JPH04206504A - Thick film resistor composition and manufacture thereof - Google Patents

Thick film resistor composition and manufacture thereof

Info

Publication number
JPH04206504A
JPH04206504A JP2329726A JP32972690A JPH04206504A JP H04206504 A JPH04206504 A JP H04206504A JP 2329726 A JP2329726 A JP 2329726A JP 32972690 A JP32972690 A JP 32972690A JP H04206504 A JPH04206504 A JP H04206504A
Authority
JP
Japan
Prior art keywords
metal boride
borosilicate glass
metal
thick film
film resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2329726A
Other languages
Japanese (ja)
Inventor
Keisuke Mori
圭介 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2329726A priority Critical patent/JPH04206504A/en
Publication of JPH04206504A publication Critical patent/JPH04206504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To enhance ESD characteristics and to obtain a resistance value having excellent reproducibility by a method wherein borosilicate glass composed of powdery metal boride containing metal boride ZrB2, metallic conductive substance, an organic bonding agent and art organic solvent 14 used. CONSTITUTION:Powdery metal boride-containing borosilicate glass and the powdery metallic conductive substance selected from the group consisting of metal, a metal boride, a metal silicide, a metal nitride and their mixture, are mixed at the weight ratio of 30:70 to 80:20, and the title composition is composed of the above--mentioned mixture, an organic bonding agent and an organic solvent. The metal boride-containing borosilicate glass is obtained by mixing fine metal boride ZrB2 and the powder of borosilicate glass and quenching the mixture in a nonoxidizing atmosphere at 900 deg.C or higher. ZrB2 of 1 to 20wt.% is contained in the glass powder.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野] 本発明は、厚膜回路技術に関し、特に銅:#lを用いる厚膜混成集積回路(HIC)基板上で、銅とともに非酸化性雰囲気下で焼成できる厚膜抵抗体組成物に関する。 【従来の技術】[Industrial application field] The present invention relates to thick film circuit technology, and more particularly to thick film resistor compositions that can be fired with copper in a non-oxidizing atmosphere on thick film hybrid integrated circuit (HIC) substrates using copper:#1. [Conventional technology]

従来、電極を形成したアミルナ磁器基板に設ける厚膜抵
抗体組成物としてはルテニウム酸化物とガラスから構成
されるルテニウム酸化物系厚膜抵抗体組成物か広く用い
られている。 このルテニウム酸化物系厚膜抵抗体組成物は、あらかじ
め銀あるいは銀とパラジウムから成る電極材料を空気中
で焼き付けたアルミナ磁器基板上のt 極に接するよう
に印刷し、空気中で750〜900℃で焼成して厚膜抵
抗体としている。 近年、高価な貴金属電極材料に代わり、安価な銅系電極
材料を用いようとする傾向がある。これらの銅系電極材
料は 空気中て焼成すると、酸化を受は電極として機能
しなくなる。銅系電極材料では、空気中焼成下での銅め
酸化を避けるべて、非酸化性雰囲気焼成が考案されてい
る。しかし、ルテニウム酸化物系厚膜抵抗体組成物を非
酸化性雰囲気で焼成すると、ルテニウム酸化物が還元を
受け、ルテニウム金属か析出し、抵抗値か著しく小さく
なって実用に耐えない6そこで、非酸化性雰囲気で焼成
可能な厚膜抵抗体組成物が望まれている。 厚膜抵抗体組成物として用いられる金属ホウ化物は、非
酸化性雰囲気での焼成て化学変化をしないため、非酸化
性雰囲気で焼成可能な厚膜抵抗組成物の導電性物質とし
て適している。しかし、金属ホウ化物は、非常に硬いた
めm械的粉砕で0゜4μm以下の粒径を得ることか難し
い、厚膜抵抗体の構造上、金属ホウ化物の粒径か大きく
なると、ガラス系厚膜抵抗体内部の金属ホウ化物とガラ
スの分散か不均一になる傾向かあり、厚膜抵抗体内部が
電気的に不均一になる。そのため静電耐圧特性か劣1ヒ
し、実用に耐えなくなる欠点があった。
Conventionally, a ruthenium oxide-based thick film resistor composition composed of ruthenium oxide and glass has been widely used as a thick film resistor composition provided on an alumina ceramic substrate on which an electrode is formed. This ruthenium oxide-based thick film resistor composition is printed in contact with the t pole on an alumina porcelain substrate on which an electrode material made of silver or silver and palladium has been baked in air, and heated at 750 to 900°C in air. It is fired to form a thick film resistor. In recent years, there has been a trend to use inexpensive copper-based electrode materials in place of expensive noble metal electrode materials. When these copper-based electrode materials are fired in air, they undergo oxidation and no longer function as electrodes. For copper-based electrode materials, firing in a non-oxidizing atmosphere has been devised to avoid copper oxidation during firing in air. However, when a ruthenium oxide-based thick film resistor composition is fired in a non-oxidizing atmosphere, the ruthenium oxide undergoes reduction and ruthenium metal precipitates, resulting in a significantly small resistance value that is unsuitable for practical use6. A thick film resistor composition that can be fired in an oxidizing atmosphere is desired. Metal borides used as thick film resistor compositions do not undergo chemical changes when fired in a non-oxidizing atmosphere, and therefore are suitable as conductive substances for thick film resistor compositions that can be fired in a non-oxidizing atmosphere. However, since metal borides are very hard, it is difficult to obtain particle sizes of 0°4 μm or less by mechanical crushing.Due to the structure of thick film resistors, as the particle size of metal borides increases, the glass thickness increases. There is a tendency for the dispersion of metal boride and glass inside the film resistor to become non-uniform, resulting in electrical non-uniformity inside the thick film resistor. As a result, the electrostatic withstand voltage characteristics were poor, making it unsuitable for practical use.

【発明が解決しようとする課M1 本発明は、上記問題点を考え、非酸化性雰囲気焼成後の
厚膜抵抗体内部が電気的にほぼ均一であり、ESD特性
に優れ、さらに再現性良く抵抗値が得られる厚膜抵抗体
材料を提供しようとするものである。 【課題を解決するための手段】 本発明の厚膜抵抗本組成物は、基本的には、金属ホウ化
物ZrB2を含有する粉末状金属ホウ化物含有ホウケイ
酸ガラスと、金属、金属ホウ化物、金属ゲイ化物、金属
窒化物から成る群から選ばれた粉末状金属質的導電性物
質と、有機結合剤および有機溶媒とから構成される。 また、本発明の厚膜抵抗体組成物は、金属ホウ1ヒ物Z
rB2の微粉末を含有させた粉末状金属ホウ化物含有ホ
ウケイ酸ガラスと、金属、金属ホウ化物、金属ゲイ化物
、金属窒化物およびこれら混合物から成る群から選ばれ
た粉末状金属質的導電性物質とを、重量比で30ニア0
〜80 : 20の割合で混合し、この混合物と有機結
合剤及び有機溶媒とにより構成されたもので、非酸化性
雰囲気中の焼成か可能である。 本発明の金属ホウ化物含有ホウケイ酸ガラスは、予め機
械的粉砕などにより得られた微細な金属ホウ化eIZr
B2と、前記ホウケイ酸ガラスの粉末とを混合し、非酸
化性雰囲気900℃以上でガラスを急冷して得られる。 金属ホウ化′#J含有ホウケイ酸ガラスの全重量中に金
属ホウ化物ZrB2は、1〜2Oji量%含有される。
Problem M1 to be Solved by the Invention The present invention takes into consideration the above problems, and provides a structure in which the inside of a thick film resistor after firing in a non-oxidizing atmosphere is electrically almost uniform, has excellent ESD characteristics, and has a high resistance with good reproducibility. The purpose of this invention is to provide a thick film resistor material that provides a high value. [Means for Solving the Problems] The thick film resistor composition of the present invention basically consists of a powdered metal boride-containing borosilicate glass containing a metal boride ZrB2, and a metal, a metal boride, a metal It is composed of a powdered metallic conductive material selected from the group consisting of gaides and metal nitrides, an organic binder, and an organic solvent. Further, the thick film resistor composition of the present invention is made of metal borosilicate Z
Powdered metal boride-containing borosilicate glass containing fine powder of rB2, and powdered metallic conductive material selected from the group consisting of metals, metal borides, metal gaides, metal nitrides, and mixtures thereof. and the weight ratio is 30 near 0
It is composed of this mixture, an organic binder, and an organic solvent mixed at a ratio of ~80:20, and can be fired in a non-oxidizing atmosphere. The metal boride-containing borosilicate glass of the present invention is made of fine metal boride eIZr obtained in advance by mechanical crushing or the like.
It is obtained by mixing B2 and the borosilicate glass powder and rapidly cooling the glass at 900° C. or higher in a non-oxidizing atmosphere. The metal boride ZrB2 is contained in an amount of 1 to 2 Oji% by weight in the total weight of the metal boride '#J-containing borosilicate glass.

【作用】[Effect]

本発明の厚膜抵抗体組成物を非酸化性雰囲気中で焼成し
て得られた厚膜抵抗体は、前記金属ホウ化物含有ホウケ
イ酸ガラスと前記金属質的導電性物質により導電ネ・・
・1〜ワークを構成する、高い導電性を示す金属ホウ化
物Z r B 2を含有するホウケイ酸ガラスは比抵抗
で1010Ωcm以下を示す。 一般的なホウケイ酸ガラス(比抵抗:10”Ωc’m)
と前記金属質的導電性物質とを組み合わせな厚膜抵抗体
よりも、本発明の厚膜抵抗体は、厚膜抵抗体内の電気的
な不均一が少ないため、電気的特性が優れている。 本発明の厚膜抵抗体組成物を構成する金属ホウ化物含有
ホウケイ酸ガラスは、その前駆体であるホウケイ酸ガラ
スと、金属ホウ化物ZrB2とを、各々予めa11i的
に粉砕し粉末として混合し、ガラスを熔融させてガラス
中に金属ホウ化物ZrB2を均一に分散させて作られる
。 金属ホウ化物含有ホウケイ酸ガラスは、前駆体のホウケ
イ酸ガラスの粉末と、金属ホウ化物ZrB2の粉末との
混合粉を非酸化性雰囲気、900℃でガラスの熔融を行
い 熔融したガラスに金属ホウ化物ZrB、を分散させ
て急冷して得られる、空気中で、高温に晒されると、金
属ホウ化物ZrB2は酸化を受ける。そのため金属ホウ
化!1IJt有ホウケイ酸ガラスは非酸化性雰囲気下で
合成しなければならない。 金属ホウ化物含有ホウケイ酸ガラスをき成する際に、金
属ホウ化物Z r B 2は、非常に高融点であるため
、金属ホウ化!P!1ffZrB2か焼結することはな
い。 金属ホウ化物含有ホウケイ酸ガラスに含まれる金属ホウ
化物Z r B 2は、ジルコニアホールによりエタノ
ール中で粉砕して、比表面積で測定し、平均粒径0.4
μmの粉末を得ることが可能である。 金属ホウ化物含有ホウケイ酸ガラスの前駆体のホウケイ
酸ガラスには、金属ホウ化物Z r B 2と反応する
成分が含まれていないことか必要である。 金属ホウ化物ZrB2とホウケイ酸ガラスか反応すると
、反応により導電性を示さない結晶か析出する可能性が
ある。 さらに 前記ホウケイ酸ガラスは、結晶化しないほうか
望ましい。ガラスの結晶化や、ガラス成分と金属ホウ化
物Z r B 2の反応を原因とする導電性を示さない
結晶の析出は、金属ホウ化物含有ホウケイ酸ガラスを不
均一にする。 さらに、本発明の金属ホウ化物含有ホウケイ酸ガラスは
、金属ホウ化%J Z r B 2を均一に含有するた
めに、原料のホウケイ酸ガラスの粉末および金属ホウ化
物Z r B 2の粉末の粒径を04μm以下にするこ
とが望ましい。ホウケイ酸ガラスの粉末と金属ホウ化物
ZrB2の粉末を均一に混合するために細かい原料粉末
が必要になる。均一な原料粉末の混合により、ガラス中
に金属ホウ化物ZrB2か均一に分散した金属ホウ化物
含有ホウケイ酸ガラスが得られる。 金属ホウ化物含有ホウケイ酸ガラスの抵抗値は金属ホウ
化物Z r B 2の含有量により決4土る、金属ホウ
化elZrBzの含有量か増えれば 金属ホウ化′!I
J、を有ホウケイ酸ガラスの抵抗値か下がる。 しかし、金属ホウ化物含有ホウケイ酸ガラス中の金属ホ
ウ化′1IJZrB2の含有量を約20重量%より多く
すると、金属ホウ化物の高い融点のために金属ホウ化物
含有ホウケイ酸ガラスが軟化しにくくなる。そのため、
実用的な厚膜抵抗体組成物用のガラス粉末が得られなく
なる。 金属ホウ化物を含有するホウケイ酸ガラスを合成する温
度は、厚膜抵抗体組成物に用いられる実用的な軟化点を
示すガラスを得るためには、800℃以上でなければな
らない。800℃未満の温度では、前記ホウケイ酸ガラ
スが充分に溶融できず、’Z、 r B 2かガラスに
分散しない。 本発明の厚膜抵抗体の抵抗値は、前記金属質的導電性物
質と金属ホウ化物含有ホウケイ酸ガラスとの相対的割合
を変化させる上とにより調整される、 本発明の厚膜抵抗体では、前記金属質的導電性物質が、
該導電性物質のバインダーである金属ホウ化物含有ホウ
ケイ酸ガラスの周りに分散し、導電性物質か網目状に分
散した導電マトリ・ンクスを形成する。金属質的導電性
物質は、金属ホウ化物含有ホウケイ酸ガラスの周りに分
散することにより、導電ネットワークを構成する。導電
マトリックス中では、金属質的導電性物質に比べてはる
かに高い抵抗値を示す金属ホウ化物含有ホウケイ酸ガラ
スが導電ネットワークを分断する。厚膜抵抗体のガラス
含有量を多くすると、厚膜抵抗体の抵抗値か上昇する。 金属質的導電性物質と従来技術のホウケイ酸ガラスによ
り構成される厚膜抵抗体は、金属質的導電性物質か当該
ホウケイ酸ガラスの周りに分散し導電マトリックスを構
成する。金属質的導電性物質により構成されるii#電
ネントワークは、10”ΩCff1以上の比抵抗を示す
従来技術のホウケイ酸ガラスにより分断される。そめた
め、厚膜抵抗体内に導電ネットワークが局在し 厚膜抵
抗体か電気的に不均一になる。 一方、本発明の金属ホウ化物含有ホウケイ酸ガラスの比
抵抗は1010Ωcm以下を示すため、厚膜抵抗体内の
導電ネットワークの局在化が生しにくい。 fi適な導電ネットワーク形成のため金属質的導電性物
質の粒径は0.4μm以下が、金属ホウ化物含有ホウケ
イ酸ガラスの粒径は3,0μm前後が望ましい。 この微細な金属質的導電性物質か高い導電性を示す金属
ホウ化物含有ホウケイ酸ガラスの周りに分散して構成さ
れるm細な導電マトリックスにより、電気的に均一な厚
膜抵抗体を形成できる。
The thick film resistor obtained by firing the thick film resistor composition of the present invention in a non-oxidizing atmosphere has a conductive property due to the metal boride-containing borosilicate glass and the metallic conductive substance.
- The borosilicate glass containing metal boride Z r B 2 exhibiting high conductivity and constituting the workpiece exhibits a resistivity of 1010 Ωcm or less. General borosilicate glass (specific resistance: 10"Ωc'm)
The thick film resistor of the present invention has better electrical characteristics than a thick film resistor which is a combination of the metal conductive material and the metallic conductive substance because there is less electrical non-uniformity within the thick film resistor. The metal boride-containing borosilicate glass constituting the thick film resistor composition of the present invention is prepared by pre-pulverizing borosilicate glass, which is a precursor thereof, and metal boride ZrB2 and mixing them as powder. It is made by melting glass and uniformly dispersing metal boride ZrB2 in the glass. Metal boride-containing borosilicate glass is produced by melting a mixed powder of precursor borosilicate glass powder and metal boride ZrB2 powder at 900°C in a non-oxidizing atmosphere, and adding metal boride to the molten glass. The metal boride ZrB2 undergoes oxidation when exposed to high temperatures in air, obtained by dispersing and rapidly cooling ZrB. Therefore, metal boronization! 1IJt borosilicate glass must be synthesized under a non-oxidizing atmosphere. When forming metal boride-containing borosilicate glass, metal boride Z r B 2 has a very high melting point, so metal boride! P! 1ffZrB2 will not sinter. The metal boride Z r B 2 contained in the metal boride-containing borosilicate glass is pulverized in ethanol using a zirconia hole, measured by specific surface area, and has an average particle size of 0.4.
It is possible to obtain micron powders. It is necessary that the borosilicate glass that is the precursor of the metal boride-containing borosilicate glass does not contain a component that reacts with the metal boride Z r B 2 . When metal boride ZrB2 reacts with borosilicate glass, there is a possibility that non-conductive crystals may be precipitated due to the reaction. Furthermore, it is preferable that the borosilicate glass does not crystallize. Crystallization of the glass or precipitation of non-conductive crystals due to the reaction between the glass components and the metal boride Z r B 2 makes the metal boride-containing borosilicate glass non-uniform. Further, the metal boride-containing borosilicate glass of the present invention has the advantage of uniformly containing the metal boride % J Z r B 2 by combining the powder of the raw material borosilicate glass and the powder of the metal boride Z r B 2 . It is desirable that the diameter is 0.4 μm or less. Fine raw material powder is required to uniformly mix the borosilicate glass powder and the metal boride ZrB2 powder. By uniformly mixing the raw material powders, a metal boride-containing borosilicate glass in which the metal boride ZrB2 is uniformly dispersed in the glass can be obtained. The resistance value of metal boride-containing borosilicate glass depends on the content of metal boride ZrB2, and as the content of metal boride elZrBz increases, the resistance value of metal boride ZrBz increases. I
J, the resistance value of borosilicate glass decreases. However, when the content of metal boride '1IJZrB2 in the metal boride-containing borosilicate glass is greater than about 20% by weight, the metal boride-containing borosilicate glass becomes difficult to soften due to the high melting point of the metal boride. Therefore,
Glass powder for practical thick film resistor compositions cannot be obtained. The temperature at which borosilicate glass containing metal borides is synthesized must be 800° C. or higher in order to obtain a glass that exhibits a practical softening point for use in thick film resistor compositions. At temperatures below 800°C, the borosilicate glass cannot be sufficiently melted and 'Z, r B 2 will not be dispersed in the glass. In the thick film resistor of the present invention, the resistance value of the thick film resistor of the present invention is adjusted by changing the relative proportion of the metallic conductive substance and the metal boride-containing borosilicate glass. , the metallic conductive substance is
The conductive material is dispersed around the metal boride-containing borosilicate glass which is a binder to form a conductive matrix in which the conductive material is dispersed in a network. The metallic conductive material is dispersed around the metal boride-containing borosilicate glass to form a conductive network. In the conductive matrix, metal boride-containing borosilicate glasses, which exhibit much higher resistance values than metallic conductive materials, disrupt the conductive network. When the glass content of the thick film resistor is increased, the resistance value of the thick film resistor increases. Thick film resistors composed of a metallic conductive material and prior art borosilicate glass have the metallic conductive material dispersed around the borosilicate glass to form a conductive matrix. The electrical network composed of a metallic conductive material is separated by a conventional borosilicate glass having a specific resistance of 10"ΩCff1 or more. Therefore, the electrical conductive network is localized within the thick film resistor. On the other hand, since the specific resistance of the metal boride-containing borosilicate glass of the present invention is 1010 Ωcm or less, the conductive network within the thick film resistor becomes localized. In order to form a suitable conductive network, the particle size of the metallic conductive substance is preferably 0.4 μm or less, and the particle size of metal boride-containing borosilicate glass is preferably around 3.0 μm. An electrically uniform thick film resistor can be formed by a thin conductive matrix in which a conductive material is dispersed around a highly conductive metal boride-containing borosilicate glass.

【実施例I U実M例IJ 金属ホウ化物8i宥ホウケイ酸ガラスを作製するために
ホウケイ酸ガラスの粉末に混合される金属ホウ化物には
金属ホウ化eJZrB2を用いた。すなわち、市販のZ
 r B 、、粉末を粗粉砕の後、ジルコニアボールを
用いてエタノール中で平均粒径04μmになるまて゛粉
砕した。 ホウゲイ酸ガラス粉末は、Ba0(18,5モル%) 
、CaO(5,0モル%) 、MgO(6゜5モル%)
、B20S  (45,5モル%)、 5i02 (2
1,6モル%)、Aン203(3,0モル%)で混合し
、得られたホウケイ酸ガラスをエタノール中でジルコニ
アボールを用いて平均粒径0.2μmのガラス粉末を得
た。 前記ホウゲイ酸ガラス粉末に前記金属ホウ化物Z r 
B 2を全重量で1〜20重量%加え混合した。 これら混合粉末を炭素製のるつぼに入れ、窒素雰囲気下
で900℃(A、B)、800℃(E−F)もしくは7
00’C(G、H)で1時間焼成して金属ホウ化物含有
ホウケイ酸ガラスを得た。この金属ホウ化Vt有ホウケ
イ酸ガラスをエタノール中でジルコニアボールを用いて
平均粒径的3.2μmになるまで粉砕しな。 なお、金属ホウ化物含有ホウケイ酸ガラスの前駆体であ
るホウケイ酸ガラスに加えた金属ホウ化物ZrB2の量
を第1表に示す。第1表で、ガラスA、B、EおよびG
か本実施例に属する。 金属ホウ化物含有ホウケイ酸ガラス粉末を直径10mm
、高さ5mmのベレット状に成形し、窒素雰囲気900
℃で1時間焼成して金属ホウ化物含有ホウケイ酸ガラス
のベレットを得た。このベレットに銀エポキシ樹脂で電
極を取り付けて直流4線式、Pauwの方法でベレット
の比抵抗を測定した。結果を第1表に示す。 また、金属ホウ化物含有ホウケイ酸ガラスをX線回折で
定性分析した。X線回折装置はターゲットに銅を用い、
40KV、150mA印加した。 金属ホウ化物合作ホウケイ酸ガラスのX線回折め結果と
第1表に示す、 なお 本実施例の粉末の粒径測定には比表面積計を用い
た。 [比較例1] 金属ホウ化物ZrB2の量を0重量%および21重量%
とじたものについて、実施例1と同様に作製および測定
した結果を第1表に示す。第1表でガラスCおよびガラ
スDか本比較例である。 [実施例2] 前記金属ホウ化物含有ホウケイ酸ガラスの粉末と金属質
的導電性物質の粉末とを使って厚膜抵抗体を作製した。 前記金属質的導電性物質には、L a B 6を用いた
。すなわち、市販のL a B bをジエ・、トミル粉
砕の後、エタノール中でジルコニアボールを用いて0.
4μmまで粉砕してL a B 6の粉末を得た。 前記金属ホウ化1−有ホウケイ酸ガラスAおよびBに、
萌記金lW的導電性物質L a B bを重量比で30
 : 70〜SO: 2Oの割合で混合した、この混合
粉体に有機結合剤の有WA溶媒の混合物を全重量で35
重量%加え、混練してペースト化した。有機結合剤と有
機忍媒の混合物は、有機結合剤としてのイソブチルメタ
クリレートと、有*i媒としてのテルピネオールとか重
量比で20二80になるものを用いた6 上記厚膜抵抗体ペーストを400メ・ソシュのステンレ
ススクリーンを用いて#Jth#lを持つアルミナ磁器
基板に40μmの膜厚に印刷し、このf& 120℃で
10分間乾燥させ、乾燥の後、雰囲気制御可能な厚膜焼
成炉で焼成した。焼成炉の焼成条件は、窒素雰囲気下て
、釣鐘型の温度プロファイルをもち、900℃で10分
間保持するもので、トータル焼成時開は60分であった
。 焼成後、抵抗体の抵抗値を直流2線法、印加電圧10V
’″C″測定した。1種類の抵抗ペーストにつき抵抗体
を50個作り、抵抗値の平均値と抵抗値のばらつき(C
V値)を求めた。CV値の計算式を(1)式に示し、抵
抗値とCV値の結果を第2表に示す。 (この頁以下余白) (1)式: %式%() : R1:試料の抵抗値(Ω7/口) ΣR1 R1,二抵抗値の平均値R,,= − 静電耐圧特性であるESDは、1000m秒ごとに電圧
tooovを5回印加し、試験前後の抵抗変化率を測定
した。計算式を(2)式に示し、測定結果を第2表に示
す。 (この頁以下余白) (2)式: (R−R1++) ESD=             X100(%) 
l n R1:試験前の抵抗値 R:試験後の抵抗値 測定結果を第2表に示す。 抵抗温度係数であるTCRは、厚膜抵抗体を一55〜2
5℃温度変化させ、直流2線式で電圧10v負荷し、そ
れぞれの温度の抵抗値を測定して計算しな、計算式(3
)式に示し、測定結果を第2表に示す。 (3)式: %式%) R−ラ、ニー55℃での抵抗値 R25:25℃での抵抗値 また、厚膜抵抗体をX線回折で定性分析した、X線回折
装置はタープ・Iトに銅を用い、40 K V150m
A印加した。、5膜抵抗体のXI1口折の結果を第2表
に示す。 なお、本実施例の粉末の粒径測定には比表面積計を用い
た6 金属ホウ化物含有ホウケイ酸ガラスを用いると、実施例
(ガラスAおよびB)に示されるように優れた静電耐圧
特性を示すことが分かる。    −[比較例2] 前記金属ホウ化物含有ホウケイ酸ガラスAに前記金属質
的導電性物質LaB6を重量比で95゜5の割合で混合
した他は、実施例2と同様に処理および測定を行った。 その結果を第2表に示す。 この場合には、静電耐圧特性が劣化することがわかる。 [比較例3] ガラスC,DおよびHについて、実施例2と同機に処理
すよび測定を行った その結果を第3表に示す。金属ホ
ウfヒ掬を201116より多く左qするホウケイ酸ガ
ラス(ガラスC)を用いると静電耐圧特性(ESD)か
劣化することかわかる。 また、金属ホウ化物をき存しないホウケイ酸ガラス(ガ
ラスD)を用いると静電耐圧特性(ESC)か不安定に
なることがわかる。更に、金属ホウ化物含有ホウケイ酸
ガラスを合成するときの温度が700℃のように低いガ
ラスHを用いると、静電耐圧特性(ESD)か劣化する
。 (二の頁以下余白) 第  1  表 金属ホウ化物含有ホウゲイ酸ガラス **表中□は測定不能 第 2 表 (実施ρ1) *・比較例 第 3 表 (比較例) ネオ表中−は測定不能 【発明の効果】 金属ホウ化物Z r B 2を含有する粉末状金属ホウ
化物含有ホウケイ酸ガラスと、金属、金属ホウ化物、金
属ケイ化物、金属窒化物から成る群から選ばれた粉末状
金属質的導電性物質と、有機結合剤および有機溶媒とか
ら構成される厚膜抵抗体組成物で電気特性に優れた厚膜
抵抗体を形成することが可能である。特に、ホウケイ酸
ガラスと金属ホウ化物Z r B 2を粉末で合成し、
非酸化性雰囲気下で800℃以上でホウケイ酸ガラスを
熔融して、金属ホウ化物含有ホウケイ酸ガラスを合成し
、金属質的導電性物質粉末と組み合わせて得られる厚膜
抵抗体組成物から作られた厚膜抵抗体は、抵抗値のばら
つきかが低く、静電耐圧特性などの電気特性に優れた厚
膜抵抗体を形成することが可能である。
[Example I U Practical Example IJ Metal boride 8i] Metal boride eJZrB2 was used as the metal boride mixed into the powder of borosilicate glass to produce borosilicate glass. In other words, commercially available Z
After coarsely pulverizing the r B powder, it was pulverized in ethanol using zirconia balls until the average particle size was 04 μm. Borogic acid glass powder contains Ba0 (18.5 mol%)
, CaO (5.0 mol%), MgO (6°5 mol%)
, B20S (45,5 mol%), 5i02 (2
(1.6 mol %) and An 203 (3.0 mol %), and the resulting borosilicate glass was mixed in ethanol using zirconia balls to obtain glass powder with an average particle size of 0.2 μm. The metal boride Zr is added to the borosinate glass powder.
1 to 20% by weight of B2 was added and mixed. These mixed powders were placed in a carbon crucible and heated to 900°C (A, B), 800°C (EF) or 7°C under a nitrogen atmosphere.
A metal boride-containing borosilicate glass was obtained by firing at 00'C (G, H) for 1 hour. This metal borated Vt-containing borosilicate glass was ground in ethanol using zirconia balls until the average particle size was 3.2 μm. Table 1 shows the amount of metal boride ZrB2 added to borosilicate glass, which is a precursor of metal boride-containing borosilicate glass. In Table 1, glasses A, B, E and G
It belongs to this embodiment. Metal boride-containing borosilicate glass powder with a diameter of 10 mm
, molded into a pellet shape with a height of 5 mm, and placed in a nitrogen atmosphere of 900 °C.
C. for 1 hour to obtain a pellet of metal boride-containing borosilicate glass. Electrodes were attached to this pellet using a silver epoxy resin, and the specific resistance of the pellet was measured using the Pauw method using a DC 4-wire system. The results are shown in Table 1. In addition, the metal boride-containing borosilicate glass was qualitatively analyzed by X-ray diffraction. The X-ray diffraction device uses copper as a target.
40KV and 150mA were applied. The X-ray diffraction results of the metal boride co-produced borosilicate glass are shown in Table 1. A specific surface area meter was used to measure the particle size of the powder in this example. [Comparative Example 1] The amount of metal boride ZrB2 was 0% by weight and 21% by weight
Table 1 shows the results of manufacturing and measuring the bound product in the same manner as in Example 1. In Table 1, Glass C and Glass D are the comparative examples. [Example 2] A thick film resistor was manufactured using the metal boride-containing borosilicate glass powder and the metallic conductive substance powder. L a B 6 was used as the metallic conductive substance. That is, after grinding commercially available L a B b with a die-tomill, it was pulverized in ethanol using zirconia balls.
It was ground to 4 μm to obtain powder of L a B 6. The metal boride 1-borosilicate glasses A and B,
The weight ratio of the conductive material L a B b is 30
: 70 to SO: A mixture of WA solvent with an organic binder was added to this mixed powder at a ratio of 20 to 35% by total weight.
% by weight was added and kneaded to form a paste. A mixture of an organic binder and an organic binder is a mixture of isobutyl methacrylate as an organic binder and terpineol as an active medium in a weight ratio of 20280.・Printed to a film thickness of 40 μm on an alumina porcelain substrate with #Jth#l using a Soshu stainless steel screen, dried this f& for 10 minutes at 120°C, and after drying, fired in a thick film firing furnace that can control the atmosphere. did. The firing conditions of the firing furnace were to have a bell-shaped temperature profile under a nitrogen atmosphere, hold the temperature at 900° C. for 10 minutes, and have a total firing time of 60 minutes. After firing, the resistance value of the resistor was measured using the DC two-wire method with an applied voltage of 10 V.
``C'' was measured. Fifty resistors were made for each type of resistor paste, and the average resistance value and variation in resistance value (C
V value) was determined. The formula for calculating the CV value is shown in equation (1), and the results of the resistance value and CV value are shown in Table 2. (Margins below this page) (1) Formula: % formula % () : R1: Resistance value of sample (Ω7/mouth) ΣR1 R1, average value of two resistance values R,, = − ESD, which is the electrostatic withstand voltage characteristic, is , a voltage tooov was applied five times every 1000 msec, and the rate of change in resistance before and after the test was measured. The calculation formula is shown in equation (2), and the measurement results are shown in Table 2. (Margin below this page) (2) Formula: (R-R1++) ESD = X100 (%)
l n R1: Resistance value before test R: Resistance value measurement results after test are shown in Table 2. TCR, which is the temperature coefficient of resistance, is 155 to 2 for thick film resistors.
Change the temperature by 5℃, apply a voltage of 10V using a DC 2-wire system, measure the resistance value at each temperature, and calculate.
) and the measurement results are shown in Table 2. (3) Formula: % Formula %) R-Ra, knee Resistance value at 55℃ R25: Resistance value at 25℃ In addition, the thick film resistor was qualitatively analyzed by X-ray diffraction. Using copper for I, 40K V150m
A was applied. Table 2 shows the results of XI1 analysis of the 5-film resistor. Note that a specific surface area meter was used to measure the particle size of the powder in this example. 6 When metal boride-containing borosilicate glass is used, excellent electrostatic pressure resistance properties are obtained as shown in Examples (glasses A and B). It can be seen that this shows that - [Comparative Example 2] The treatment and measurement were carried out in the same manner as in Example 2, except that the metallic conductive substance LaB6 was mixed with the metal boride-containing borosilicate glass A at a weight ratio of 95°5. Ta. The results are shown in Table 2. In this case, it can be seen that the electrostatic withstand voltage characteristics deteriorate. [Comparative Example 3] Glasses C, D and H were treated and measured using the same machine as in Example 2. The results are shown in Table 3. It can be seen that if borosilicate glass (Glass C), which has more metal porcelain than 201116, is used, the electrostatic withstand voltage characteristics (ESD) deteriorate. Furthermore, it can be seen that when borosilicate glass (glass D) that does not contain metal borides is used, the electrostatic breakdown voltage characteristics (ESC) become unstable. Furthermore, when glass H is used at a temperature as low as 700° C. when synthesizing metal boride-containing borosilicate glass, the electrostatic withstand voltage characteristics (ESD) deteriorate. (Leaving space on page 2) Table 1: Metal boride-containing borosilicate glass ** □ in the table cannot be measured Table 2 (Execution ρ1) * Comparative example Table 3 (Comparative example) - in the Neo table cannot be measured [Effect of the invention] Powdered metal boride-containing borosilicate glass containing metal boride Z r B 2 and powdered metal selected from the group consisting of metals, metal borides, metal silicides, and metal nitrides. It is possible to form a thick film resistor with excellent electrical properties using a thick film resistor composition composed of a conductive substance, an organic binder, and an organic solvent. In particular, borosilicate glass and metal boride Z r B 2 are synthesized in powder form,
A thick film resistor composition obtained by melting borosilicate glass at 800°C or higher in a non-oxidizing atmosphere to synthesize metal boride-containing borosilicate glass and combining it with metallic conductive material powder. The thick film resistor has low variation in resistance value, and it is possible to form a thick film resistor with excellent electrical characteristics such as electrostatic withstand voltage characteristics.

Claims (7)

【特許請求の範囲】[Claims] (1)金属ホウ化物ZrB_2を含有する粉末状金属ホ
ウ化物含有ホウケイ酸ガラスと、金属、金属ホウ化物、
金属ケイ化物、金属窒化物から成る群から選ばれた金属
質的導電性物質と、有機結合剤および有機溶媒とから構
成される厚膜抵抗体組成物。
(1) Powdered metal boride-containing borosilicate glass containing metal boride ZrB_2, metal, metal boride,
A thick film resistor composition comprising a metallic conductive material selected from the group consisting of metal silicides and metal nitrides, an organic binder, and an organic solvent.
(2)前記金属ホウ化物含有ホウケイ酸ガラスは、金属
ホウ化物ZrB_2とホウケイ酸ガラスとを非酸化性雰
囲気で焼成して得られたものである請求項第1項に記載
の厚膜抵抗体組成物。
(2) The thick film resistor composition according to claim 1, wherein the metal boride-containing borosilicate glass is obtained by firing metal boride ZrB_2 and borosilicate glass in a non-oxidizing atmosphere. thing.
(3)前記金属ホウ化物含有ホウケイ酸ガラスの前駆体
である前記ホウケイ酸ガラスに金属ホウ化物ZrB_2
を前記金属ホウ化物含有ホウケイ酸ガラスの1〜20重
量%混合する請求項第1項に記載の厚膜抵抗体組成物。
(3) A metal boride ZrB_2 is added to the borosilicate glass which is a precursor of the metal boride-containing borosilicate glass.
The thick film resistor composition according to claim 1, wherein 1 to 20% by weight of the metal boride-containing borosilicate glass is mixed.
(4)前記金属ホウ化物含有ホウケイ酸ガラスの前駆体
である前記ホウケイ酸ガラスが、SiO_2、B_2O
_3、アルカリ土類金属酸化物により構成される請求項
第1項に記載の厚膜抵抗体組成物。
(4) The borosilicate glass, which is a precursor of the metal boride-containing borosilicate glass, is composed of SiO_2, B_2O
_3. The thick film resistor composition according to claim 1, which is comprised of an alkaline earth metal oxide.
(5)前記金属ホウ化物含有ホウケイ酸ガラスと前記金
属質的導電性物質の重量比が、30:70〜80:20
であることを特徴とする請求項第1項に記載の厚膜抵抗
体組成物。
(5) The weight ratio of the metal boride-containing borosilicate glass and the metallic conductive substance is 30:70 to 80:20.
The thick film resistor composition according to claim 1, characterized in that:
(6)前記金属ホウ化物含有ホウケイ酸ガラスは、該ガ
ラスだけで作製した厚膜抵抗体の比抵抗が10^1^0
Ωcm以下を示すものである請求項第1項に記載の厚膜
抵抗体組成物。
(6) The metal boride-containing borosilicate glass has a specific resistance of 10^1^0 of a thick film resistor made only with the glass.
The thick film resistor composition according to claim 1, which exhibits a resistance of Ωcm or less.
(7)微細な金属ホウ化物ZrB_2と、ホウケイ酸ガ
ラスの粉末とを混合し、非酸化性雰囲気800℃以上で
ガラスを熔融し、急冷する厚膜抵抗体組成物用金属ホウ
化物含有ホウケイ酸ガラス粉末の製法。
(7) Metal boride-containing borosilicate glass for thick film resistor compositions by mixing fine metal boride ZrB_2 and borosilicate glass powder, melting the glass in a non-oxidizing atmosphere of 800°C or higher, and rapidly cooling it. Powder manufacturing method.
JP2329726A 1990-11-30 1990-11-30 Thick film resistor composition and manufacture thereof Pending JPH04206504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329726A JPH04206504A (en) 1990-11-30 1990-11-30 Thick film resistor composition and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329726A JPH04206504A (en) 1990-11-30 1990-11-30 Thick film resistor composition and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04206504A true JPH04206504A (en) 1992-07-28

Family

ID=18224591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329726A Pending JPH04206504A (en) 1990-11-30 1990-11-30 Thick film resistor composition and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04206504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923252B2 (en) 2016-09-29 2021-02-16 Kyocera Corporation Resistor, circuit board, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923252B2 (en) 2016-09-29 2021-02-16 Kyocera Corporation Resistor, circuit board, and electronic device

Similar Documents

Publication Publication Date Title
US3682840A (en) Electrical resistor containing lead ruthenate
EP0115798B1 (en) Stain-resistant ruthenium oxide-based resistors
JPS5931201B2 (en) resistance material
CN106104711B (en) Thick-film resistor body and its manufacturing method
EP1770721A2 (en) Resistor composition and thick film resistor
CN106104712B (en) Resistance composition
JPH0337281B2 (en)
CN115461825A (en) Thick film resistor paste, thick film resistor, and electronic component
US4076894A (en) Electrical circuit element comprising thick film resistor bonded to conductor
US3951672A (en) Glass frit containing lead ruthenate or lead iridate in relatively uniform dispersion and method to produce same
KR900004078B1 (en) Resistor compositions
JPS5923442B2 (en) resistance composition
JPH04206504A (en) Thick film resistor composition and manufacture thereof
JPS5931841B2 (en) Resistance materials and resistors made from them
TW299450B (en)
JPH05334911A (en) Platinum conductive paste for printing and manufacture thereof
US5518521A (en) Process of producing a low TCR surge resistor using a nickel chromium alloy
JPH04206502A (en) Thick film resistor composition and manufacture thereof
EP0186065B1 (en) Process for preparing a resister element
JPH04206501A (en) Thick film resistor composition and manufacture thereof
JPH04206503A (en) Thick film resistor composition and manufacture thereof
JP3246245B2 (en) Resistor
US3372058A (en) Electrical device, method and material
JPH04125901A (en) Composition for thick film resistor
JP2654824B2 (en) Resistance composition and method for producing thick film resistor