufacture of laminate ceramics

Publications (2)

Publication Number Publication Date
JPS59152277A JPS59152277A (en) 1984-08-30
JPS6331384B2 true JPS6331384B2 (en) 1988-06-23

Family

ID=12160455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2524083A Granted JPS59152277A (en) 1983-02-16 1983-02-16 Manufacture of laminate ceramics

Country Status (1)

Country Link
JP (1) JPS59152277A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241469A (en) * 1985-08-14 1987-02-23 Kubota Ltd Aluminum cylinder for engine
JPS6347138A (en) * 1986-08-15 1988-02-27 中部電力株式会社 Tile lining body

Also Published As

Publication number Publication date
JPS59152277A (en) 1984-08-30

Similar Documents

Publication Publication Date Title
US4254621A (en) Heat-insulating layer to prevent temperature drop of combustion gas in internal combustion engine
RU2018501C1 (en) Process for manufacturing composite ceramic bodies
EP0234704A2 (en) Method of producing cavity containing ceramic material
EP0530854B1 (en) Metal-ceramic composite bodies
KR960001433B1 (en) Method for surface bonding of ceramic bodies
JPS6331384B2 (en)
JPS6343348B2 (en)
KR880003868A (en) Self-supporting ceramic composite having a dense surface layer and a porous core and a method of manufacturing the same
US6251317B1 (en) Method for manufacturing a ceramic composite material
JP4646202B2 (en) Composite comprising ceramic layers and method for producing the composite
JPH01212283A (en) Production of joined body of ceramics and metal
JPH0424142B2 (en)
JP4416946B2 (en) Ceramic composite
JPH09221372A (en) Wear resistant member
JPH0785435B2 (en) Electric heating element
US5240171A (en) Method for surface bonding of ceramic bodies
EP0280480A3 (en) Ceramic wall structures for engines and method of manufacture
JP2984654B1 (en) Method for producing ceramic laminate having sprayed ceramic layer
JP2697851B2 (en) Method of manufacturing fiber reinforced metal member
EP0191008A1 (en) Shell or tubular object and method to manufacture the same
JP2614061B2 (en) Nitride composite ceramics
JPH03150276A (en) Multilayered ceramic material and production thereof
JP2644806B2 (en) Manufacturing method of composite sliding material composed of ceramic and metal
JPH04342488A (en) Composite material of metal and ceramic and its production
JPH09256902A (en) Piston for internal combustion engine and manufacture thereof