JPH01295401A - Resistor - Google Patents

Resistor

Info

Publication number
JPH01295401A
JPH01295401A JP63126441A JP12644188A JPH01295401A JP H01295401 A JPH01295401 A JP H01295401A JP 63126441 A JP63126441 A JP 63126441A JP 12644188 A JP12644188 A JP 12644188A JP H01295401 A JPH01295401 A JP H01295401A
Authority
JP
Japan
Prior art keywords
boride
resistor
silicon
glass
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63126441A
Other languages
Japanese (ja)
Other versions
JPH0738324B2 (en
Inventor
Hirotoshi Watanabe
寛敏 渡辺
Toru Ishida
徹 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63126441A priority Critical patent/JPH0738324B2/en
Publication of JPH01295401A publication Critical patent/JPH01295401A/en
Publication of JPH0738324B2 publication Critical patent/JPH0738324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To improve a surge resistance characteristic, by providing at least one of silicon, silicon monoxide and a precursor of silicon monoxide in a high- order oxide state; a boride; and glass. CONSTITUTION:Oxide and boron oxide which are incorporated in borosilicate glass are constituted with the following materials: a minute boride in the order of several hundred Angstrom , which is obtained by reduction in a firing step in a non- oxidizing atmosphere by using silicon, silicon monoxide or a precursor of silicon monoxide in a high-order oxide state; and glass. Therefore, a sheet resistor characterized by a sheet resistance of 10kOMEGA/square or more, low TCR and high range can be formed. A paste that can be blended can be formed. In this way, surge resistance characteristics can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はグレーズ抵抗体にかかり、中性雰囲気、あるい
は還元雰囲気中の非酸化性雰囲気中で焼成され、卑金属
電極、特に銅厚膜混成集積回路(HIC)基板上等で、
銅電極とともに構成される抵抗器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention applies to glazed resistors, which are fired in a neutral atmosphere or a non-oxidizing atmosphere in a reducing atmosphere, and which are applied to base metal electrodes, especially copper thick film hybrid integrated circuits ( HIC) on the board, etc.
This invention relates to a resistor configured with copper electrodes.

従来の技術 従来、電極を形成したアルミナ基板上に設ける抵抗材料
として、Ru O2−ガラスから構成されるR u O
2グレ一ズ抵抗体がひろく実用に供されている。
Conventional technology Conventionally, as a resistance material provided on an alumina substrate on which electrodes are formed, RuO2-glass is used as a resistance material.
Two-grained resistors are widely used in practical use.

このグレーズ抵抗体は、焼結アルミナ基板上の銀あるい
は銀とパラジウムからなる電極を空気中で焼付けたうえ
で、Ru02−ガラスを樹脂バインダと溶剤からなるビ
ヒクル中に分散させたペーストをアルミナ基板上の前記
電極に接続するように印刷し、空気中700〜900°
Cの温度で焼成して形成される。これら厚膜技術に関し
ては、プラナー、フィリップス著「シック・フィルム・
サーキット」ロンドン・バターワース社(Planer
This glazed resistor is made by baking an electrode made of silver or silver and palladium on a sintered alumina substrate in the air, and then applying a paste of Ru02-glass dispersed in a vehicle consisting of a resin binder and a solvent to the alumina substrate. 700-900° in air.
It is formed by firing at a temperature of C. Regarding these thick film technologies, please refer to "Thick film technology" by Planner and Phillips.
"Circuit" London Butterworth (Planer)
.

Ph1llips ’Th1ck Film C1rc
uits J 、 LONDONBUTTERAORT
IIS社)に論じられている。
Ph1llips 'Th1ck Film C1rc
uits J, LONDON BUTTERAORT
IIS).

一方、銀−パラジウム電極等の貴金属以外の卑金属電極
上、例えばW、Mo、Cu上にRub2−ガラス系グレ
ーズ抵抗体を空気中で形成することを考えた場合、電極
材料の酸化現象が生じ、電極上へのグレーズ抵抗体の形
成は不可能である。
On the other hand, when considering forming a Rub2-glass-based glaze resistor in air on a base metal electrode other than a noble metal such as a silver-palladium electrode, for example on W, Mo, or Cu, an oxidation phenomenon of the electrode material occurs. The formation of glazed resistors on the electrodes is not possible.

そのため、卑金属電極を用いてグレーズ抵抗体を形成す
るためにはグレーズ抵抗体を還元雰囲気中、または中性
雰囲気中で焼成する必要がある。
Therefore, in order to form a glazed resistor using a base metal electrode, it is necessary to sinter the glazed resistor in a reducing atmosphere or a neutral atmosphere.

しかし、RuO□系グレーズ抵抗材料はその性質上還元
雰囲気中で焼成された場合、 Ru O2+ H2→Ru + H20の反応が容易に
起り、抵抗体としての特性が得られない。
However, due to its nature, when the RuO□-based glaze resistance material is fired in a reducing atmosphere, the reaction of RuO2+H2→Ru+H20 easily occurs, and the properties as a resistor cannot be obtained.

一方、硼化物−ガラス系グレーズ抵抗材料は硼化物の性
質上、雰囲気が還元雰囲気、中性雰囲気を問わず化学変
化を受けることがない、したがって、硼化物−ガラス系
グレーズ抵抗体は還元雰囲気中や、中性雰囲気中でも焼
成が可能なものである。
On the other hand, due to the nature of boride, boride-glass-based glaze resistor materials do not undergo chemical changes regardless of whether the atmosphere is a reducing atmosphere or a neutral atmosphere. It can also be fired in a neutral atmosphere.

この硼化物を用いて抵抗体を形成する技術としては、ド
ナフラー拙著「ナイトロジエン ファイアプル レジス
ター」プロシイ−ディング オプ1987  ECC(
Donahue et al  ’Nttrogen 
−Fireale Re5istor、I Proce
eding of 1987Electronic C
onponents Conference)に論じら
れている。
A technique for forming a resistor using this boride is described in Donafler's ``Nitrogen Firepull Resistor'' Proceedings Op. 1987 ECC (
Donahue et al'Nttrogen
-Fireale Re5istor, I Proce
eding of 1987Electronic C
Components Conference).

発明が解決しようとする課題 しかしながら硼化物−ガラス系グレーズ抵抗体の抵抗材
料を構成する硼化物粉体が、事前に合成し機械的粉砕を
行なって作成しているため、粒径lum以下にすること
が難しい、たとえば、硼化チタン扮の粉砕(粉砕Ilニ
アトライタ、超硬ボール湿式)による粒度調整の場合、
粒砕だけをみれば、強力な粉砕を行えば、はぼ全粒子を
1μm以下にすることも可能である。しかし、T r 
82の場合は粉砕による不純物の混入が大きく、粒径0
.79μmまで粉砕すると超硬ボールが35%も混入し
たという例もある。さらには、TiB、の場合、粉砕に
よる酸化も大きく、6%近くにまで達する。このように
硼化物の粉砕による粒度調整は問題も多い。
Problems to be Solved by the Invention However, since the boride powder that constitutes the resistance material of the boride-glass glaze resistor is synthesized in advance and created by mechanical crushing, it is difficult to reduce the particle size to lum or less. For example, when adjusting the particle size by grinding titanium boride (mill grinder, wet carbide ball),
Looking only at particle crushing, if strong crushing is performed, it is possible to reduce the total particle size to 1 μm or less. However, T r
In the case of 82, there is a large amount of impurities mixed in due to pulverization, and the particle size is 0.
.. In some cases, as much as 35% of cemented carbide balls were mixed in when crushed to 79 μm. Furthermore, in the case of TiB, oxidation due to crushing is also large, reaching nearly 6%. As described above, particle size adjustment by grinding boride has many problems.

一方、グレーズ抵抗体材料に用いる導電粒子は負荷特性
の観点からできるだけ微粉状態で使用する方が好ましい
0例えば、酸化ルテニウム系抵抗材料に用いられている
RuO□粉体のような、数百人オーダーの粒径が望まし
い、しかし、上記のような理由で、サブ・ミクロン・オ
ーダー以下の硼化物を得ることは通常の粉砕方法では、
不可能である。このように粒度調整が困難な硼化物を微
小な導電粒子を必要とする厚膜グレーズ抵抗体の導電粒
子として用いるために、機械的な粒度調整を回避する必
要がある。
On the other hand, it is preferable to use the conductive particles used in glazed resistor materials in the form of as fine a powder as possible from the viewpoint of load characteristics. However, for the reasons mentioned above, it is difficult to obtain borides with a particle size of sub-micron order or less using normal grinding methods.
It's impossible. In order to use boride, whose particle size is difficult to control, as conductive particles in a thick film glaze resistor that requires minute conductive particles, it is necessary to avoid mechanical particle size control.

本発明は上記問題点に鑑み、硼化物−ガラス系グレーズ
抵抗器において、抵抗体ペースト中に硼化物を含むので
はなく、非酸化性雰囲気中における焼成工程で、ホウケ
イ酸ガラス中に含まれる前記酸化物と酸化ホウ素をシリ
コンや一酸化シリコン、あるいは−酸化シリコンの高次
酸化状態前駆体を用いて還元し、微小な人オーダーの硼
化物を得ることにより形成したグレーズ抵抗器である。
In view of the above-mentioned problems, the present invention provides a boride-glass glazed resistor in which the boride is not contained in the resistor paste, but is contained in the borosilicate glass in a firing process in a non-oxidizing atmosphere. This is a glaze resistor formed by reducing oxide and boron oxide using silicon, silicon monoxide, or a higher oxidation state precursor of -silicon oxide to obtain a minute human-order boride.

課題を解決するための手段 上記課題を解決するために本発明の抵抗器は、非酸化性
雰囲気中における焼成工程で、ホウケイ酸ガラス中に含
まれる前記酸化物と酸化ホウ素をシリコンや一酸化シリ
コンを用いて還元し、微小な人オーダーの硼化物を含む
抵抗器であり、シート抵抗10に07口以上で低TCR
1ならびに、高範囲のシート抵抗体が同時焼成可能とな
り、また、ブレンド可能なペーストが作成できる。
Means for Solving the Problems In order to solve the above-mentioned problems, the resistor of the present invention converts the oxides and boron oxide contained in borosilicate glass into silicon or silicon monoxide through a firing process in a non-oxidizing atmosphere. It is a resistor containing minute human-order boride, and has a low TCR with a sheet resistance of 10 and 07 or more.
1 and a wide range of sheet resistors can be fired simultaneously, and blendable pastes can be created.

さらには人オーダーの微小粒径を有する硼化物が形成さ
れているため、耐サージ特性の優れたグレーズ抵抗器で
ある。
Furthermore, since it is made of boride having a microscopic particle size on the order of a human being, it is a glaze resistor with excellent anti-surge characteristics.

作用 本発明は上記したように、硼化物−ガラス系グレーズ抵
抗器において、−船釣に硬質金属に属する硼化物の粉体
を機械的粉砕で得た物ではなく、ホウケイ酸ガラス中に
含まれる前記酸化物と酸化ホウ素をシリコンや一酸化シ
リコン、あるいは−酸化シリコンの高次酸化状態前駆体
を用いて、非酸化性雰囲気中焼成工程中で還元して得た
物であり、前記数百人オーダーの微小な硼化物とガラス
から構成される抵抗器である。
As described above, the present invention provides a boride-glass glaze resistor in which boride powder, which belongs to hard metals used in boat fishing, is not obtained by mechanical crushing, but is contained in borosilicate glass. It is obtained by reducing the above-mentioned oxide and boron oxide using silicon, silicon monoxide, or a higher oxidation state precursor of -silicon oxide in a firing process in a non-oxidizing atmosphere. This is a resistor made of an order of magnitude of boride and glass.

上記の工程で得た前記抵抗器は、シート抵抗10に07
口以上で低TCR1ならびに、高範囲のシート抵抗器が
同時に形成でき、また、ブレンド可能なペーストが作成
できる。
The resistor obtained in the above process has a sheet resistance of 10.
Low TCR1 and high range sheet resistors can be formed at the same time and blendable pastes can be created.

さらには、前記抵抗器は微小粒径を有する硼化物が構成
されているので、負荷特性を改善することができる。
Furthermore, since the resistor is made of boride having a microparticle size, load characteristics can be improved.

実施例 以下本発明の一実施例の抵抗器について、説明する。Example A resistor according to an embodiment of the present invention will be described below.

[実施例11 シリコン粉体は高純度シリコン粉体を粗粉砕したあと、
エタノール中でインドリウム安定化ジルコニウム(YT
Z)ボールを用いて、平均粒径約0.4μmになるまで
ボール・ミル粉砕した。
[Example 11 Silicon powder is obtained by coarsely pulverizing high-purity silicon powder,
Indolium stabilized zirconium (YT) in ethanol
Z) Ball milling was performed using a ball until the average particle size was approximately 0.4 μm.

ガラスフリットはBa0(10〜23mo 1%)、C
a0(3〜6)、Mg0(7〜9)、B203(40〜
55)、5in2 (6〜25)、Al、03 (1〜
9)からなる酸化物、あるいはこれらの炭酸塩と、硼化
物を形成する前記酸化物として本実施例では酸化ジルコ
ニウム混合し、この混合粉体を1400 ’Cで溶解し
た後、溶解物を冷水中で象、冷してガラス化して、ボー
ル・ミル粉砕して得た。なお、本[実施例1]では硼化
物生成用酸化物として酸化ジルコニウムを5.8.7.
9゜10.9wt%含むA、B、C三つのガラス粉体を
用いた。
Glass frit is Ba0 (10-23mo 1%), C
a0 (3-6), Mg0 (7-9), B203 (40-
55), 5in2 (6-25), Al, 03 (1-
In this example, zirconium oxide was mixed with the oxide consisting of 9) or carbonate thereof and zirconium oxide as the oxide forming the boride, and after dissolving this mixed powder at 1400'C, the melt was soaked in cold water. It was obtained by cooling, vitrifying, and crushing in a ball mill. In addition, in this [Example 1], zirconium oxide was used as the boride-forming oxide in 5.8.7.
Three glass powders A, B, and C containing 9° and 10.9 wt% were used.

これら粉体を混合し、グレーズ抵抗粉末とした。These powders were mixed to form a glaze resistance powder.

このときのシリコン/(シリコン+ガラス)比は重量比
で0,02〜0.1であった。このグレーズ抵抗粉末を
混練するビヒクルはテルピネオール中にイソ−ブチルメ
タアクリレートが10%重量比になるよう秤量し、溶解
して得た。このビヒクルとグレーズ抵抗粉末の比はグレ
ーズ抵抗粉末1gあたり0.4ccであった。
The silicon/(silicon+glass) ratio at this time was 0.02 to 0.1 by weight. A vehicle for kneading this glaze-resistant powder was obtained by weighing and dissolving iso-butyl methacrylate in terpineol to a weight ratio of 10%. The vehicle to glaze resistant powder ratio was 0.4 cc/g of glaze resistant powder.

このグレーズ抵抗体ペーストを325メツシエのステン
レススクリーンを用いてCu電極を持つアルミナ基板上
にスクリーン印刷した。この後、120°Cで10分間
乾燥してから、雰囲気制御可能な厚膜焼成炉で焼成した
。焼成炉の条件は釣鐘状の温度プロファイルで920°
CIO分間保持のトータル焼成時間60分であった。こ
のときの雰囲気は窒素雰囲気で行い、酸素濃度は銅電極
が酸化しない範囲の10ppn+以下で行なった。
This glazed resistor paste was screen printed onto an alumina substrate with Cu electrodes using a 325 mesh stainless steel screen. Thereafter, it was dried at 120° C. for 10 minutes, and then fired in a thick film firing furnace where the atmosphere can be controlled. The firing furnace conditions are a bell-shaped temperature profile of 920°.
The total firing time was 60 minutes with CIO minutes maintained. The atmosphere at this time was a nitrogen atmosphere, and the oxygen concentration was 10 ppn+ or less, which is a range that does not oxidize the copper electrode.

このようにしてえられたグレーズ抵抗体の抵抗緒特性を
第1表に示す。
Table 1 shows the resistance characteristics of the glaze resistor thus obtained.

(以 下 余 白) なお、抵抗温度係数(TCR)は常温(25’C)時の
抵抗値に対する125℃における抵抗値の変化量をpp
m/”Cで表す。短時間過負荷テストは125 mW/
n+n+2の電力に相当する電圧の2.5倍を印加して
、初期値に対する抵抗変化率で評価し、耐湿テストは、
温度60°C1相対湿度95%雰囲気中に1000時間
放置した後の初期値に対する抵抗変化率で評価した。耐
サージテストは20009Fのコンデンサに500■の
電圧を印加充電した後、これを抵抗体に放電し、抵抗初
期値に対する変化率で表した。また、この抵抗体の焼成
前後における抵抗体断面模式図を第1図(a)、[有1
)に示す。また、X線回折パターンより、硼化物の粒径
を測定したところ140人であった。
(Margin below) Temperature coefficient of resistance (TCR) is the change in resistance value at 125°C with respect to the resistance value at room temperature (25'C), pp.
m/”C. Short-term overload test is 125 mW/”C.
A humidity test was performed by applying 2.5 times the voltage equivalent to the power of n+n+2 and evaluating the rate of change in resistance with respect to the initial value.
Evaluation was made by the rate of change in resistance with respect to the initial value after being left in an atmosphere at a temperature of 60° C. and a relative humidity of 95% for 1000 hours. In the surge resistance test, a 20009F capacitor was charged by applying a voltage of 500 µm, and then discharged into a resistor, and expressed as a rate of change with respect to the initial resistance value. In addition, a schematic cross-sectional view of the resistor before and after firing the resistor is shown in Fig. 1(a).
). In addition, the particle size of the boride was measured from the X-ray diffraction pattern and was found to be 140 people.

以上のように木[実施例1]によれば、本発明の硼化物
−ガラス抵抗器の硼化物を、非酸化性雰囲気中における
焼成工程で、ホウケイ酸ガラス中に含まれる前記酸化物
と酸化ホウ素とをシリコンを用い還元して得ているため
、微小な数百人オーダーの硼化物が得られており、耐サ
ージ特性の優れた高性能なグレーズ抵抗体が構成されて
いる。
As described above, according to the wood [Example 1], the boride of the boride-glass resistor of the present invention is mixed with the oxide contained in the borosilicate glass in the firing process in a non-oxidizing atmosphere. Since boron is obtained by reducing boron with silicon, microscopic boride on the order of several hundred particles is obtained, and a high-performance glaze resistor with excellent surge resistance is constructed.

つぎに,一酸化シリコンを用いた本発明の第2の実施例
を説明する。
Next, a second embodiment of the present invention using silicon monoxide will be described.

[実施例2] 一酸化シリコン粉体は一酸化シリコン試薬を粗粉砕した
あと、エタノール中でジルコニウムボールを用いて、平
均粒径約0.5μmになるまでボール・ミル粉砕した。
[Example 2] Silicon monoxide powder was obtained by coarsely pulverizing a silicon monoxide reagent and then ball-milling it in ethanol using zirconium balls until the average particle size was about 0.5 μm.

ガラスフリフトは[実施例1]と同様にして得た。A glass lift was obtained in the same manner as in [Example 1].

これら粉体を混合し、グレーズ抵抗粉末とし、[実施例
1]と同様に混合・混練しグレーズ抵抗ペーストを得た
These powders were mixed to obtain a glaze resistance powder, and mixed and kneaded in the same manner as in [Example 1] to obtain a glaze resistance paste.

このグレーズ抵抗体ペーストを325メツシユのステン
レススクリーンを用いてCu電極を持つアルミナ基板上
に[実施例1]と同様にスクリーン印刷し、この後12
0°Cで10分間乾燥してから、[実施例1]と同様に
雰囲気制御可能な[膜焼成炉で焼成した。
This glaze resistor paste was screen printed on an alumina substrate with a Cu electrode using a 325 mesh stainless steel screen in the same manner as [Example 1], and then
After drying at 0° C. for 10 minutes, it was fired in a membrane firing furnace where the atmosphere could be controlled in the same manner as in Example 1.

このようにしてえられたグレーズ抵抗体の抵抗緒特性を
第2表に示す。
Table 2 shows the resistance characteristics of the glaze resistor thus obtained.

(以 下 余 白) 以上のように、本[実施例2]においても、[実施例1
]と同様に、本発明の硼化物−ガラス抵抗器の硼化物を
、非酸化性雰囲気中における焼成工程で、ホウケイ酸ガ
ラス中に含まれる前記酸化物と酸化ホウ素とをシリコン
を用い還元して得ているため、微小な硼化物が得られて
おり、耐サージ特性の優れた高性能なグレーズ抵抗体が
構成されている。
(Margins below) As mentioned above, in this [Example 2], [Example 1]
], the boride of the boride-glass resistor of the present invention is reduced by using silicon to reduce the oxide and boron oxide contained in the borosilicate glass in a firing process in a non-oxidizing atmosphere. As a result, fine borides are obtained, and a high-performance glaze resistor with excellent anti-surge properties is constructed.

本発明の効果を明らかにするために、以下に[比較例]
を示す。
In order to clarify the effects of the present invention, [Comparative Example]
shows.

[比較例] [実施例1]、[実施例2]で用いた硼化物として硼化
ジルコニウムをアルゴンガス中で合成し、この合成粉体
をエタノール中でWCボールを用いて平均粒径的0.5
μmになるまでポール・ミル粉砕して硼化物粉体を得た
[Comparative Example] Zirconium boride was synthesized as the boride used in [Example 1] and [Example 2] in argon gas, and this synthesized powder was prepared in ethanol using a WC ball to reduce the average particle size to 0. .5
A boride powder was obtained by grinding with a pole mill to a particle size of μm.

ガラスは、公知の非還元性ガラスを[実施例1]と同様
に溶解・粉砕して得た。
The glass was obtained by melting and crushing a known non-reducing glass in the same manner as in [Example 1].

これら硼化物粉体とガラス混合したあと、[実施例1]
と同様にビヒクルと混練して抵抗体ペーストを得た。
After mixing these boride powders with glass, [Example 1]
A resistor paste was obtained by kneading with a vehicle in the same manner as above.

この抵抗体ペーストを[実施例1]と同様に印刷・乾燥
・焼成を行い、抵抗体を形成し評価した。
This resistor paste was printed, dried, and fired in the same manner as in [Example 1] to form a resistor and evaluated.

このときの抵抗緒特性を第3表に示す。The resistance characteristics at this time are shown in Table 3.

(以 下 余 白) 以上[比較例]に示すように、硼化物粉体を事前に合成
し機械的粉砕を行なって形成した硼化物−ガラス系グレ
ーズ抵抗器では、硼化物粒子が大きく、サブμmの粒子
しか得られないし、また、形成したグレーズ抵抗体内部
に不均一な電界分布ができ、サージ電圧による抵抗値変
化が著しい。
(Left below) As shown in the [Comparative Example] above, in boride-glass glaze resistors formed by pre-synthesizing and mechanically pulverizing boride powder, the boride particles are large and sub- Only μm particles can be obtained, and an uneven electric field distribution occurs inside the formed glazed resistor, resulting in significant changes in resistance due to surge voltage.

また、一般に硬質金属に属する硼化物の粉砕は非常に難
しく、[比較例]に示すような粒径1μm以下の硼化物
粉体を得たとしても、不純物の混入を防ぐことが困難で
あり、この不純物により不均一な電界分布が生じ、サー
ジ電圧による抵抗値変化を助長することとなる。
In addition, it is generally very difficult to grind boride, which belongs to hard metals, and even if boride powder with a particle size of 1 μm or less as shown in [Comparative Example] is obtained, it is difficult to prevent contamination with impurities. This impurity causes non-uniform electric field distribution, which promotes changes in resistance due to surge voltage.

なお、本比較例において形成した硼化ジルコン中には、
5wt%のWCが混入していた。
In addition, in the zircon boride formed in this comparative example,
It contained 5 wt% of WC.

一方、シリコン,一酸化シリコンの粉砕に関しては数十
ppmオーダーの汚染しかなかった。
On the other hand, in the case of pulverizing silicon and silicon monoxide, there was only contamination on the order of several tens of ppm.

なお、本実施例では酸化ジルコニウムをガラス中に含有
させたが、この硼化物形成用の酸化物としては、酸化バ
ナジウム、酸化クロム、酸化タングステンが硼化物をそ
れぞれ形成し同様の結果を示すが、好ましくは、酸化ジ
ルコン、酸化タンタル、酸化チタン、酸化モリブデン、
酸化ニオブが耐温性などを満足する好結果が得られた。
In this example, zirconium oxide was contained in the glass, but vanadium oxide, chromium oxide, and tungsten oxide each form a boride and show similar results as oxides for forming the boride. Preferably, zircon oxide, tantalum oxide, titanium oxide, molybdenum oxide,
Good results were obtained in which niobium oxide satisfies temperature resistance and other properties.

なお、実施例では窒素雰囲気中で焼成したが、非酸化性
雰囲気であれば良く、7%未満の水素を含む還元性雰囲
気中でも焼成可能である。
In the examples, firing was performed in a nitrogen atmosphere, but any non-oxidizing atmosphere is sufficient, and firing is also possible in a reducing atmosphere containing less than 7% hydrogen.

また、実施例では、0.5μmのシリコン粉体、−酸化
シリコン粉体を用いたが、粒径としては平均粒径1μm
以下であれば、抵抗体の緒特性に影響をあたえず微小な
硼化物が得られ、良好な結果が得られる。
In addition, in the examples, 0.5 μm silicon powder and -silicon oxide powder were used, but the average particle size was 1 μm.
If it is below, fine borides can be obtained without affecting the resistance properties of the resistor, and good results can be obtained.

実施例ではシリコン粉体,一酸化シリコン粉体を用いた
が、これらは還元剤として機能すればよく,一酸化シリ
コンの高次酸化状態前駆体、例えば、Si203,5i
305でも同様の効果かえられる。また、これらシリコ
ン粉体,一酸化シリコン粉体,一酸化シリコンの高次酸
化状態前駆体を混合して用いることも可能である。
Although silicon powder and silicon monoxide powder were used in the examples, they only need to function as a reducing agent, and a higher oxidation state precursor of silicon monoxide, such as Si203,
Similar effects can be obtained with 305. It is also possible to use a mixture of these silicon powders, silicon monoxide powders, and higher oxidation state precursors of silicon monoxide.

さらには、これらシリコン粉体,一酸化シリコン粉体,
一酸化シリコンの高次酸化状態前駆体は結晶化している
必要はなく、アモルファス状態であっても同様の効果が
得られる。
Furthermore, these silicon powders, silicon monoxide powders,
The higher oxidation state precursor of silicon monoxide does not need to be crystallized, and the same effect can be obtained even if it is in an amorphous state.

なお、実施例において、有機ポリマーとしてポリブチル
メタアクリートを用いたが、低温で解重合をおこし昇華
飛散するものであれば何でもよく例えば、ポリテトラフ
ルオロエチレンや、ポリ−α−メチルスチレン、ポリ−
メチルメタアクリレートを単体、混合、あるいは共重合
して用いてもよい。
In the examples, polybutyl methacrylate was used as the organic polymer, but any polymer may be used as long as it depolymerizes at low temperatures and sublimates and scatters, for example, polytetrafluoroethylene, poly-α-methylstyrene, poly-
Methyl methacrylate may be used alone, as a mixture, or as a copolymer.

発明の効果 以上のように本発明は硼化物−ガラス系グレーズ抵抗器
において、抵抗体ペーストに硼化物を含むのではなく、
非酸化性雰囲気中における焼成工程で、ホウケイ酸ガラ
ス中に含まれる前記酸化物と酸化ホウ素とをシリコンや
一酸化シリコンを用いて還元し、微小な硼化物を得るこ
とにより形成したグレーズ抵抗器である。
Effects of the Invention As described above, the present invention provides a boride-glass glazed resistor that does not contain boride in the resistor paste.
A glaze resistor formed by reducing the oxides and boron oxide contained in borosilicate glass using silicon or silicon monoxide in a firing process in a non-oxidizing atmosphere to obtain minute borides. be.

このため、このグレーズ抵抗器は、シート抵抗10に0
7口以上で低TCR1ならびに、高範囲のシート抵抗体
が同時焼成可能であり、また、ブレンド可能なペースト
が作成できる。
Therefore, this glaze resistor has a sheet resistance of 10
With 7 or more holes, low TCR1 and high range sheet resistors can be fired simultaneously, and a blendable paste can be created.

さらには微小粒径を有する硼化物が形成できるので耐サ
ージ特性を向上できる効果が得られる。
Furthermore, since boride having a fine particle size can be formed, an effect of improving surge resistance characteristics can be obtained.

さらには粉砕工程を必要な粉体がシリコン,一酸化シリ
コン等の脆性材料であるため、粉砕工程における不純物
の混入を最小限に抑えることができるという効果が生じ
る。
Furthermore, since the powder that requires the pulverization process is a brittle material such as silicon or silicon monoxide, there is an effect that the contamination of impurities during the pulverization process can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(aL (b)は本発明の一実施例における抵抗
体の(a)焼成前、(b)焼成後の断面模式図である。 1・・・・・・基板、2・・・・・・ガラス粒子、3・
・・・・・シリコン粒子、4・・・・・・硼化物粒子。 代理人の氏名 弁理士 中尾敏男 ばか1名菓!図
FIG. 1(aL) (b) is a schematic cross-sectional view of a resistor in an embodiment of the present invention (a) before firing and (b) after firing. 1...Substrate, 2... ...Glass particles, 3.
...Silicon particles, 4...Boride particles. Agent's name: Patent attorney Toshio Nakao Baka 1 Famous Confectionery! figure

Claims (5)

【特許請求の範囲】[Claims] (1)シリコン,一酸化シリコン,一酸化シリコンの高
次酸化状態前駆体の内少なくとも一種と、硼化物と、ガ
ラスとを備えたことを特徴とする抵抗器。
(1) A resistor comprising at least one of silicon, silicon monoxide, and a higher oxidation state precursor of silicon monoxide, a boride, and glass.
(2)硼化物が、硼化チタン,硼化ジルコン,硼化バナ
ジウム,硼化ニオブ,硼化タンタル,硼化クロム,硼化
モリブデン,硼化タングステン,硼化マンガンからなる
ことを特徴とする請求項(1)記載の抵抗器。
(2) A claim characterized in that the boride consists of titanium boride, zirconium boride, vanadium boride, niobium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, and manganese boride. The resistor described in item (1).
(3)硼化物が、ZrB_2,TaB_2,NbB_2
,TiB_2の内少なくとも一種からなることを特徴と
する請求項(1)記載の抵抗器。
(3) Boride is ZrB_2, TaB_2, NbB_2
, TiB_2. , TiB_2.
(4)硼化物の平均粒径が500Å以下であることを特
徴とする請求項(1)記載の抵抗器。
(4) The resistor according to claim (1), wherein the average grain size of the boride is 500 Å or less.
(5)シリコン,一酸化シリコン,一酸化シリコンの高
次酸化状態前駆体の平均粒径が1μm以下であることを
特徴とする請求項(1)記載の抵抗器。
(5) The resistor according to claim (1), wherein the average particle size of silicon, silicon monoxide, and a higher oxidation state precursor of silicon monoxide is 1 μm or less.
JP63126441A 1988-05-24 1988-05-24 Resistor Expired - Fee Related JPH0738324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63126441A JPH0738324B2 (en) 1988-05-24 1988-05-24 Resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63126441A JPH0738324B2 (en) 1988-05-24 1988-05-24 Resistor

Publications (2)

Publication Number Publication Date
JPH01295401A true JPH01295401A (en) 1989-11-29
JPH0738324B2 JPH0738324B2 (en) 1995-04-26

Family

ID=14935286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63126441A Expired - Fee Related JPH0738324B2 (en) 1988-05-24 1988-05-24 Resistor

Country Status (1)

Country Link
JP (1) JPH0738324B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879190B2 (en) * 2017-12-19 2021-06-02 株式会社デンソー Electric resistors, honeycomb structures, and electrically heated catalysts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910915A (en) * 1972-05-16 1974-01-30
JPS5527700A (en) * 1978-08-16 1980-02-27 Du Pont Thick film composition
JPS62232901A (en) * 1986-04-03 1987-10-13 旭硝子株式会社 Resistance compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910915A (en) * 1972-05-16 1974-01-30
JPS5527700A (en) * 1978-08-16 1980-02-27 Du Pont Thick film composition
JPS62232901A (en) * 1986-04-03 1987-10-13 旭硝子株式会社 Resistance compound

Also Published As

Publication number Publication date
JPH0738324B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US3553109A (en) Resistor compositions containing pyrochlore-related oxides and noble metal
JPS6290902A (en) Patterned ruthenium oxide base resistance element
CN111739675B (en) Thick film resistor paste
JPH0620001B2 (en) Composition for producing electric resistance element and method for producing electric resistance element
US4323484A (en) Glaze resistor composition
KR920001452B1 (en) Resistance materials and making method there of
JPH01295401A (en) Resistor
JPH01103801A (en) Resistance composition
JPH01103804A (en) Manufacture of resistor
JP7139691B2 (en) Composition for thick film resistor, thick film resistor paste and thick film resistor
JPH01103802A (en) Resistor
JP7245418B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
US3372058A (en) Electrical device, method and material
JPH01257302A (en) Manufacture of resistance composition, resistance and resistor and circuit substrate
EP0186065B1 (en) Process for preparing a resister element
JPS5853485B2 (en) resistance composition
JPS62209801A (en) Glaze resistor paste
JPS5853481B2 (en) resistance composition
JPH079841B2 (en) Method of manufacturing thick film resistor
JPH04206504A (en) Thick film resistor composition and manufacture thereof
JPS61220402A (en) Ptc paste
JPS63299301A (en) Resistance composition
JPH04125901A (en) Composition for thick film resistor
JPH02212333A (en) Composition for producing resistor
JPS5836481B2 (en) resistance composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees