JPH01296149A - Expanded x rays absorption fine structure measuring apparatus - Google Patents

Expanded x rays absorption fine structure measuring apparatus

Info

Publication number
JPH01296149A
JPH01296149A JP63127262A JP12726288A JPH01296149A JP H01296149 A JPH01296149 A JP H01296149A JP 63127262 A JP63127262 A JP 63127262A JP 12726288 A JP12726288 A JP 12726288A JP H01296149 A JPH01296149 A JP H01296149A
Authority
JP
Japan
Prior art keywords
sample
temperature
rays
incident
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63127262A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Katsuhiko Tani
克彦 谷
Eriko Chiba
恵里子 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63127262A priority Critical patent/JPH01296149A/en
Publication of JPH01296149A publication Critical patent/JPH01296149A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • G01N23/085X-ray absorption fine structure [XAFS], e.g. extended XAFS [EXAFS]

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable temperature dependent measurement from a low to high temperature, by detecting and feeding back a difference between a sample temperature and a set temperature measured with a temperature measuring element to a Peltier element to control current flowing therethrough. CONSTITUTION:After X rays radiated from an X-ray source 1 pass through a first slit 2, energy of incident X rays is controlled variably with a monochrometer 3 with respect to a sample 4 to be measured. Then, after passing through a second slit 5, the incident X rays with incident energy measured 6 are incident on a sample 4 held with a rotatable sample holder 7. Then, an absorption of the X rays transmitted through or reflected on the sample 4 are detected based on intensity of the X rays with an X rays detector 8. Then, a temperature measuring elements 11 is provided at a part of the holder 7 to detect the temperature of the sample 4 together with a Peltier element 10. A sample temperature data measured is taken into a temperature control means 12 to feed back a difference from a sample temperature set to the element 10 thereby permitting a variable control of the temperature of the sample 4.

Description

【発明の詳細な説明】 技術分野 本発明は、物質の表面局所構造解析を行うための拡張X
線吸収微細構造測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an extension X for performing surface local structure analysis of substances.
This invention relates to a linear absorption fine structure measuring device.

従来技術 一般に、物質の局所構造を解析する手法として、拡張X
線吸収微細構造(EXtended X−ray Ab
s。
Conventional technology In general, the extended X
Linear absorption fine structure (EXTended X-ray Ab
s.

rption F ine S tructure、以
下、“EXAFS”と略す)法は重要である。これは、
試料に単色化されたX線を入射し、その波長を連続的に
変えることにより、注目する原子の吸収端、例えばに吸
収端から高エネルギー側に現われるX線吸収の微細構造
スペクトルを測定し、その振動スペクトルのフーリエ変
換から、注目する特定原子の周りの動径分布、即ち、最
近接、第2近接原子の種類、数、配位距離等を求めると
いう構造解析法である。
rption fine structure (hereinafter abbreviated as "EXAFS") is important. this is,
By injecting monochromatic X-rays into a sample and continuously changing the wavelength, we measure the absorption edge of the atom of interest, for example, the fine structure spectrum of X-ray absorption that appears on the high energy side from the absorption edge. This is a structural analysis method in which the radial distribution around a specific atom of interest, that is, the type, number, coordination distance, etc. of the nearest and second neighboring atoms, is determined from the Fourier transform of the vibrational spectrum.

ここに、このクライオスタットを用いて冷却し、格子振
動を抑えて実施するようにしたものが、例えば特開昭6
2−214335号公報により提案されている。この場
合、同公報によれば、試料をクライオスタットの先端に
固定しているため、大きなりライオスタット(普通、1
0Q容器で1゜社程度もある)を高精度に回転可能とし
なければならない。しかし、直結であることにより、フ
レキシブルな連結方式とすることはできない。従って、
液体窒素中から泡が発生するというクライオスタット中
のバブリングによる振動が試料に伝わり、データのS/
Nが劣化しており、クライオットを用いて冷却による格
子振動を抑える意味がなくなってしまう。また、試料を
冷却するといっても、冷媒温度、具体的には液体窒素温
度や液体ヘリウム温度という固定された特定温度でしか
冷却できず、連続的な温度変化はできない。
For example, a cryostat was used to perform cooling and suppress lattice vibrations, as disclosed in Japanese Patent Application Laid-open No. 6
This method is proposed in Japanese Patent No. 2-214335. In this case, according to the publication, because the sample is fixed at the tip of the cryostat,
It is necessary to be able to rotate the 0Q container with high precision. However, since it is a direct connection, a flexible connection method cannot be used. Therefore,
Vibration caused by bubbling in the cryostat, where bubbles are generated from liquid nitrogen, is transmitted to the sample, and the S/
Since N has deteriorated, there is no point in using cryot to suppress lattice vibrations due to cooling. Furthermore, even though the sample is cooled, it can only be cooled at a specific, fixed temperature such as the refrigerant temperature, specifically liquid nitrogen temperature or liquid helium temperature, and continuous temperature changes are not possible.

ちなみに、従来のX線回折装置においては、温度依存性
を測定するため、液体窒素冷却等とヒータ加熱とを組合
せて試料温度コントロールを実施することにより、連続
温度測定を可能としたものがあるが、具体的には、上記
の公報記載のものと同様なりライオスタットを用いてお
り、使いにくいものである。
By the way, some conventional X-ray diffractometers have been able to perform continuous temperature measurements by controlling the sample temperature by combining liquid nitrogen cooling and heater heating in order to measure temperature dependence. Specifically, it is similar to the one described in the above publication and uses a lyostat, which is difficult to use.

目的 本発明は、このような点に鑑みなされたもので、試料の
温度依存性を低温から高温にわたって容易かつS/N比
の高い状態で測定できる拡張X線吸収微細構造測定装置
を得ることを目的とする。
Purpose The present invention was made in view of the above points, and an object of the present invention is to obtain an extended X-ray absorption fine structure measuring device that can easily measure the temperature dependence of a sample from low to high temperatures with a high S/N ratio. purpose.

構成 本発明は、上記目的を達成するため、X線を発生するX
線源と、試料に照射させるX線のエネルギーを変化させ
るモノクロメータと、前記試料を保持する試料ホルダと
、前記試料を透過し又は反射されたX線を検出するX線
検出器とを設け、がっ、前記試料ホルダに固定させてペ
ルチェ素子と、試料の温度を測定する温度測定素子とを
設け、この温度測定素子により測定された試料温度と設
定温度との差を検知して前記ペルチェ素子にフィードバ
ックしこのペルチェ素子に流す電流を制御する温度制御
手段を設けたことを特徴とする。
Structure In order to achieve the above object, the present invention provides an X-ray generator that generates X-rays.
A radiation source, a monochromator that changes the energy of the X-rays irradiated onto the sample, a sample holder that holds the sample, and an X-ray detector that detects the X-rays transmitted or reflected from the sample, A Peltier element and a temperature measuring element for measuring the temperature of the sample are fixed to the sample holder, and the difference between the sample temperature measured by the temperature measuring element and the set temperature is detected and the Peltier element is The present invention is characterized in that it is provided with a temperature control means that feeds back the current to the Peltier element and controls the current flowing through the Peltier element.

以下、本発明の一実施例を図面に基づいて説明する。ま
ず、X線を発生させるX線源1が設けられている。この
X線源lとしては、シンクロトロン放射光を発するもの
とすれば極めて短時間で精度よい測定が可能となるが、
少なくとも連続X線(白色x腺)を発生し得るものであ
れば、特に限定されるものではない。このX線源1から
放射されたX線は、第1スリツト2を通過した後、モノ
クロメータ3に入射し、測定すべき試料4に対する入射
X線のエネルギーが可変制御される。ここに、モノクロ
メータ3としては、Si等による一般的なものでよく、
或いは湾曲形状のものを用いて集光性を持たせてもよい
。また、モノクロメータ3を通過したxMAは第2スリ
ツト5を通過した後、試料4に入射する前に入射エネル
ギー測定器6により試料4に入射するX線のエネルギー
が測定される。この入射エネルギー測定器6としては、
例えばイオンチャンバーと称されるものが用いられ、入
射強度の約10%が検出に用いられる。また、前記試料
4は試料ホルダ7により保持されている。ここに、試料
4はX線がこの試料4を透過するように保持されること
もあり(EXAFS法として最も一般的な透過EXAF
S法)、或いはX線が試料4表面で全反射するように保
持されることもあり(全反射EXAFS法又は特開昭6
2−214335号公報に示されるような全反射蛍光E
XAFS法)、試料ホルダ7はこれらの試料姿勢を適宜
とり得るように回転可能に設けられている。また、試料
4に対する入射X線のビーム径は、スリット2,5やモ
ノクロメータ3により数量以下となるように絞られてお
り、このようなX線が試料4を透過し得るように試料ホ
ルダ7の一部には穴が開口形成されている。さらに、試
料4を透過しく又は、試料4表面で全反射され)、−部
が吸収されたxfaはX線検出器8によるX線強度に基
づきその吸収量が検出される。ここに、X線検出器8と
してはプロポーショナルカウンタやシンチレーションカ
ウンタを用いてもよいが、高感度の点を考慮すると、S
SDとiされる半導体検出器を用いるのがよい。そして
、X線検出器8によるX線吸収量の検出は、入射エネル
ギー測定器6により検出された入射エネルギーとの差を
、入射X線のエネルギー毎(このため、モノクロメータ
3を制御して入射エネルギーが可変される)に制御計算
系9により計算される。
Hereinafter, one embodiment of the present invention will be described based on the drawings. First, an X-ray source 1 that generates X-rays is provided. If the X-ray source 1 is one that emits synchrotron radiation, it will be possible to perform accurate measurements in an extremely short time.
It is not particularly limited as long as it can generate at least continuous X-rays (white X-rays). The X-rays emitted from the X-ray source 1 pass through the first slit 2 and then enter the monochromator 3, where the energy of the X-rays incident on the sample 4 to be measured is variably controlled. Here, the monochromator 3 may be a general one made of Si or the like,
Alternatively, a curved shape may be used to provide light condensing properties. Furthermore, after the xMA that has passed through the monochromator 3 passes through the second slit 5, the energy of the X-rays incident on the sample 4 is measured by an incident energy measuring device 6 before the xMA enters the sample 4. As this incident energy measuring device 6,
For example, what is called an ion chamber is used, and about 10% of the incident intensity is used for detection. Further, the sample 4 is held by a sample holder 7. Here, the sample 4 may be held so that the X-rays are transmitted through the sample 4 (transmission EXAF, which is the most common EXAFS method).
S method), or the X-rays may be held so as to be totally reflected on the surface of the sample 4 (total reflection EXAFS method or JP-A No. 6
Total internal reflection fluorescence E as shown in Japanese Patent No. 2-214335
(XAFS method), the sample holder 7 is rotatably provided so that these sample postures can be taken as appropriate. In addition, the beam diameter of the incident X-rays on the sample 4 is narrowed down to be less than the quantity by the slits 2 and 5 and the monochromator 3, and the sample holder 7 A hole is formed in a part of the hole. Furthermore, xfa, which is transmitted through the sample 4 or totally reflected on the surface of the sample 4) and whose negative portion is absorbed, is detected based on the X-ray intensity by the X-ray detector 8 for its absorption amount. Here, a proportional counter or a scintillation counter may be used as the X-ray detector 8, but considering high sensitivity, S
It is preferable to use a semiconductor detector referred to as SD. The amount of X-ray absorbed by the X-ray detector 8 is detected by measuring the difference between the incident energy and the incident energy detected by the incident energy measuring device 6 for each incident X-ray energy (for this reason, the monochromator 3 is controlled to detect the incident (the energy is varied) is calculated by the control calculation system 9.

しかして、本実施例では前記試料ホルダ7の一部に固定
させてベルチェ素子10が設けられている。このベルチ
ェ素子10の試料ホルダ7に対する取り付は個所は、X
ilの通過ラインから外れた位置とされている。ここに
、このベルチェ素子10は周知のように、異種の導体(
又は半導体)の接点に電流を流す時に接点でジュール熱
以外に、熱の発生又は吸収が起こるという現象を利用し
た加熱/冷却素子であり、現在では、数胴角以下の大き
さに小型・軽量化されているが、試料ホルダ7により保
持された試料4は一般に小さいので充分に加熱又は冷却
できる。加熱するが、冷却するかはベルチェ素子10に
流す電流の方向を変えればよい。
Therefore, in this embodiment, a Vertier element 10 is provided fixed to a part of the sample holder 7. The attachment point of this Bertier element 10 to the sample holder 7 is
It is said that the position is outside the passing line of il. Here, as is well known, this Bertier element 10 has different types of conductors (
It is a heating/cooling element that utilizes the phenomenon that heat is generated or absorbed in addition to Joule heat at the contact when current is passed through the contact (or semiconductor), and it is currently small and lightweight with a size of several body angles or less. However, since the sample 4 held by the sample holder 7 is generally small, it can be sufficiently heated or cooled. Whether it is heated or cooled can be determined by changing the direction of the current flowing through the Beltier element 10.

さらに、前記試料4の実際の温度を検出する温度測定素
子としての熱雷対11も試料ホルダ7の一部に取付けら
れている。この熱電対11により測定された試料温度デ
ータは前記ベルチェ素子10に対する電流(向きも含む
)を制御する温度制御手段12に取り込まれ、指定され
た試料設定温度と検出試料温度との差がベルチェ素子1
0にフィードバックさせるフィードバック制御系が構成
されている。
Further, a thermal lightning pair 11 as a temperature measuring element for detecting the actual temperature of the sample 4 is also attached to a part of the sample holder 7. The sample temperature data measured by this thermocouple 11 is taken into the temperature control means 12 that controls the current (including direction) to the Bertier element 10, and the difference between the specified sample set temperature and the detected sample temperature is determined by the Bertier element. 1
A feedback control system is configured to provide feedback to zero.

このような構成によれば、試料4の温度を、熱電対11
−温度制御手段12−ベルチェ素子10によるフィード
バック制御系により任意かつ容易に可変制御でき、低温
から高温にわたる試料4の温度依存性を高いS/N比で
確認できる。例えば、物質中の原子は、一定の位置に静
止しているわけではなく、実際には平衡位置を中心とし
て各温度に応じて熱振動しており、EXAFS測定に際
して熱振動の影響が現われるが、本実施例によれば、こ
のような熱振動による影響量をも容易に測定できること
になる。
According to such a configuration, the temperature of the sample 4 can be measured by the thermocouple 11.
- Temperature control means 12 - Variable control can be performed arbitrarily and easily by the feedback control system using the Bertier element 10, and the temperature dependence of the sample 4 ranging from low to high temperatures can be confirmed with a high S/N ratio. For example, atoms in a substance do not remain stationary at a fixed position, but actually oscillate thermally around an equilibrium position according to each temperature, and the effects of thermal oscillation appear during EXAFS measurements. According to this embodiment, the amount of influence due to such thermal vibrations can be easily measured.

なお、本発明は、例示した透過EXAFS法等に限らず
、EXAFS法と称されるX線の吸収スペクトルを用い
る分光学的な方法全てに適用し得ることは勿論、物質の
結晶構造解析用のX線解析装置においても応用できる。
The present invention is not limited to the exemplified transmission EXAFS method, but can be applied to all spectroscopic methods that use the absorption spectrum of X-rays, which is called the EXAFS method. It can also be applied to X-ray analysis equipment.

効果 本発明は、上述したように試料の温度制御用にベルチェ
素子を用い、試料温度測定素子による温度測定に基づき
温度制御手段でこのベルチェ素子をフィードバック制御
するようにしたので、EXAFS測定に際して試料を低
温から高温まで容易かつ連続的であって精度よく短時間
で制御でき、よって、試料のEXAFSを測定したい試
料温度に制御して高感度・高速なる測定が可能となり、
さらには、従来のように冷媒を用いないので測定中に冷
媒がなくなる心配がなく、長時間にわたる連続測定も可
能となり、かつ、装置的にも小さなベルチェ素子等によ
るものであり、小型で済むものとなる。
Effects As described above, the present invention uses a Bertier element to control the temperature of the sample, and the temperature control means performs feedback control of the Bertier element based on the temperature measurement by the sample temperature measuring element. It can be easily and continuously controlled from low temperature to high temperature in a short time with high accuracy. Therefore, it is possible to control the EXAFS of the sample to the desired sample temperature and perform high-sensitivity and high-speed measurement.
Furthermore, since it does not use a refrigerant like conventional methods, there is no need to worry about running out of refrigerant during measurement, and continuous measurement over a long period of time is possible.The device also uses a small Vertier element, so it can be small. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すブロック構成図である。 The drawing is a block diagram showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] X線を発生するX線源と、試料に照射させるX線のエネ
ルギーを変化させるモノクロメータと、前記試料を保持
する試料ホルダと、この試料ホルダに固定されたペルチ
エ素子と、前記試料の温度を測定する温度測定素子と、
この温度測定素子により測定された試料温度と設定温度
との差を検知して前記ペルチエ素子にフィードバックし
このペルチエ素子に流す電流を制御する温度制御手段と
、前記試料を透過し又は反射されたX線を検出するX線
検出器とからなることを特徴とする拡張X線吸収微細構
造測定装置。
An X-ray source that generates X-rays, a monochromator that changes the energy of the X-rays irradiated onto a sample, a sample holder that holds the sample, a Peltier element fixed to the sample holder, and a Peltier element that controls the temperature of the sample. A temperature measuring element to be measured;
A temperature control means for detecting the difference between the sample temperature measured by the temperature measuring element and the set temperature and feeding it back to the Peltier element to control the current flowing through the Peltier element; An extended X-ray absorption fine structure measuring device comprising an X-ray detector that detects radiation.
JP63127262A 1988-05-25 1988-05-25 Expanded x rays absorption fine structure measuring apparatus Pending JPH01296149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127262A JPH01296149A (en) 1988-05-25 1988-05-25 Expanded x rays absorption fine structure measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127262A JPH01296149A (en) 1988-05-25 1988-05-25 Expanded x rays absorption fine structure measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01296149A true JPH01296149A (en) 1989-11-29

Family

ID=14955684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127262A Pending JPH01296149A (en) 1988-05-25 1988-05-25 Expanded x rays absorption fine structure measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01296149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309790A (en) * 2006-05-18 2007-11-29 Toshiba It & Control Systems Corp Radiation inspection device
JP2013205077A (en) * 2012-03-27 2013-10-07 Kwansei Gakuin Sample holding device, and sample analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309790A (en) * 2006-05-18 2007-11-29 Toshiba It & Control Systems Corp Radiation inspection device
JP2013205077A (en) * 2012-03-27 2013-10-07 Kwansei Gakuin Sample holding device, and sample analysis method

Similar Documents

Publication Publication Date Title
US4243327A (en) Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect
US5713665A (en) Method and apparatus for thermal diffusivity measurement
CN110095248A (en) A kind of non-equilibrium property diagnostic system of high-frequency induction Flow Field in Wind Tunnel and method
JP6058945B2 (en) Radiation analysis apparatus and method
West et al. A reference calorimeter for laser energy measurements
CN102175427A (en) Comprehensive test method for stability of deep ultraviolet optical element
Vafrdelle et al. Measurements of the plasma and condensed particles parameters in a DC plasma jet
JPH01296149A (en) Expanded x rays absorption fine structure measuring apparatus
US4185497A (en) Adiabatic laser calorimeter
Zhang et al. A transient method for total emissivity determination
Maliński Comparison of three nondestructive and contactless techniques for investigations of recombination parameters on an example of silicon samples
Ghizoni et al. Photopyroelectric measurement of the thermal diffusivity of solids
Li et al. Nonlinearity measurements of high-power laser detectors at NIST
Decker et al. The design and operation of a precise, high sensitivity adiabatic laser calorimeter for window and mirror material evaluation
JPH0676922B2 (en) Radiation temperature measuring device
Mandelis et al. Thermal-wave based materials characterization and nondestructive evaluation of high-temperature superconductors: a critical review
Yilbas Optical method for measurement of the temporal variation of temperature at the surface of a metal heated by a laser
RU2036443C1 (en) Method of measurement of temperature of object
JP4267112B2 (en) Temperature measuring method and temperature measuring device
Kostanovskii et al. Measurements of the coefficient of linear thermal expansion of single-crystal aluminum oxide
Minato et al. Infrared absorption measurement using the photothermal deflection effect of thallium bromide iodide (KRS-5): Examination of basic characteristics
JPS5823892B2 (en) Heat capacity measurement method
Quoc et al. Phase lock-in thermography for metal walls characterization
Greenshields Spectrometric Measurements of Gas Temperatures in Arc-Heated Jets and Tunnels
RU1822958C (en) Method for measuring coefficient of thermal conductivity