JPH01296512A - Manufacture of electromagnetic wave shielding heat-contracting tube - Google Patents

Manufacture of electromagnetic wave shielding heat-contracting tube

Info

Publication number
JPH01296512A
JPH01296512A JP12801488A JP12801488A JPH01296512A JP H01296512 A JPH01296512 A JP H01296512A JP 12801488 A JP12801488 A JP 12801488A JP 12801488 A JP12801488 A JP 12801488A JP H01296512 A JPH01296512 A JP H01296512A
Authority
JP
Japan
Prior art keywords
resin
conductive
tube
softening temperature
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12801488A
Other languages
Japanese (ja)
Inventor
Naoki Yoshimi
直喜 吉見
Hisao Nunokawa
布川 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Corp filed Critical Calsonic Corp
Priority to JP12801488A priority Critical patent/JPH01296512A/en
Publication of JPH01296512A publication Critical patent/JPH01296512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To reduce breakage of conductive fibers and improve their dispersion by melting speedily and steadily a converging agent for converting conductive fibers and a covering resin during heating phase in molding process of a tube. CONSTITUTION:A conductive fiber bundle 3 is formed by converging long conductive fibers 1 with a converging agent 2 that utilizes a thermoplastic resin having a softening temperature lower than that of a base resin used as the base of a conductive shield layer. Then, after applying coating resin 4 to the conductive fiber bundle 3 with a thermoplastic resin having a softening temperature higher than that of converging agent 2 but lower than that of the base resin, the conductive fiber bundle 3 is cut into pieces of a given length to form conductive resin pellets 5. Then, the pellets 5 and the base resin are mixed together and heated and kneaded in an extrusion mold to form a melted conductive resin, and the resin is extruded through an extrusion outlet so as to be shaped in a tube.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ケーブル等の電線を被覆して内部の導電体を
電磁波を主とした外部の悪影響から保護する電磁波シー
ルド用熱収縮チューブの製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the manufacture of heat-shrinkable tubes for electromagnetic shielding, which cover electric wires such as cables to protect internal conductors from external harmful effects, mainly electromagnetic waves. Regarding the method.

(従来の技術) 従来の電磁波シールド用熱収縮チューブの製造方法とし
ては、特開昭63−2399号公報に記載されているよ
うに、内側から同心状に導電性樹脂押出口と絶縁性樹脂
押出口とが形成されている押出成形機を用いて、熱可塑
性樹脂に導電粉が混入された導電性樹脂と、熱可塑性樹
脂のみによる絶縁性樹脂とを同時に押し出すことにより
、同心状に導電性シールド樹脂層と絶縁性シース樹脂層
とを有する電磁波シールド用熱収縮チューブを成形させ
る方法が知られている。
(Prior art) As described in Japanese Patent Application Laid-open No. 63-2399, a conventional method for manufacturing a heat-shrinkable tube for electromagnetic shielding involves inserting a conductive resin extrusion port and an insulating resin extrusion concentrically from the inside. Using an extrusion molding machine with an outlet, a conductive resin made of thermoplastic resin mixed with conductive powder and an insulating resin made only of thermoplastic resin are simultaneously extruded to form a conductive shield concentrically. A method of molding a heat-shrinkable tube for electromagnetic shielding having a resin layer and an insulating sheath resin layer is known.

(発明が解決しようとする課題) しかしながら、このような従来方法にあっては、導電材
料として導電粉が用いられているために、導電性シール
ド樹脂層のシールド効果を確実に確保するためには、そ
の導電粉を導電性樹脂全体のほぼ20 w t:%とい
った高い割合で配合しなければならない。即ち、この従
来方法により製造された熱収縮チューブには以下に列挙
する問題が生じていた。
(Problems to be Solved by the Invention) However, in such conventional methods, since conductive powder is used as the conductive material, it is difficult to ensure the shielding effect of the conductive shield resin layer. , the conductive powder must be incorporated in a high proportion of approximately 20 wt:% of the total conductive resin. That is, the heat shrinkable tube manufactured by this conventional method has the following problems.

■比重が大きいために重い。■It is heavy due to its large specific gravity.

■剛性があって固いため、ケーブル等への熱収縮による
被覆時間を長く必要とする。
■Because it is rigid and hard, it requires a long time to coat cables etc. with heat shrinkage.

■柔軟性が不足しているためケーブル等への被覆後の取
り扱いも困難である。
■Due to the lack of flexibility, handling after covering cables, etc. is also difficult.

■ニスl−が高い。■ Varnish l- is expensive.

本発明は、上記のような問題に着目し、少量の導電材料
の配合で優れたシールド効果をもつ電磁波シールド用熱
収縮チューブを製造するための製造方法の開発を課題と
する。
The present invention focuses on the above-mentioned problems and aims to develop a manufacturing method for manufacturing a heat-shrinkable tube for electromagnetic shielding that has an excellent shielding effect with a small amount of conductive material.

そして、この課題を導電材料として導電繊維を利用した
下記の手段にて解決し、軽量かつ柔軟性があってコスト
の安い電磁波シールド用熱収縮チューブを製造できる製
造方法を提供することを目的とする。
The purpose of the present invention is to solve this problem by the following means using conductive fibers as a conductive material, and to provide a manufacturing method for manufacturing a heat-shrinkable tube for electromagnetic shielding that is lightweight, flexible, and inexpensive. .

(課題を解決するための手段) 上記課題を解決すると共に、上記目的を達成するために
本発明の電磁波シールド用熱収縮チューブの製造方法で
は、熱収縮性樹脂を素材とした中空筒状のチューブであ
って、内側には熱可塑性樹脂に導電性繊維が混入された
導電性樹脂による導電性シールド樹脂層が形成され、か
つ外側には熱可塑性樹脂のみの絶縁性樹脂による絶縁性
シース樹脂層が形成されている電磁波シールド用熱収縮
チューブの製造方法において、軟化温度が導電性シール
ド樹脂層のベースとなるベース樹脂の軟化温度よりも低
い熱可塑性樹脂を用いた集束剤により、長い導電性繊維
を集束して導電性繊維束を形成する長繊維集束工程と、
軟化温度が前記集束剤の軟化温度以上であると共に、前
記ベース樹脂の軟化温度以下である熱可塑性樹脂により
前記導電性繊維束に被覆樹脂を施した後、その導電性繊
維束を所定長さに切断して導電性樹脂ペレットを形成す
る樹脂ペレット形成工程と、前記導電性樹脂ペレットと
ベース樹脂を混合させ、押出成形機で加熱及び混練して
泗融状態の導電性樹脂を形成し、この導電性樹脂を押出
口から押し出してチューブ状に成形するチューブ成形工
程と、を備えていることを特徴とする手段とした。
(Means for Solving the Problems) In order to solve the above problems and achieve the above objects, in the method for manufacturing a heat shrinkable tube for electromagnetic shielding of the present invention, a hollow cylindrical tube made of a heat shrinkable resin is manufactured. On the inside, a conductive shielding resin layer is formed using a conductive resin in which conductive fibers are mixed into thermoplastic resin, and on the outside, an insulating sheath resin layer is formed using an insulating resin consisting only of thermoplastic resin. In the manufacturing method of the heat-shrinkable tube for electromagnetic shielding, long conductive fibers are formed using a sizing agent using a thermoplastic resin whose softening temperature is lower than that of the base resin that forms the base of the conductive shielding resin layer. a long fiber convergence step of converging to form a conductive fiber bundle;
After coating the conductive fiber bundle with a thermoplastic resin whose softening temperature is higher than the softening temperature of the sizing agent and lower than the softening temperature of the base resin, the conductive fiber bundle is cut into a predetermined length. A resin pellet forming step in which the conductive resin pellets are cut to form conductive resin pellets, and the conductive resin pellets and base resin are mixed, heated and kneaded in an extruder to form a conductive resin in a molten state, and the conductive resin is The method is characterized by comprising a tube forming step of extruding the plastic resin from an extrusion port and forming it into a tube shape.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

まず、本実施例で製造しようとする熱収縮チューブの構
成について第4図を参照し説明する。
First, the structure of the heat-shrinkable tube to be manufactured in this example will be explained with reference to FIG. 4.

この熱収縮チューブTは、熱収縮性樹脂を素材とした円
筒チューブであって、導電性シールド樹脂層100、絶
縁性シース樹脂層200の二層構造となっている。
This heat-shrinkable tube T is a cylindrical tube made of heat-shrinkable resin, and has a two-layer structure including a conductive shield resin layer 100 and an insulating sheath resin layer 200.

導電性シールド樹脂層100は、熱可塑性樹脂に導電性
繊維lが混入された導電性樹脂によるもので、チューブ
の内側に形成される。
The conductive shield resin layer 100 is made of a conductive resin in which conductive fibers 1 are mixed into a thermoplastic resin, and is formed inside the tube.

絶縁性シース樹脂層200は、熱可塑性樹脂のみの絶縁
性樹脂によるもので、チューブの外側に形成される。
The insulating sheath resin layer 200 is made of an insulating resin consisting only of thermoplastic resin, and is formed on the outside of the tube.

導電性シールド樹脂層100を形成する導電性樹脂中の
熱可塑性樹脂のベースとなるベース樹脂と、絶縁性シー
ス樹脂層200を形成する導電性樹脂(熱可塑性樹脂)
は、共に軟化温度125°Cで中密度のエチレン酢酸ビ
ニルコポリマー(難燃剤顔料、滑剤等)が使用されてい
る。
A base resin that is the base of the thermoplastic resin in the conductive resin that forms the conductive shield resin layer 100 and a conductive resin (thermoplastic resin) that forms the insulating sheath resin layer 200.
Both use a medium density ethylene vinyl acetate copolymer (flame retardant pigment, lubricant, etc.) with a softening temperature of 125°C.

尚、ベース樹脂及び絶縁性樹脂は、エチレン酢酸ビニル
コポリマー以外では、エチレン−エチルアクリレートコ
ポリマー、ポリエチレン、ポリ塩化ビニル、架橋ポリエ
チレン、エチレンプロピレンゴム、ブチルゴム等の熱可
塑性樹脂が使用できる。また、ベース樹脂と絶縁性樹脂
とは、同じ樹脂でなくてもよく、相互に相溶性のある組
み合せであれば異なる樹脂を用いてもよい。
As the base resin and the insulating resin, other than ethylene vinyl acetate copolymer, thermoplastic resins such as ethylene-ethyl acrylate copolymer, polyethylene, polyvinyl chloride, crosslinked polyethylene, ethylene propylene rubber, and butyl rubber can be used. Furthermore, the base resin and the insulating resin do not have to be the same resin, and different resins may be used as long as they are a mutually compatible combination.

次に、この熱収縮チューブTの製造方法について説明す
る。
Next, a method for manufacturing this heat-shrinkable tube T will be explained.

この製造方法は、太き(繊維集束工程と、樹脂ペレット
形成工程と、チューブ成形工程に分けられる。
This manufacturing method is divided into a thick (fiber bundle step), a resin pellet forming step, and a tube forming step.

まず、繊維集束工程は、第1図に示すように、連続した
長い導電性繊維1を、ベース樹脂よりも軟化温度が10
°C〜70℃(最も好ましくは20°C〜50°C)低
い熱可塑性樹脂を用いた集束剤2に浸せきし、乾燥機A
で乾燥・冷却して集束させて長い導電性繊維束3を製造
する工程である。
First, in the fiber bundling process, as shown in FIG.
C
In this step, the fibers are dried, cooled, and bundled to produce a long conductive fiber bundle 3.

具体的に説明すると、エヂレンー酢酸ビニルコポリマー
(軟化温度90°C)100重量部をトリクロロエチレ
ン900重量部に溶解して液状の集束剤2を形成し、こ
の集束剤2を50’Cに加熱したものに浸せきして8μ
mの5tJS304系ステンし・ス鋼繊維を2850木
集束する。
Specifically, 100 parts by weight of edylene-vinyl acetate copolymer (softening temperature 90°C) was dissolved in 900 parts by weight of trichlorethylene to form liquid sizing agent 2, and this sizing agent 2 was heated to 50'C. Soak in 8μ
5t JS304 series stainless steel fiber of 2850m is bundled.

尚、導電性繊維1としては、5US304系スチレンレ
ス鋼繊維(81tm 〜15 LLm、 700本〜5
000本)、ニッケルメッキガラス繊維(lOum−2
3um、500本〜4000本、N1GF)、ニッケル
メッキ炭素繊維(Ni−CF。
In addition, as the conductive fiber 1, 5US304 styrene-free steel fiber (81tm ~ 15 LLm, 700 ~ 5
000 pieces), nickel-plated glass fiber (lOum-2
3um, 500 to 4000 pieces, N1GF), nickel-plated carbon fiber (Ni-CF).

8um−1,5um、700本〜5000本)等をイ吏
用することができる。
8um-1.5um, 700 to 5000 pieces), etc. can be used.

また集束剤2としては、エチレン−酢酸ビニルコポリマ
ー、エチレン−エチルアクリレートコポリマー、ポリエ
チレン、ポリ塩化ビニル等の熱可塑性樹脂(軟化温度が
60℃〜100’C)を、l・ルエン、キシレン、トリ
クロロエチレン、シクロールエチレン等の溶媒に10w
t%〜30wt%溶解したものが使用できる。
As the sizing agent 2, thermoplastic resins (with a softening temperature of 60° C. to 100° C.) such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polyethylene, and polyvinyl chloride, l.luene, xylene, trichloroethylene, 10W for solvents such as cycloethylene
A solution of t% to 30wt% can be used.

ここで、導電性繊維1を集束剤2で集束するにあたり、
導電性繊維束3に含浸する樹脂量は、導電性繊維束3の
例えば10Wし%となるように調節する。尚、導電性繊
維束3に含浸する樹脂量は、厳密しこ10wt%である
必要はないが、導電性繊維束3の3wt%〜30wt%
(最も好ましくは7wt%〜12wt%)になるように
調整する。ちなみに、3wt%以下であれば、導電性繊
維束3のトウがばらばらになったり、毛羽立って繊維が
破断したりし、また20wt%以上では、樹脂液の粘度
が高くなってくるので、作業が困難となってくる。
Here, when binding the conductive fibers 1 with the binding agent 2,
The amount of resin impregnated into the conductive fiber bundle 3 is adjusted to be 10 W% of the conductive fiber bundle 3, for example. Note that the amount of resin impregnated into the conductive fiber bundle 3 does not have to be strictly 10 wt%, but it is 3 wt% to 30 wt% of the conductive fiber bundle 3.
(Most preferably 7 wt% to 12 wt%). By the way, if it is less than 3wt%, the tow of the conductive fiber bundle 3 will fall apart or become fluffy and the fibers will break, and if it is more than 20wt%, the viscosity of the resin liquid will increase, making the work difficult. It becomes difficult.

次の樹脂ペレット形成工程は、第1図に示すように、軟
化温度が集束剤2に用いた熱可塑性樹脂の軟化温度と等
しい熱可塑性樹脂を、押出成形機Bで前記導電性繊維束
3に被覆しく被覆樹脂4)抑圧ロールCをかけた後、適
当な長さに切断機りにより切断して、第2図に示すよう
な導電性樹脂ベレット5を製造する工程である。
In the next step of forming resin pellets, as shown in FIG. This is the step of manufacturing a conductive resin pellet 5 as shown in FIG. 2 by applying the coating resin 4) with a pressing roll C and cutting it into an appropriate length using a cutting machine.

尚、集束剤2に用いた熱可塑性樹脂と、被覆樹脂4に用
いた熱可塑性樹脂とは、同一樹脂とは限られず、軟化温
度が等しいという条件が満たされでいて相互に相溶性が
あれば、異種の樹脂を用いでもよい。
Note that the thermoplastic resin used for the sizing agent 2 and the thermoplastic resin used for the coating resin 4 are not necessarily the same resin, but as long as the condition that the softening temperatures are equal is met and they are compatible with each other. , different types of resins may be used.

被覆樹脂4の量は、導電性樹脂ベレット5全体に対し、
集束剤2を除いた導電性繊維1の量が、10wt%〜4
0wt%(最も好ましくは20wt%〜30wt%)に
なるよう調節する。ちなみに、導電性繊維1が10wt
%以下になると、導電性繊維に比べて被覆樹脂4が多く
なるので、導電性樹脂ベレット5の外径が大きくなって
成形作業が困難となり、また40wt%以上になると、
被覆樹脂4の配合量が少ないので、後のチューブ成形工
程において加熱溶融させた際に分散が悪く、全体として
の導電性のバラツキが生しる。
The amount of coating resin 4 is based on the entire conductive resin pellet 5.
The amount of conductive fiber 1 excluding sizing agent 2 is 10 wt% to 4
The content is adjusted to 0 wt% (most preferably 20 wt% to 30 wt%). By the way, conductive fiber 1 is 10wt.
% or less, the amount of coating resin 4 increases compared to the conductive fibers, so the outer diameter of the conductive resin pellet 5 increases, making molding difficult.
Since the blending amount of the coating resin 4 is small, dispersion is poor when it is heated and melted in the subsequent tube forming step, resulting in variations in conductivity as a whole.

また各導電性樹脂ベレット5の長さは、1mm〜10m
m(最も好ましくは4mm〜6mm)となるように切断
する。
The length of each conductive resin pellet 5 is 1 mm to 10 m.
m (most preferably 4 mm to 6 mm).

次のチューブ成形工程は、第3図に示すように、押出成
形機Eを用いて共押出によりチューブを成形する工程で
ある。
The next tube forming step is a step of forming a tube by coextrusion using an extrusion molding machine E, as shown in FIG.

ここで用いられる押出成形機Eのヘッドには、同心円状
にニップル11と内タイス12と外グイスI3とが設け
られており、ニップル11の中心には空気流路14、前
記ニップル11と内タイス12との間には第1樹脂流路
15、内ダイス12と外ダイス13との間には第2樹脂
流路16が形成されている。また、ヘッドの外部には、
前記第1樹脂流路15に樹脂を供給する第1ホツパ17
と、第2樹脂流路16に樹脂を供給する第2ホツパ18
とが設りられている。
The head of the extrusion molding machine E used here is provided with a nipple 11, an inner tie 12, and an outer tie I3 concentrically, and an air flow path 14 is provided at the center of the nipple 11, and the nipple 11 and the inner tie are arranged concentrically. A first resin flow path 15 is formed between the inner die 12 and the outer die 13, and a second resin flow path 16 is formed between the inner die 12 and the outer die 13. Also, on the outside of the head,
A first hopper 17 that supplies resin to the first resin flow path 15
and a second hopper 18 that supplies resin to the second resin flow path 16.
is established.

従って、チューブを成形するにあたっては、シリンダ温
度をベース樹脂ペレッ1〜の軟化温度(125°C)の
30°C〜70°C以」二にし、第1ホ・ンパ17から
第1樹脂流路15へ、導電性樹脂ペレッt−5とベース
樹脂をペレット状にしたベース樹脂ペレッ1−〇を混合
させたものを供給すると共に、第2ホツパ18から第2
樹脂流路16へ、絶縁性樹脂をペレット状にした絶縁性
樹脂ペレッ1〜7を供給する。
Therefore, when molding a tube, the cylinder temperature is set to 30°C to 70°C higher than the softening temperature (125°C) of the base resin pellet 1, and the first resin flow path is 15, a mixture of conductive resin pellets t-5 and base resin pellets 1-0, which are pelletized base resin, is supplied from the second hopper 18 to the second hopper 15.
Insulating resin pellets 1 to 7, which are pelletized insulating resin, are supplied to the resin flow path 16.

ここで、導電性樹脂ペレット5とベース樹脂ペレット6
は、導電性樹脂ペレット5を100重量部に対してベー
ス樹脂ペレット6を400重量部の割合で混合し、導電
性繊維1が導電性樹脂全体の5 w t%となるように
する。また、導電性樹脂ぺ1ノツ1〜5が、ベース樹脂
ペレット6にほぼ均等に混ざるようにする。
Here, conductive resin pellet 5 and base resin pellet 6
Here, 100 parts by weight of conductive resin pellets 5 and 400 parts by weight of base resin pellets 6 are mixed so that the conductive fibers 1 account for 5 wt% of the entire conductive resin. Further, the conductive resin pellets 1 to 5 are mixed almost evenly into the base resin pellet 6.

尚、導電性樹脂ペレッl〜5とベース樹脂ペレツ]・6
の混合は、導電性繊維lが導電性樹脂全体の4〜10w
t%となるように調整されればよく、厳密に5wt%で
ある必要はない。ちなみに、導電性繊維1が4wt%以
下では、体積抵抗値ρ(シールド効果dβ)にバラツキ
を生じ、また、10wt%以上では体積抵抗値ρ(シー
ルド効果dβ)はあまり変わりない。
In addition, conductive resin pellets 1 to 5 and base resin pellets]・6
The mixture of conductive fiber l is 4 to 10w of the whole conductive resin.
It may be adjusted to t%, and does not need to be strictly 5wt%. Incidentally, when the conductive fiber 1 is 4 wt% or less, the volume resistivity value ρ (shielding effect dβ) varies, and when it is 10 wt% or more, the volume resistivity value ρ (shielding effect dβ) does not change much.

供給された導電性樹脂ペレット5とベース樹脂ペレット
6は、第1樹脂流路16で加熱されると共に、スクリュ
ー(図示省略)により混練されて溶融状態の導電性樹脂
19となり、この導電性樹脂19が第1樹脂流路17先
端の第1押出ロ171から押し出される。同時に、絶縁
性樹脂ペレット7も加熱及び混練されて溶融状態の絶縁
性樹脂20となり、この絶縁性樹脂20が第2樹脂流路
18先端の第2押出口181から押し出される。
The supplied conductive resin pellets 5 and base resin pellets 6 are heated in the first resin flow path 16 and kneaded by a screw (not shown) to become a molten conductive resin 19. is extruded from the first extruder 171 at the tip of the first resin channel 17. At the same time, the insulating resin pellets 7 are also heated and kneaded to become a molten insulating resin 20, and this insulating resin 20 is extruded from the second extrusion port 181 at the tip of the second resin channel 18.

押し出された導電性樹脂19と絶縁性樹脂20は、空気
流路14から吹き出される空気によって円筒チューブ状
に一体成形され、導電性樹脂19が導電性シールド樹脂
層100を形成すると共に、絶縁性樹脂20が絶縁性シ
ース樹脂層200を形成する。
The extruded conductive resin 19 and insulating resin 20 are integrally molded into a cylindrical tube shape by the air blown out from the air flow path 14, and the conductive resin 19 forms a conductive shield resin layer 100, and also forms an insulating resin layer 100. The resin 20 forms an insulating sheath resin layer 200.

尚、押出条件は導電性シールド樹脂層100が220°
C1絶縁性シ一ス樹脂層200が200°Cである。
The extrusion conditions are such that the conductive shield resin layer 100 is at 220°.
The temperature of the C1 insulating sheath resin layer 200 is 200°C.

導電性樹脂ペレット5の集束剤2及び被覆樹脂4はベー
ス樹脂ペレット6より軟化温度が10〜70’C低いの
で、上述のようにシリンダ温度をベース樹脂ペレット6
の軟化温度の30°C〜70°C以」二にすると、集束
剤2及び被覆樹脂4はベース樹脂ベレッ1−6が溶融す
るよりも早く溶融し始める。そして、ベース樹脂ペレツ
1−〇が溶融した時、集束剤2及び被覆樹脂4は確実に
溶融し、導電性繊維束3はスクリューの剪断力で容易に
解束される状態になっている。即ち、混練されながら導
電性繊維束3は単独の短い導電性繊維lとなって溶融樹
脂内に分散する。
Since the softening temperature of the sizing agent 2 and coating resin 4 of the conductive resin pellet 5 is 10 to 70'C lower than that of the base resin pellet 6, the cylinder temperature is lower than that of the base resin pellet 6 as described above.
When the softening temperature is 30 DEG C. to 70 DEG C. or higher, the sizing agent 2 and coating resin 4 begin to melt faster than the base resin bellets 1-6 melt. When the base resin pellets 1-0 are melted, the sizing agent 2 and the coating resin 4 are surely melted, and the conductive fiber bundle 3 is in a state where it can be easily unbundled by the shearing force of the screw. That is, while being kneaded, the conductive fiber bundle 3 becomes individual short conductive fibers 1 and is dispersed in the molten resin.

このように、導電性繊維lは、まず導電性樹脂ペレット
5とベース樹脂ペレット6を混ぜた際に束の状態で分散
され、後の混線時に単独の繊維となって分散されるとい
った二段階を踏まえるので、ムラなく均一に分散し、そ
れにより少量で十分なシールド効果を得ることができる
In this way, the conductive fibers 1 are first dispersed in a bundle when the conductive resin pellets 5 and the base resin pellets 6 are mixed, and later dispersed as individual fibers when mixed. Therefore, it is evenly dispersed and a sufficient shielding effect can be obtained with a small amount.

以上のようにしてチューブを成形するが、後に乾燥工程
、−次冷却工程、加熱延伸工程、二次冷却工程を経てチ
ューブは径が拡大され形が整えられる。詳細は、特開昭
63−2399号公報参照に記載されている通りである
ので省略する。
A tube is formed as described above, and the tube is later enlarged in diameter and shaped through a drying process, a secondary cooling process, a heating stretching process, and a secondary cooling process. The details are as described in Japanese Unexamined Patent Publication No. 63-2399, and will therefore be omitted.

但し、電子線照射量は20 M r a d、延伸は]
50°Cで外径を2倍、冷却は歪を保持したまま張カ一
定て放冷を条件とする。
However, the electron beam irradiation dose was 20 M r a d, and the stretching was]
The outer diameter is doubled at 50°C, and the cooling condition is to maintain the strain while keeping the tension constant and allowing it to cool.

上述した本実施例の製造方法により製造された熱収縮チ
ューブTの性能について以下記載する。
The performance of the heat-shrinkable tube T manufactured by the manufacturing method of the present example described above will be described below.

[体積抵抗] 初期においては3X10−’Ωcm ヒートサイクル後においては2×lO°Ωcm(ヒート
サイクルは一40℃で1時間、室温で5分、90°Cで
1時間、室温で5分を6サイクル行う。) [チューブの収縮時間] 200′Cで1〜2分 即ち、導電材料の配合量が少量(従来のほぼ4分の])
であるにもかかわらず十分なシールド効果を得ることが
でき、更にケーブル等への熱収縮による被覆時間が短い
(従来のほぼ5分の1)ことを明らかにしている。また
、導電材料の配合量が少ないので、軽量でありかつ柔軟
性に冨み、取り扱いも良好になる。また、コストの低下
を図ることもてきる。
[Volume resistance] Initially 3 x 10-' Ωcm After heat cycle, 2 x 10° Ωcm (Heat cycle: -1 hour at 40°C, 5 minutes at room temperature, 1 hour at 90°C, 5 minutes at room temperature for 6 ) [Tube shrinkage time] 1 to 2 minutes at 200'C, i.e., the amount of conductive material blended is small (about 4 minutes compared to the conventional method)
Despite this, a sufficient shielding effect can be obtained, and it has been revealed that the time required for covering cables etc. due to heat shrinkage is short (approximately one-fifth of the conventional method). Furthermore, since the amount of conductive material blended is small, it is lightweight, has good flexibility, and is easy to handle. It is also possible to reduce costs.

次に、本実施例の効果を明らかにするために行った比較
実験と、その結果を記載する。
Next, a comparative experiment conducted to clarify the effects of this example and its results will be described.

樹脂ににり被覆されていない導電性繊維束3を5mmに
切断し、被覆樹脂4と同し樹脂と混合して導電性繊維1
が全体の5wt%となるように調整配合し、実施例と同
し条件で押し出して熱収縮チューブを試作したところ、
導電性繊維1の分散が悪く、体積抵抗は5X106Ωc
mとなり、シールド効果はなかった。
The conductive fiber bundle 3 that is not coated with resin is cut into 5 mm pieces and mixed with the same resin as the coating resin 4 to form conductive fibers 1.
When the mixture was adjusted so that it was 5 wt% of the total and extruded under the same conditions as in the example, a heat shrinkable tube was produced as a prototype.
The conductive fiber 1 has poor dispersion and the volume resistance is 5X106Ωc.
m, and there was no shielding effect.

]5 以」二、本発明の実施例を図面により詳述してきたが、
具体的な構成はこの実施例に限られるものではなく、本
発明の要旨を逸脱しない範囲における設計変更等があっ
ても本発明に含まれる。
]5 Hereinafter, embodiments of the present invention have been described in detail with reference to the drawings, but
The specific configuration is not limited to this embodiment, and any design changes or the like that do not depart from the gist of the present invention are included in the present invention.

例えば、実施例では導電性樹脂ベレットの集束剤と被覆
樹脂とを軟化温度の等しい熱可塑性樹脂で形成したが、
被覆樹脂は、ベース樹脂の軟化温度以下である条件を満
たず範囲内であれば、集束剤よりも軟化温度の高い樹脂
を用いてもJ:い。
For example, in the example, the sizing agent and coating resin of the conductive resin pellet were made of thermoplastic resin with the same softening temperature.
As the coating resin, a resin having a softening temperature higher than that of the sizing agent may be used as long as it does not satisfy the condition that the softening temperature is lower than the softening temperature of the base resin.

また、軟化温度が集束剤の軟化温度よりも低い熱可塑性
樹脂を選択すれば、被覆樹脂とベース樹脂を同一樹脂あ
るいは軟化温度の等しい異種の樹脂で形成することもて
きる。
Furthermore, if a thermoplastic resin whose softening temperature is lower than that of the sizing agent is selected, the coating resin and the base resin can be made of the same resin or different resins having the same softening temperature.

また、実施例では、導電性シールド樹脂層と絶縁性シー
ス樹脂層を共押出により同時に成形したが、導電性シー
ルド樹脂層から順に別工程で成形してもよい。
Further, in the examples, the conductive shield resin layer and the insulating sheath resin layer were simultaneously molded by coextrusion, but they may be molded in separate steps starting from the conductive shield resin layer.

(発明の効果) 以上説明してきたように本発明の電磁波シールド用熱収
縮チューブの製造方法にあっては、ヂュ−ブ成形工程の
加熱時に、導電性繊維を集束する集束剤及び被覆樹脂が
迅速かつ確実に溶融することで、導電性繊維は切断が少
なくて分散性が良好である。即ち、導電性繊維の配合を
少なくしてシールド効果の優れた電磁波シールド用熱収
縮チューブを製造することができる。
(Effects of the Invention) As explained above, in the method for manufacturing a heat-shrinkable tube for electromagnetic shielding of the present invention, the binding agent and coating resin that bundles conductive fibers are quickly released during heating in the tube forming process. Moreover, by reliably melting the conductive fibers, the conductive fibers are less likely to be cut and have good dispersibility. That is, it is possible to manufacture a heat-shrinkable tube for electromagnetic shielding with excellent shielding effect by reducing the amount of conductive fibers.

更に、上述のように導電性繊維の配合を少なくてきるこ
とで、■比重が小さいために軽く、■柔軟性に富んでい
るために、ケーブル等への熱収縮性を利用した被覆作業
時間が短く、■ケーブル等への被覆後の取り扱いも良好
で、■コストが安い電磁波シールド用熱収縮チューブを
製造することができる。
Furthermore, as mentioned above, by reducing the amount of conductive fiber in the mix, ■ it is light due to its low specific gravity, and ■ it is highly flexible, which reduces the time needed to coat cables etc. using their heat shrink properties. It is possible to produce heat-shrinkable tubes for electromagnetic shielding that are short, (1) easy to handle after coating cables, etc., and (2) inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電磁波シールド用熱収縮チューブの製
造方法の繊維集束工程と樹脂ベレット形成工程とを示す
説明図、第2図は導電性樹脂ベレットを示す斜視図、第
3図は本発明の製造方法のチューブ成形工程を示す断面
図、第4図は本発明の製造方法により製造された電磁波
シールド用熱収縮チューブを示す一部切欠斜視図である
。 T・・・熱収縮チューブ 100・・・導電性シールド樹脂層 200・・・絶縁性シース樹脂層 1・・・導電性繊維 2・・・集束剤 3・・・導電性繊維束 4・・・被覆樹脂 5・・・導電性樹脂ベレット E・・・押出成形機 171・・・第1押出口(押出口) 19・・・導電性樹脂 20・・・絶縁性樹脂
FIG. 1 is an explanatory diagram showing a fiber convergence step and a resin pellet forming step in the method for manufacturing a heat-shrinkable tube for electromagnetic shielding according to the present invention, FIG. 2 is a perspective view showing a conductive resin pellet, and FIG. 3 is a diagram showing the present invention. FIG. 4 is a partially cutaway perspective view showing a heat-shrinkable tube for electromagnetic shielding manufactured by the manufacturing method of the present invention. T... Heat shrink tube 100... Conductive shield resin layer 200... Insulating sheath resin layer 1... Conductive fiber 2... Bundling agent 3... Conductive fiber bundle 4... Coating resin 5... Conductive resin pellet E... Extrusion molding machine 171... First extrusion port (extrusion port) 19... Conductive resin 20... Insulating resin

Claims (1)

【特許請求の範囲】 1)熱収縮性樹脂を素材とした中空筒状のチューブであ
って、内側には熱可塑性樹脂に導電性繊維が混入された
導電性樹脂による導電性シールド樹脂層が形成され、か
つ外側には熱可塑性樹脂のみの絶縁性樹脂による絶縁性
シース樹脂層が形成されている電磁波シールド用熱収縮
チューブの製造方法において、 軟化温度が導電性シールド樹脂層のベースとなるベース
樹脂の軟化温度よりも低い熱可塑性樹脂を用いた集束剤
により、長い導電性繊維を集束して導電性繊維束を形成
する長繊維集束工程と、軟化温度が前記集束剤の軟化温
度以上であると共に、前記ベース樹脂の軟化温度以下で
ある熱可塑性樹脂により前記導電性繊維束に被覆樹脂を
施した後、その導電性繊維束を所定長さに切断して導電
性樹脂ペレットを形成する樹脂ペレット形成工程と、 前記導電性樹脂ペレットとベース樹脂を混合させ、押出
成形機で加熱及び混練して溶融状態の導電性樹脂を形成
し、この導電性樹脂を押出口から押し出してチューブ状
に成形するチューブ成形工程と、 を備えていることを特徴とする電磁波シールド用熱収縮
チューブの製造方法。
[Claims] 1) A hollow cylindrical tube made of heat-shrinkable resin, with a conductive shielding resin layer formed of a conductive resin in which conductive fibers are mixed into thermoplastic resin on the inside. In the manufacturing method of a heat shrink tube for electromagnetic wave shielding, in which an insulating sheath resin layer made of an insulating resin made of only thermoplastic resin is formed on the outside, the softening temperature of the base resin is the base of the conductive shield resin layer. a long fiber bundling step of bundling long conductive fibers to form a conductive fiber bundle with a sizing agent using a thermoplastic resin whose softening temperature is lower than the softening temperature of the sizing agent; , forming a resin pellet by coating the conductive fiber bundle with a thermoplastic resin having a softening temperature below the softening temperature of the base resin, and then cutting the conductive fiber bundle into a predetermined length to form a conductive resin pellet. A tube in which the conductive resin pellets and base resin are mixed, heated and kneaded in an extruder to form a molten conductive resin, and the conductive resin is extruded from an extrusion port to form a tube. A method for manufacturing a heat-shrinkable tube for electromagnetic shielding, comprising a molding process.
JP12801488A 1988-05-25 1988-05-25 Manufacture of electromagnetic wave shielding heat-contracting tube Pending JPH01296512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12801488A JPH01296512A (en) 1988-05-25 1988-05-25 Manufacture of electromagnetic wave shielding heat-contracting tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12801488A JPH01296512A (en) 1988-05-25 1988-05-25 Manufacture of electromagnetic wave shielding heat-contracting tube

Publications (1)

Publication Number Publication Date
JPH01296512A true JPH01296512A (en) 1989-11-29

Family

ID=14974349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12801488A Pending JPH01296512A (en) 1988-05-25 1988-05-25 Manufacture of electromagnetic wave shielding heat-contracting tube

Country Status (1)

Country Link
JP (1) JPH01296512A (en)

Similar Documents

Publication Publication Date Title
CN112899799B (en) Artificial hair fiber
US4351790A (en) Manufacture of insulated electric conductors
CA2550754C (en) Cable with a coating layer made from a waste material
US9653197B2 (en) Wire harness, wire harness manufacturing method and wire harness manufacturing apparatus
US4366107A (en) Making shrink-fit objects
JPH01296512A (en) Manufacture of electromagnetic wave shielding heat-contracting tube
JPS61144323A (en) Sheathing device for core material sensitive to melting temperature of sheathing material, sheathing method using said device and utilization to sheathed plastic fiber and plastic powder
JPH01296513A (en) Manufacture of electromagnetic wave shielding heat-contracting tube
EP1148518B1 (en) A process for producing cross-linked polyethylene coated conducting wires
CN1412366A (en) Preparation method of composite fibre formed from glass fibre and polypropylene fibre
JPH0261918A (en) Manufacture of heat-shrinkable resin
CN111793265A (en) Graphene self-temperature-limiting heating wire and preparation method thereof
JPH0260200A (en) Manufacture of electromagnetic wave shielding heat shrinkable resin
JP3414576B2 (en) Wiring cable for low voltage
JPH02239516A (en) Manufacture of electromagnetic wave shielding thermally contracting tube
JPH02239517A (en) Manufacture of electromagnetic wave shielding thermally contracting tube
JPH0645168B2 (en) Extrusion cross-linking method for insulators
JPS63189208A (en) Manufacture of electrically conductive polyvinyl chloride resin pellet
JP2619348B2 (en) Heat shrink tube manufacturing method
CN108034120A (en) The preparation process of new-energy automobile halogen-free flameproof high resiliency cable material of polyolefin
KR102057683B1 (en) Carbon-based wire manufacturing method and manufacturing apparatus using the same
RU2327714C2 (en) Cable with coating layer, made from waste material
JPS63297459A (en) Electrically conductive polymer blend
US20020167108A1 (en) Techniques for making non-halogenated flame retardant polyolefin tape for use in a cable
EP1272320A2 (en) Plastic granulate