JP2654824B2 - Resistance composition and method for producing thick film resistor - Google Patents

Resistance composition and method for producing thick film resistor

Info

Publication number
JP2654824B2
JP2654824B2 JP1069300A JP6930089A JP2654824B2 JP 2654824 B2 JP2654824 B2 JP 2654824B2 JP 1069300 A JP1069300 A JP 1069300A JP 6930089 A JP6930089 A JP 6930089A JP 2654824 B2 JP2654824 B2 JP 2654824B2
Authority
JP
Japan
Prior art keywords
tantalum
resistance
powder
oxide
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1069300A
Other languages
Japanese (ja)
Other versions
JPH02249202A (en
Inventor
榮一 浅田
幹夫 山添
政行 浜田
久美子 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP1069300A priority Critical patent/JP2654824B2/en
Publication of JPH02249202A publication Critical patent/JPH02249202A/en
Application granted granted Critical
Publication of JP2654824B2 publication Critical patent/JP2654824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、窒素雰囲気等の不活性雰囲気中で焼成で
き、特に抵抗値の再現性及び抵抗温度特性、ノイズ(電
流雑音)等の電気特性の優れたタンタル系厚膜抵抗体を
製造する抵抗組成物と、これを用いた厚膜抵抗体の製造
方法に関する。
Description: TECHNICAL FIELD The present invention can be fired in an inert atmosphere such as a nitrogen atmosphere and has excellent electrical characteristics such as reproducibility of resistance value, resistance temperature characteristics, and noise (current noise). The present invention relates to a resistance composition for producing a tantalum-based thick film resistor and a method for producing a thick film resistor using the same.

従来の技術 厚膜抵抗体は、金属や金属酸化物等の金属化合物から
なる導電性粉末とガラス粉末とを有機ビヒクルに分散さ
せて塗料状又はペースト状とした組成物を、絶縁基板上
に所定のパターンで印刷した後焼成し、必要によりトリ
ミングを行って所定の抵抗値となるように製造される。
従来はルテニウム酸化物系が主流であったが、近年、不
活性雰囲気中で焼成でき、卑金属厚膜導体と適合する厚
膜抵抗体として、酸化スズ系やタンタル系抵抗が実用化
されている。このうちタンタル系では、金属タンタル、
窒化タンタル、硼化タンタルなどを導電成分とするもの
が知られており、例えば特開昭55−108702号に、タンタ
ル金属粒子とガラスフリットと、所望によりチタン、硼
素、酸化ジルコニウム、酸化タンタル、酸化チタン、酸
化バリウム、酸化タングステン、窒化タンタル、窒化チ
タン、珪化モリブデン、珪酸マグネシウム等の添加剤を
タンタル粒子の50重量%まで配合した抵抗組成物が開示
されている。又米国特許第3503801号には、硼化タンタ
ル(TaB2)などの金属硼化物粉末とガラスフリットから
なる抵抗組成物が開示されている。このようなタンタル
系抵抗は、10Ω/□〜10kΩ/□の範囲の低抵抗域から
中抵抗域用に有望な材料として期待されている。
2. Description of the Related Art Thick film resistors are prepared by dispersing a conductive powder composed of a metal compound such as a metal or a metal oxide and a glass powder in an organic vehicle into a paint or paste form on an insulating substrate. After printing in the pattern described above, firing is performed, and trimming is performed if necessary, so that a predetermined resistance value is obtained.
Conventionally, ruthenium oxide-based materials have been the mainstream, but in recent years, tin oxide-based and tantalum-based resistors have been put into practical use as thick film resistors that can be fired in an inert atmosphere and are compatible with base metal thick film conductors. Of these, in tantalum, metal tantalum,
It is known to use tantalum nitride, tantalum boride or the like as a conductive component. For example, JP-A-55-108702 discloses tantalum metal particles and glass frit, and titanium, boron, zirconium oxide, tantalum oxide, oxide A resistance composition is disclosed in which additives such as titanium, barium oxide, tungsten oxide, tantalum nitride, titanium nitride, molybdenum silicide, and magnesium silicate are blended up to 50% by weight of the tantalum particles. Also U.S. Patent No. 3503801, boride of tantalum (TaB 2) resistor composition comprising a metal boride powder and a glass frit, such as is disclosed. Such a tantalum-based resistor is expected as a promising material for a low to medium resistance region in the range of 10Ω / □ to 10kΩ / □.

発明が解決しようとする課題 ところが、タンタル金属粉末とガラス粉末からなる抵
抗組成物を焼成して得た抵抗体は、焼成条件の影響を強
く受けて特性が変動し易く、抵抗値の再現性やノイズ特
性が悪い上に、抵抗値に対応するTCRの変動が大きいと
いう問題がある。特に1kΩ/□を越える比較的高い抵抗
域では、抵抗値バラツキが異常に大きくなるほか、抵抗
温度係数が負に著しく大きくなって実用にならない。こ
れは、タンタル金属とガラスからなる組成物をN2雰囲気
中で焼成すると、タンタルのほかに酸化タンタルが生成
するが、その反応の起こりかたは焼成時間、焼成温度、
焼成雰囲気中の酸素濃度等により差があるため、焼成体
中の導電成分であるタンタルと、非導電成分である酸化
タンタルとの比率が変化し、その結果抵抗値のバラツキ
が大きくなり、他の特性も安定しないものと考えられ
る。
Problems to be Solved by the Invention However, a resistor obtained by firing a resistance composition composed of a tantalum metal powder and a glass powder is easily affected by firing conditions, and its characteristics are likely to fluctuate. In addition to the poor noise characteristics, there is a problem that the fluctuation of the TCR corresponding to the resistance value is large. In particular, in a relatively high resistance region exceeding 1 kΩ / □, the variation in the resistance value becomes abnormally large, and the temperature coefficient of resistance becomes extremely large negatively, which is not practical. This is because firing a composition consisting of tantalum metal and glass in an N 2 atmosphere produces tantalum oxide in addition to tantalum.How the reaction occurs depends on the firing time, firing temperature,
Since there is a difference depending on the oxygen concentration in the firing atmosphere, etc., the ratio of tantalum, which is a conductive component in the fired body, to tantalum oxide, which is a non-conductive component, changes. It is considered that the characteristics are not stable.

又硼化タンタル粉末とガラスを用いて製造された抵抗
体は、抵抗値バラツキは極端には悪くないが、焼成体が
より半導体的な挙動を示し、抵抗温度係数が許容できな
い大きな負の値を示す。更にタンタル硼化物は、微細な
粒子が得にくい欠点もあり、このため均一微細な導電粒
子ネットワークを有する抵抗被膜が得られず、TCRやノ
イズが悪くなる。
The resistance of the resistor manufactured using the tantalum boride powder and the glass is not extremely bad, but the fired body shows a more semiconductor-like behavior and the temperature coefficient of resistance has a large negative value that is unacceptable. Show. Further, tantalum boride has a disadvantage that it is difficult to obtain fine particles, so that a resistive coating having a uniform fine conductive particle network cannot be obtained, and TCR and noise deteriorate.

従って本発明の目的は、広い抵抗値範囲、ことに10Ω
/□〜100kΩ/□の範囲でプロセス感受性が低く、抵抗
値の再現性が良好で、抵抗温度係数、ノイズの小さい安
定な抵抗体を製造することにある。
Therefore, the object of the present invention is to provide a wide resistance value range, especially 10Ω.
An object of the present invention is to manufacture a stable resistor having low process sensitivity in the range of / □ to 100 kΩ / □, good reproducibility of resistance value, low temperature coefficient of resistance, and low noise.

課題を解決するための手段 本発明は、酸化タンタル粉末、硼素粉末、ガラス粉末
及び有機ビヒクルからなる抵抗組成物、及びこの抵抗組
成物を絶縁基板上に印刷し、不活性雰囲気中で焼成する
ことにより、酸化タンタルと硼素を反応させ、ガラスマ
トリックス中に導電粒子として硼化タンタルを析出させ
ることを特徴とする厚膜抵抗体の製造方法である。
Means for Solving the Problems The present invention provides a resistance composition comprising a tantalum oxide powder, a boron powder, a glass powder and an organic vehicle, and printing this resistance composition on an insulating substrate and firing in an inert atmosphere. And reacting boron with tantalum oxide to precipitate tantalum boride as conductive particles in a glass matrix.

酸化タンタル粉末及び硼素粉末は、平均粒径5μm以
下、望ましくは1μm以下のものが使用される。特に、
平均粒径0.1〜0.5μm程度のものが好ましい。
The tantalum oxide powder and the boron powder used have an average particle size of 5 μm or less, preferably 1 μm or less. Especially,
Those having an average particle size of about 0.1 to 0.5 μm are preferred.

ガラス粉末は、抵抗組成物に通常使用されるものであ
れば特に制限はない。例えば硼珪酸アルカリ土類金属ガ
ラス、硼珪酸アルカリ土類金属アルミニウムガラスなど
が代表的である。
The glass powder is not particularly limited as long as it is commonly used for the resistance composition. For example, borosilicate alkaline earth metal glass, borosilicate alkaline earth aluminum glass and the like are representative.

各成分の配合比率は、重量で酸化タンタル5〜60%、
硼素1〜20%、ガラス20〜94%程度が望ましい。酸化タ
ンタルが5%より少ないと、硼化タンタルを生成しても
量が少なく、TCR等の特性が悪化する。又60%より多い
と膜の強度が弱くなる。硼素量は1%より少ないと硼化
タンタルの生成量が少なすぎて良好な抵抗特性が得られ
ず、20%を越えるとやはり強度が低下する。
The mixing ratio of each component is 5 to 60% by weight of tantalum oxide,
Desirably, boron is about 1 to 20% and glass is about 20 to 94%. When the content of tantalum oxide is less than 5%, even if tantalum boride is produced, the amount is small and properties such as TCR deteriorate. If it is more than 60%, the strength of the film becomes weak. If the amount of boron is less than 1%, the amount of tantalum boride produced is too small to obtain good resistance characteristics, and if it exceeds 20%, the strength also decreases.

本発明の抵抗組成物には、更に抵抗値や抵抗温度特性
その他の特性を調整するため、添加剤を30重量%程度ま
で配合することができる。添加剤としては、例えば一般
的に知られている珪素、モリブデン、タングステン、チ
タン、タンタル、酸化珪素、酸化ジルコニウム、酸化亜
鉛、酸化ニッケル、酸化コバルト、酸化バナジウム、酸
化チタン、酸化バリウム、酸化タングステン、珪化モリ
ブデン、窒化タンタル、窒化チタン、珪酸マグネシウム
などのほか、タンタル酸バリウム、タンタル酸コバル
ト、タンタル酸ガリウム、タンタル酸インジウム等のタ
ンタル酸塩があげられる。
In order to further adjust the resistance value, the resistance temperature characteristic, and other characteristics, an additive can be added to the resistance composition of the present invention up to about 30% by weight. As the additive, for example, generally known silicon, molybdenum, tungsten, titanium, tantalum, silicon oxide, zirconium oxide, zinc oxide, nickel oxide, cobalt oxide, vanadium oxide, titanium oxide, barium oxide, tungsten oxide, In addition to molybdenum silicide, tantalum nitride, titanium nitride, magnesium silicate, and the like, tantalate salts such as barium tantalate, cobalt tantalate, gallium tantalate, and indium tantalate can be given.

本発明の抵抗組成物は、N2雰囲気などの不活性雰囲気
中、通常の焼成条件で焼成され、ガラスマトリックス中
に分散した硼化タンタルを導電成分とする抵抗体が形成
される。
The resistor composition of the present invention is fired under an ordinary firing condition in an inert atmosphere such as an N 2 atmosphere to form a resistor having tantalum boride dispersed in a glass matrix as a conductive component.

作用 本発明は、酸化タンタル粉末と硼素粉末を出発原料と
し、焼成中に両者を反応させ、導電粒子として硼化タン
タルのみを析出させることを特徴とするものである。
The present invention is characterized in that tantalum oxide powder and boron powder are used as starting materials, and that they are reacted during firing to deposit only tantalum boride as conductive particles.

酸化タンタル粉末、硼素粉末及びガラスからなる組成
物を不活性雰囲気中で焼成すると、硼化タンタル導電相
結晶のX線回折ピークを示す。この硼化タンタルは、化
学式TaB2で表わされる侵入型化合物であり、酸化タンタ
ルと硼素の反応により生じた唯一の導電成分である。硼
化タンタルは比抵抗が約100×10-5Ω・cmと、タンタル
金属の約12×10-6Ω・cmに比べて高く、従来のタンタル
金属粉末とガラス粉末からなる組成物を焼成して得た抵
抗体に比べて、同程度の抵抗値では導電粒子のボリュー
ムが多くなるため、抵抗特性の安定性が格段に向上す
る。従ってこのようなプロセスで製造される抵抗体は、
焼成雰囲気等の変化による特性の変動が小さくなり、抵
抗値のバラツキが減少して、再現性が大幅に改善される
と考えられる。更に抵抗体中に形成される硼化タンタル
導電粒子ネットワークも安定し、ノイズやTCR特性が改
善される。
When the composition comprising the tantalum oxide powder, the boron powder and the glass is fired in an inert atmosphere, the x-ray diffraction peak of the tantalum boride conductive phase crystal is shown. This tantalum boride is an interstitial compound represented by the chemical formula TaB 2 and is the only conductive component generated by the reaction between tantalum oxide and boron. Tantalum boride has a specific resistance of about 100 × 10 −5 Ω · cm, which is higher than that of tantalum metal of about 12 × 10 −6 Ω · cm, and sinters a composition consisting of conventional tantalum metal powder and glass powder. As compared with the resistor obtained in this way, the volume of the conductive particles is increased at the same resistance value, so that the stability of the resistance characteristics is remarkably improved. Therefore, the resistor manufactured by such a process is
It is considered that fluctuations in characteristics due to changes in the firing atmosphere and the like are reduced, and variations in resistance values are reduced, so that reproducibility is greatly improved. Further, the tantalum boride conductive particle network formed in the resistor is stabilized, and noise and TCR characteristics are improved.

又本発明は焼成中に、出発物質として用いた酸化タン
タル粒子及び硼素粒子の粒度にほぼ対応する微細な硼化
タンタル粒子を生成し、しかもこれがガラス中に非常に
均一に分散するので、初めから硼化タンタル粉末を使用
した場合と異なり、抵抗値分布、TCR、ノイズがはるか
に優れたものになる。
In addition, the present invention produces fine tantalum boride particles corresponding to the particle size of the tantalum oxide particles and boron particles used as the starting materials during firing, and these are dispersed very uniformly in the glass, so that from the beginning, Unlike the case where tantalum boride powder is used, the resistance distribution, TCR and noise are much better.

これらの結果として、低抵抗域は勿論、これまで実用
にならなかった1k〜100kΩ/□の比較的高い抵抗域にお
いても、特性の優れた抵抗体を製造することが可能とな
った。
As a result, it is possible to manufacture a resistor having excellent characteristics not only in a low resistance region but also in a relatively high resistance region of 1 k to 100 kΩ / □ which has not been practically used until now.

尚、酸化タンタルや硼素は、すべてが反応して硼化タ
ンタルとならなくても何ら差支えない。これは、前述の
ように導電成分である硼化タンタルはタンタルに比べて
比抵抗がはるかに高いので、非導電成分である酸化タン
タルが存在しても抵抗値にほどんど影響がないからであ
る。従って過剰量の酸化タンタルを使用しても、弊害は
ない。又過剰の硼素は焼成中酸化されて、最終的にガラ
スとともに抵抗体のマトリックスを形成する。
It is to be noted that tantalum oxide and boron do not have to be completely reacted to form tantalum boride. This is because, as described above, the specific resistance of tantalum boride, which is a conductive component, is much higher than that of tantalum, so that the presence of tantalum oxide, which is a nonconductive component, has little effect on the resistance value. . Therefore, there is no adverse effect even if an excessive amount of tantalum oxide is used. Excess boron is also oxidized during firing, eventually forming a matrix of resistors with the glass.

実施例 表1に実施例で使用したガラスの組成を示す。Examples Table 1 shows the compositions of the glasses used in the examples.

実施例1 酸化タンタル粉末40重量部と、アモルファス硼素粉末
6重量部と、ガラスA粉末54重量部を混合し、有機ビヒ
クルとしてエチルセルロース1重量部と2,2,4−トリメ
チル−1,3−ペンタンジオールモノイソブチレート30重
量部を添加し、混練して抵抗ペーストを作製した。
Example 1 40 parts by weight of tantalum oxide powder, 6 parts by weight of amorphous boron powder, and 54 parts by weight of glass A powder were mixed, and 1 part by weight of ethyl cellulose and 2,2,4-trimethyl-1,3-pentane were used as an organic vehicle. 30 parts by weight of diol monoisobutyrate was added and kneaded to prepare a resistance paste.

この抵抗ペーストを、予め銅厚膜電極が焼付けされた
アルミナ基板上に、1mm×1mmの正方形パターンに印刷
し、空気中150℃で10分間乾燥した後、N2雰囲気中最高
温度900℃10分間保持、60分サイクルの条件で焼成し
た。得られた抵抗体のシート抵抗値及び抵抗値のバラツ
キ(CV)はそれぞれ107Ω/□、2.9%であり、TCRは高
温側(H−TCR、+25℃〜+125℃)で+65ppm/℃、低温
側(C−TCR、−55〜+25℃)で+93ppm/℃であった。
又ノイズも−25dBと、優れたものであった。尚、CVは抵
抗体80個についての値である。
This resistive paste was printed on an alumina substrate on which a copper thick film electrode was previously baked in a 1 mm × 1 mm square pattern, dried in air at 150 ° C. for 10 minutes, and then heated to a maximum temperature of 900 ° C. in N 2 atmosphere for 10 minutes. The firing was performed under the conditions of a holding and 60-minute cycle. The sheet resistance and resistance variation (CV) of the obtained resistor are 107Ω / □ and 2.9%, respectively. TCR is + 65ppm / ° C on the high temperature side (H-TCR, + 25 ° C to + 125 ° C), and low temperature side. (C-TCR, -55 to + 25 ° C) was +93 ppm / ° C.
The noise was also excellent at -25 dB. CV is a value for 80 resistors.

尚、焼成体をX線回折計で調べたところ、硼化タンタ
ル(TaB2)のピークが検出された。
When the fired body was examined with an X-ray diffractometer, a peak of tantalum boride (TaB 2 ) was detected.

実施例2〜8 酸化タンタル粉末、アモルファス硼素粉末及びガラス
粉末を表2に示す比率で混合し、それぞれ実施例1と同
様にして抵抗ペーストを作製した。
Examples 2 to 8 Tantalum oxide powder, amorphous boron powder and glass powder were mixed at the ratios shown in Table 2, and resistance pastes were produced in the same manner as in Example 1.

この抵抗ペーストを、実施例1と同様にアルミナ基板
上に焼付けして得られた抵抗体の抵抗値、抵抗値のバラ
ツキ(CV)、TCR及びノイズを調べ、表2に示した。
The resistance value, resistance value variation (CV), TCR, and noise of a resistor obtained by baking this resistance paste on an alumina substrate in the same manner as in Example 1 were examined.

比較例1 金属タンタル粉末40重量部とガラスA粉末60重量部を
混合し、実施例1と同様にして抵抗ペーストを作製し
た。
Comparative Example 1 40 parts by weight of metal tantalum powder and 60 parts by weight of glass A powder were mixed to prepare a resistance paste in the same manner as in Example 1.

この抵抗ペーストを、実施例1と同様にアルミナ基板
上に焼付けして得られた抵抗体の抵抗値、H−TCR、C
−TCRはそれぞれ500Ω/□、+35ppm/℃、+38ppm/℃で
あったが、CVは10.6%でバラツキが大きく、又ノイズも
−3dBと、同程度の抵抗値を有する実施例2の−17dBや
実施例6の−15dBと比較して、非常に悪かった。
The resistance value of the resistor obtained by baking this resistor paste on an alumina substrate in the same manner as in Example 1, H-TCR, C
Although -TCR was 500Ω / □, + 35ppm / ° C, and + 38ppm / ° C, respectively, the CV was large at 10.6%, and the noise was -3dB. Compared to −15 dB in the sixth embodiment, it was very bad.

比較例2〜3 タンタル粉末とガラスA粉末を表3に示す比率で混合
し、それぞれ実施例1と同様にして抵抗ペーストを作製
した。
Comparative Examples 2-3 Tantalum powder and glass A powder were mixed at the ratio shown in Table 3, and resistance pastes were prepared in the same manner as in Example 1.

この抵抗ペーストを、実施例1と同様にアルミナ基板
上に焼付けして得られた抵抗体の抵抗値、CV、TCR及び
ノイズを調べ、表3に示した。
The resistance value, CV, TCR and noise of the resistor obtained by baking this resistor paste on an alumina substrate in the same manner as in Example 1 were examined.

表3より明らかなように、いずれも実施例の値と比べ
てCV、ノイズ特性が極めて悪く、又TCRが著しく負に大
きい。
As is evident from Table 3, the CV and noise characteristics are extremely poor and the TCR is extremely negative as compared with the values of the examples.

比較例4 硼化タンタル粉末50重量部とガラスA粉末50重量部と
を混合し、同様にして抵抗ペーストを作製した。表3に
アルミナ基板上に焼付けして得られた抵抗体の特性を示
したが、TCR、ノイズが極めて大きく、実用には全く耐
えないものであった。
Comparative Example 4 50 parts by weight of tantalum boride powder and 50 parts by weight of glass A powder were mixed to prepare a resistance paste in the same manner. Table 3 shows the characteristics of the resistor obtained by baking on an alumina substrate. The resistor had extremely large TCR and noise and was not practically usable.

発明の効果 本発明は、特定の比率の酸化タンタル金属粉末と硼素
粉末の混合物を出発原料とし、焼成中に両者を反応させ
て硼化タンタル導電相を生成させることにより、導電粒
子としてタンタル金属や硼化タンタルをそれぞれ単独で
用いた抵抗組成物に比較して、広い抵抗値範囲で電気特
性の格段に優れた厚膜抵抗体を、再現性良く製造するこ
とができるものである。
Effect of the Invention The present invention uses a mixture of a specific ratio of tantalum metal oxide powder and boron powder as a starting material, and reacts them during firing to form a tantalum boride conductive phase, thereby providing tantalum metal or conductive particles as conductive particles. As compared with a resistance composition using tantalum boride alone, a thick-film resistor excellent in electrical characteristics in a wide range of resistance values can be produced with good reproducibility.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化タンタル粉末、硼素粉末、ガラス粉末
及び有機ビヒクルからなる抵抗組成物。
1. A resistance composition comprising a tantalum oxide powder, a boron powder, a glass powder and an organic vehicle.
【請求項2】請求項1に記載された抵抗組成物を絶縁基
板上に印刷し、不活性雰囲気中で焼成することにより、
酸化タンタルと硼素を反応させ、ガラスマトリックス中
に導電粒子として硼化タンタルを析出させることを特徴
とする厚膜抵抗体の製造方法。
2. The method according to claim 1, wherein the resist composition is printed on an insulating substrate and fired in an inert atmosphere.
A method for producing a thick film resistor, comprising reacting tantalum oxide with boron to precipitate tantalum boride as conductive particles in a glass matrix.
JP1069300A 1989-03-23 1989-03-23 Resistance composition and method for producing thick film resistor Expired - Lifetime JP2654824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069300A JP2654824B2 (en) 1989-03-23 1989-03-23 Resistance composition and method for producing thick film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069300A JP2654824B2 (en) 1989-03-23 1989-03-23 Resistance composition and method for producing thick film resistor

Publications (2)

Publication Number Publication Date
JPH02249202A JPH02249202A (en) 1990-10-05
JP2654824B2 true JP2654824B2 (en) 1997-09-17

Family

ID=13398582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069300A Expired - Lifetime JP2654824B2 (en) 1989-03-23 1989-03-23 Resistance composition and method for producing thick film resistor

Country Status (1)

Country Link
JP (1) JP2654824B2 (en)

Also Published As

Publication number Publication date
JPH02249202A (en) 1990-10-05

Similar Documents

Publication Publication Date Title
KR930001968B1 (en) Thermistor compositions
IE53688B1 (en) Thick film resistor compositions
JPH08253342A (en) Thick film paste composition containing no cadmium and lead
JPH06653B2 (en) Method for producing pyrochlore compound containing tin oxide
IE48930B1 (en) A thick film resistor comprising a temperature coefficient of resistance modifier
US4539223A (en) Thick film resistor compositions
JPH02249203A (en) Resistance material and resistance paste
JP2654824B2 (en) Resistance composition and method for producing thick film resistor
JP2802770B2 (en) Resistance composition
EP0201362B1 (en) Base metal resistive paints
US4698265A (en) Base metal resistor
JP3246245B2 (en) Resistor
JP2827902B2 (en) Resistance paste
JP2531980B2 (en) Conductive composite powder and resistance composition using the powder
JPH07249507A (en) Composition for resistor and semifixed resistor using it
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
JP2644017B2 (en) Resistance paste
JP2937072B2 (en) Resistance material composition, resistance paste and resistor
JPH0654726B2 (en) Thick film resistor forming composition
JP2001236825A (en) Electricity resistance paste composition
JPH04125901A (en) Composition for thick film resistor
JPH02212333A (en) Composition for producing resistor
JPH07109808B2 (en) Method for producing conductive composite powder and resistance composition using the powder
JPH04206504A (en) Thick film resistor composition and manufacture thereof
JPH0661005A (en) Composition for forming thick film resistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term