JPH0129652B2 - - Google Patents

Info

Publication number
JPH0129652B2
JPH0129652B2 JP58099901A JP9990183A JPH0129652B2 JP H0129652 B2 JPH0129652 B2 JP H0129652B2 JP 58099901 A JP58099901 A JP 58099901A JP 9990183 A JP9990183 A JP 9990183A JP H0129652 B2 JPH0129652 B2 JP H0129652B2
Authority
JP
Japan
Prior art keywords
weight
cutting
tin
aln
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58099901A
Other languages
Japanese (ja)
Other versions
JPS59224201A (en
Inventor
Hiroshi Tanaka
Hidetoshi Baba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP9990183A priority Critical patent/JPS59224201A/en
Priority to DE8484100039T priority patent/DE3484318D1/en
Priority to EP84100039A priority patent/EP0113660B1/en
Priority to US06/569,683 priority patent/US4578087A/en
Publication of JPS59224201A publication Critical patent/JPS59224201A/en
Publication of JPH0129652B2 publication Critical patent/JPH0129652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱衝撃性および耐摩耗性にすぐれ高
速切削に適したセラミツク工具材料に関する。 Si3N4はセラミツク材料の中できわめて高靭性
があり、熱膨脹係数が3.5×10-6/℃と小さいた
め耐熱衝撃性にすぐれており、高速切削用工具と
して大いに期待されている。しかしながら工業的
にSi3N4をセラミツク工具として製造するために
は次の問題点がある。 (1) 耐摩耗性に欠ける (2) 鋼切削でクレータ摩耗が大きい (3) 難焼結材料であるためホツトプレス法が必要
で製造コストが高い このような問題を解決するため広く研究がなさ
れており、例えば特開昭56−32377では5〜40%
のTiC、TiCN、TiNの一種以上と10%以下の
AlN、Al2O3他とSi3N4からなる切削工具が提案
されているが、クレータ摩耗はおさえられるが、
耐摩耗性に劣り、又焼結性が悪くホツトプレス法
を必要とする。 本発明はこれを解決するためになされたもので
図面に示すようなSi3N4、TiN、及びY2O3
Dy2O3の一種または混合物対AlNを5〜60%含有
するAlNとAl2O3の混合物の比が3/1〜1/3からな
る焼結助剤の重量%を示した三角座標において、
点A(Si3N484重量%、TiN5重量%、焼結助剤11
重量%)、点B(Si3N455重量%、TiN5重量%、
焼結助剤40重量%)及び点C(Si3N455重量%、
TiN34重量%、焼結助剤11重量%)を結ぶ線で
囲まれる範囲において上記三成分を混合し、成型
して非酸化性雰囲気で1550℃〜1750℃で焼結する
ことを特徴とする窒化物系セラミツク工具を提供
するものである。 ここでSi3N4は主成分となるものであり、出発
原料としてはα型のものが適しており、粒度は
2μ以下のものがよい。又TiNはSi3N4の靭性を向
上し、さらに公知のように切削工具として使用し
た場合クレータ摩耗の防止効果をもつ。5%未満
では効果が少ない。種々の切削実験により膨脹係
数と熱衝撃抵抗の関係を調査した結果5×10-6
℃を熱膨脹係数が超えると劣化することから、
TiNの量が該当する量即ち34%以下と決定した。
次に焼結助剤は焼結性を高めて工業的に量産可能
なコールドプレス法を可能にし、更に本質的に摩
耗しやすいSi3N4及びTiNの耐摩耗性を向上させ
ることを目的としたものである。11%以下では耐
摩耗性に劣ると同時に焼結が困難なためにホツト
プレスが必要となる。40%を超えると高温におい
て軟化しやすくなり、高速切削に耐えなくなる。
Y2O3及びDy2O3とAlNを5〜60%含有するAlN
とAl2O3の混合物の比を3/1〜1/3に限定したの
は、この範囲が最も焼結しやすい組成であると同
時に焼結体の強度が高いためである。AlNと
Al2O3の混合物のうち、AlNを5〜60%と限定し
たのは強度の低下を生ぜずに硬度を高めるため
で、5%以下では効果が少なく、60%を超えると
強度が低下するためである。上記の原料をボール
ミルなどにより粉砕混合し、成型したのち焼結す
ることによつて本発明の工具用セラミツクは得ら
れる。焼結温度は1550℃〜1750℃が適しており、
1550℃未満では焼結せず、1750℃を超えると
Si3N4成分の揮発が激しく発泡が生じる。もちろ
んホツトプレス法やHIP法によつても製造可能で
あるが、工業的に量産がむずかしい。 実施例 1 Si3N4(平均粒径0.7μm、α―Si3N490%)、TiN
(平均粒径2μm)、Al2O3(平均粒径0.7μm)、Y2O3
(平均粒径1.2μm)AlN(平均粒径1.2μm)を用い、
表1に示す組成に調合し、ボールミルにより混合
粉砕した。ここでAl2O3とAlNは重量比1:1と
した。この粉末に5外重量%のパラフインを添加
し、1.5ton/cm2で金型プレス成型した。この成形
体を真空中800℃でバインダー抜きの後、N2雰囲
気で1650℃×1hr加熱し焼成した。得られた焼結
体はSNGN432(チヤンフアー0.1mm)の切削テス
ト用サンプルと4×8×25mmの曲げ強度測定用サ
ンプルに研磨加工した。 切削性能の評価は以下に示す条件で行い、表2
にはテスト1の場合30分間切削後のフランク摩耗
巾VB(mm)を、テスト2の場合5分間切削後のク
レーター摩耗深さKT(mm)を示した。 切削テスト条件 テスト1 テスト2 被削材 FC25 SCM440 切削速度 400m/分 200m/分 送り 0.2mm/rev 0.3mm/rev 切込み 2mm 1mm 切削時間 30分 5分 表2に示したようにTiNのない組成(No.14)
では1〜2分でKTが大きくなりすぎて欠損し、
TiNの多すぎる組成(No.13)ではVBが大きく、
テスト2でチツピングが発生した。焼結助剤が少
ない組成(No.6)ではテスト2でチツピングが発
生し、多い組成(No.7)ではVが大きかつた。さ
らにY2O3/(Al2O3+AlN)混合物比が大きい
組成(No.10)はVBが大きく、小さい組成(No.11)
ではテスト2でチツピングが発生した。 以上のように図の三角形ABC内の組成のもの
はABC外の組成のものに較べ優れた切削性能を
持つことがわかつた。
The present invention relates to a ceramic tool material that has excellent thermal shock resistance and wear resistance and is suitable for high-speed cutting. Si 3 N 4 has extremely high toughness among ceramic materials, and has a low coefficient of thermal expansion of 3.5×10 -6 /°C, so it has excellent thermal shock resistance and is highly anticipated as a tool for high-speed cutting. However, there are the following problems in industrially manufacturing Si 3 N 4 as ceramic tools. (1) It lacks wear resistance (2) Crater wear is large when cutting steel (3) Since it is a difficult-to-sinter material, hot pressing is required and manufacturing costs are high. Widespread research has been conducted to solve these problems. For example, in JP-A-56-32377, it is 5 to 40%.
More than one type of TiC, TiCN, TiN and less than 10%
Cutting tools made of AlN, Al 2 O 3, etc. and Si 3 N 4 have been proposed, but although crater wear can be suppressed,
It has poor wear resistance and poor sinterability, requiring hot pressing. The present invention was made to solve this problem, and as shown in the drawings, Si 3 N 4 , TiN, and Y 2 O 3 ,
In the triangular coordinates showing the weight percent of the sintering aid, the ratio of one type or mixture of Dy 2 O 3 to the mixture of AlN and Al 2 O 3 containing 5 to 60% AlN is from 3/1 to 1/3. ,
Point A (Si 3 N 4 84% by weight, TiN 5% by weight, sintering aid 11%
weight%), point B (Si 3 N 4 55% by weight, TiN 5% by weight,
40% by weight of sintering aid) and point C (55% by weight of Si 3 N 4 ,
Nitriding characterized by mixing the above three components in the area surrounded by the line connecting TiN (34% by weight, sintering aid 11% by weight), molding, and sintering at 1550°C to 1750°C in a non-oxidizing atmosphere. The present invention provides a physical ceramic tool. Here, Si 3 N 4 is the main component, and the α type is suitable as a starting material, and the particle size is
It is best to have a diameter of 2μ or less. TiN also improves the toughness of Si 3 N 4 and has the effect of preventing crater wear when used as a cutting tool, as is well known. If it is less than 5%, there is little effect. As a result of investigating the relationship between expansion coefficient and thermal shock resistance through various cutting experiments, the result was 5×10 -6 /
Because it deteriorates when the coefficient of thermal expansion exceeds ℃,
The amount of TiN was determined to be below the relevant amount, that is, 34%.
Next, the sintering aid is intended to improve sintering properties and enable the cold press method that can be industrially mass-produced, and also to improve the wear resistance of Si 3 N 4 and TiN, which are inherently prone to wear. This is what I did. If it is less than 11%, the wear resistance is poor and sintering is difficult, so hot pressing is required. If it exceeds 40%, it tends to soften at high temperatures and cannot withstand high-speed cutting.
AlN containing 5-60% of Y 2 O 3 and Dy 2 O 3 and AlN
The reason why the ratio of the mixture of Al 2 O 3 and Al 2 O 3 was limited to 3/1 to 1/3 is because this range is the easiest to sinter, and at the same time the strength of the sintered body is high. AlN and
The reason why AlN is limited to 5 to 60% in the Al 2 O 3 mixture is to increase hardness without reducing strength; less than 5% is less effective, and more than 60% reduces strength. It's for a reason. The ceramic for tools of the present invention can be obtained by pulverizing and mixing the above-mentioned raw materials using a ball mill or the like, molding them, and then sintering them. The suitable sintering temperature is 1550℃~1750℃,
It will not sinter below 1550℃, and above 1750℃ it will not sinter.
Vigorous volatilization of the Si 3 N 4 component causes foaming. Of course, it can also be manufactured by the hot press method or the HIP method, but it is difficult to mass-produce it industrially. Example 1 Si 3 N 4 (average particle size 0.7 μm, α-Si 3 N 4 90%), TiN
(average particle size 2μm), Al 2 O 3 (average particle size 0.7μm), Y 2 O 3
(average particle size 1.2μm) using AlN (average particle size 1.2μm),
The compositions shown in Table 1 were prepared and mixed and ground using a ball mill. Here, the weight ratio of Al 2 O 3 and AlN was 1:1. Paraffin was added to this powder in an amount of 5% by weight, and the powder was press molded at 1.5 ton/cm 2 . After removing the binder from this molded body in a vacuum at 800°C, it was heated and fired at 1650°C for 1 hour in an N 2 atmosphere. The obtained sintered body was polished into a cutting test sample of SNGN432 (chamber diameter: 0.1 mm) and a 4 x 8 x 25 mm sample for bending strength measurement. Evaluation of cutting performance was performed under the conditions shown below, and Table 2
shows the flank wear width V B (mm) after cutting for 30 minutes in Test 1, and the crater wear depth K T (mm) after cutting for 5 minutes in Test 2. Cutting test conditions Test 1 Test 2 Work material FC25 SCM440 Cutting speed 400m/min 200m/min Feed 0.2mm/rev 0.3mm/rev Depth of cut 2mm 1mm Cutting time 30 minutes 5 minutes As shown in Table 2, composition without TiN ( No.14)
Then, in 1 to 2 minutes, K T becomes too large and becomes defective.
In the composition with too much TiN (No. 13), V B is large,
Chipping occurred in test 2. In the composition with a small amount of sintering aid (No. 6), chipping occurred in Test 2, and in the composition with a large amount of sintering aid (No. 7), V was large. Furthermore, the composition with a large Y 2 O 3 / (Al 2 O 3 + AlN) mixture ratio (No. 10) has a large V B , while the composition with a small V B (No. 11)
In test 2, chipping occurred. As described above, it was found that those with compositions within the triangle ABC in the figure have superior cutting performance compared to those with compositions outside ABC.

【表】【table】

【表】【table】

【表】 実施例 2 実施例1と同じ製法で表3に示す組成にて調合
し、製作した。又テスト方法はテスト1の他に下
記の如き条件のテスト3を加え、その結果も表3
に併せて示す。 テスト3 テストチツプ形状 RNGN 432 被削材 インコネル718(耐熱Ni合金) 切削速度 250m/分 送り 0.2mm/回転 切込み 0.5mm 切削時間 2分 評価 切込み境界部の境界摩耗VB′、
VB′の詳細は第2図に示す。
[Table] Example 2 The composition shown in Table 3 was prepared and manufactured using the same manufacturing method as in Example 1. In addition to test 1, test 3 with the following conditions was added to the test method, and the results are shown in Table 3.
It is also shown in . Test 3 Test tip shape RNGN 432 Work material Inconel 718 (heat-resistant Ni alloy) Cutting speed 250 m/min Feed 0.2 mm/rotational depth of cut 0.5 mm Cutting time 2 minutes Evaluation Boundary wear at the cutting edge V B ′,
Details of V B ' are shown in Figure 2.

【表】【table】

【表】 以上のようにAlNを加えることにより鋳鉄切
削における摩耗の改善が見られ、特にインコネル
718の切削で顕著である。 以上本実施例では切削工具として説明したが、
本発明のセラミツク工具はこれに拘わることなく
振動や熱のかかる機械用耐熱耐摩耗部品例えば線
引きダイス、インパクトダイス等にも適用できる
ものである。
[Table] As shown above, the addition of AlN improves wear when cutting cast iron, especially when cutting Inconel.
This is noticeable when cutting 718. In the above example, the explanation was given as a cutting tool.
The ceramic tool of the present invention is not limited to this, but can also be applied to heat-resistant and wear-resistant parts for machines that are subject to vibration and heat, such as wire drawing dies, impact dies, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のセラミツク工具の組成範囲を
示す三角座標図でSi3N4、TiN、Y2O3及び/また
はDy2O3対AlNを5〜60%含有するAlNとAl2O3
の混合物の比が3/1〜1/3からなる焼結助剤の重量
%を示す図である。第2図は切削テスト3の、切
込み境界部の境界摩耗VB′を示す刃先の斜視図で
あり、1はVB、2はVB′である。
FIG . 1 is a triangular coordinate diagram showing the composition range of the ceramic tool of the present invention . 3
FIG. 3 shows the weight percentage of sintering aids having a mixture ratio of 3/1 to 1/3. FIG. 2 is a perspective view of the cutting edge showing the boundary wear V B ' at the cutting boundary in cutting test 3, where 1 is V B and 2 is V B '.

Claims (1)

【特許請求の範囲】[Claims] 1 図面に示すようなSi3N4、TiN、及びY2O3
Dy2O3の一種または混合物対AlNを5〜60%含有
するAlNとAl2O3の混合物の比が3/1〜1/3からな
る焼結助剤の重量%を示した三角座標において、
点A(Si3N484重量%、TiN5重量%、焼結助剤11
重量%)、点B(Si3N455重量%、TiN5重量%、
焼結助剤40重量%)及び点C(Si3N455重量%、
TiN34重量%、焼結助剤11重量%)を結ぶ線で
囲まれる範囲において上記三成分を混合し、成型
して非酸化性雰囲気で1550℃〜1750℃で焼結する
ことを特徴とする窒化物系セラミツク工具の製造
法。
1 Si 3 N 4 , TiN, and Y 2 O 3 as shown in the drawing,
In the triangular coordinates showing the weight percent of the sintering aid, the ratio of one type or mixture of Dy 2 O 3 to the mixture of AlN and Al 2 O 3 containing 5 to 60% AlN is from 3/1 to 1/3. ,
Point A (Si 3 N 4 84% by weight, TiN 5% by weight, sintering aid 11%
weight%), point B (Si 3 N 4 55% by weight, TiN 5% by weight,
40% by weight of sintering aid) and point C (55% by weight of Si 3 N 4 ,
Nitriding characterized by mixing the above three components in the area surrounded by the line connecting TiN (34% by weight, sintering aid 11% by weight), molding, and sintering at 1550°C to 1750°C in a non-oxidizing atmosphere. Manufacturing method for physical ceramic tools.
JP9990183A 1983-01-10 1983-06-03 Nitride group ceramic tool Granted JPS59224201A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9990183A JPS59224201A (en) 1983-06-03 1983-06-03 Nitride group ceramic tool
DE8484100039T DE3484318D1 (en) 1983-01-10 1984-01-03 NITRIDE-BASED CUTTING TOOL.
EP84100039A EP0113660B1 (en) 1983-01-10 1984-01-03 Nitride based cutting tool
US06/569,683 US4578087A (en) 1983-01-10 1984-01-10 Nitride based cutting tool and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9990183A JPS59224201A (en) 1983-06-03 1983-06-03 Nitride group ceramic tool

Publications (2)

Publication Number Publication Date
JPS59224201A JPS59224201A (en) 1984-12-17
JPH0129652B2 true JPH0129652B2 (en) 1989-06-13

Family

ID=14259674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9990183A Granted JPS59224201A (en) 1983-01-10 1983-06-03 Nitride group ceramic tool

Country Status (1)

Country Link
JP (1) JPS59224201A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402453B (en) * 2014-10-27 2016-04-13 合肥市东庐机械制造有限公司 A kind of ceramic cutter material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205374A (en) * 1981-06-09 1982-12-16 Ngk Spark Plug Co Sintered body for cutting tool and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205374A (en) * 1981-06-09 1982-12-16 Ngk Spark Plug Co Sintered body for cutting tool and manufacture

Also Published As

Publication number Publication date
JPS59224201A (en) 1984-12-17

Similar Documents

Publication Publication Date Title
US4563433A (en) Ceramic material and method of manufacture
US4711644A (en) Ceramic material and method of manufacture
JPS59102865A (en) Manufacture of ceramic cutting tool
JPH0129652B2 (en)
JPS6222951B2 (en)
JPS6152102B2 (en)
JPH05301762A (en) Production of cutting tool with high toughness made of aluminum oxide-based ceramic
JPS6117473A (en) Silicon nitride base sintering material for cutting tool
JPS5957963A (en) Manufacture of nitride ceramic tool
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPS5895662A (en) Silicon nitride-titanium nitride composite sintered body
JP2778179B2 (en) Manufacturing method of silicon nitride based sintered material with high toughness and high strength
JPS6026066B2 (en) Ceramic with high toughness
JP3458533B2 (en) Manufacturing method of WC-based cemented carbide cutting tool
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2778189B2 (en) Fracture resistant silicon nitride based sintered material with high toughness and high strength
JPH0411503B2 (en)
JP2901102B2 (en) Silicon nitride sintered body for tools and coated silicon nitride sintered body for tools
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JPH04240162A (en) Silicon nitride-based body for tool
JPS6215505B2 (en)
JPS58213678A (en) Sialon base sintering material for cutting tool and abrasion-resistant tool
JPH0121214B2 (en)
JPS62235260A (en) Si3n4 base composite material
JPS6227032B2 (en)