JPH01295116A - Correcting method for variation in reflected light quantity of linear encoder - Google Patents

Correcting method for variation in reflected light quantity of linear encoder

Info

Publication number
JPH01295116A
JPH01295116A JP32781787A JP32781787A JPH01295116A JP H01295116 A JPH01295116 A JP H01295116A JP 32781787 A JP32781787 A JP 32781787A JP 32781787 A JP32781787 A JP 32781787A JP H01295116 A JPH01295116 A JP H01295116A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
reflected
diffracted
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32781787A
Other languages
Japanese (ja)
Other versions
JP2582272B2 (en
Inventor
Yojiro Iwamoto
岩本 洋次郎
Nobuyuki Osawa
信之 大澤
Takao Inaba
高男 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP62327817A priority Critical patent/JP2582272B2/en
Publication of JPH01295116A publication Critical patent/JPH01295116A/en
Application granted granted Critical
Publication of JP2582272B2 publication Critical patent/JP2582272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To prevent an output signal from varying even if the thickness of a grating scale and the distance to a reflecting surface vary by irradiating the surface of a diffraction grating which crosses a moving direction at right angles with luminous flux generated by diverging coherent light split by a beam splitter. CONSTITUTION:The laser light from a laser light source 22 is diverged by a lens 21 and split into two by the beam splitter 20. Its reflected light and straight traveling light are reflected by reflecting mirrors 24a and 24b to get pieces 34 and 35 of diverged luminous flux, the diffraction grating 23 on a glass substrate 25 is illuminated by said luminous flux. The pieces 34 and 35 of luminous flux are diffracted, reflected by the reflecting surface 26 of the glass plate 25, and diffracted at the same position of the diffraction grating 23 to get parallel light through a convex lens 27 then circular polarized light through a wavelength plate 28. This circular polarized light goes to straight traveling light and reflected light through a beam splitter 29 and they pass through polarizing plates 30 and 32 and are converted 31 and 33 photoelectrically. The polarizing plates 30 and 32 make the mutual diffracted light beams interfere with each other and the moving direction of the diffraction grating 23 is discriminated to generate a phase difference required for signal processing. Consequently, even if the distance between the surface of the diffraction grating and reflecting surface varies, the output signal is prevented from varying.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は格子スケールの厚さや回折格子と反射系の開の
距離変化に起因するフーリエ・イメージの影響が排除で
きるようにしたリニアエンコーダにおける反射光量変動
の補正方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a reflection method in a linear encoder that can eliminate the influence of Fourier images caused by changes in the thickness of the grating scale or the distance between the diffraction grating and the reflection system. This invention relates to a method of correcting light intensity fluctuations.

[従来の技術] 従来のリニアエンコーダとして、例えば特開昭60−1
90812があり、第8図に示すように構成されている
[Prior art] For example, as a conventional linear encoder,
90812, and is configured as shown in FIG.

第8図において、1は光源、2はコリメーターレンズ、
3は回折格子で被検物体に取り付けられている。4及び
4′はm次の正負の回折光、7はビームスプリッタ−1
8及び8′は偏光方位が互いに45°になるように設け
た偏光板である。ビームスプリッタ−7の出力光路に直
交させて配設された回折格子3より所定角度で反射回折
した光4及び4′の光路に対し6及び6′の偏光板が配
設される(偏光方位が互いに直交するように配設される
)。10及び10′はコーナーキューブであり、偏光板
6.6′よりの回折光4.4′が同一光路に戻されるよ
うに反射する。以上の構成において、光源1から出射し
た光は、コリメーターレンズ2によって平行光束となり
、回折格子3で反射回折される。反射回折された光4及
び4′は、偏光板6及び6′を透過してコーナーキュー
ブ10及び10′で反射され、回折格子3を再照射する
。そして、再び回折格子3によって回折されて重なり合
い、ビームスプリッタ−7により分割される。分割され
た光はそれぞれ偏光板8及び8′を透過して光検出器9
及び9′に入射する。偏光板8及び8′で重なり合った
回折光は干渉し、回折格子3の移動に伴なって明暗の変
化を生じる。
In Fig. 8, 1 is a light source, 2 is a collimator lens,
3 is a diffraction grating attached to the object to be measured. 4 and 4' are m-order positive and negative diffracted lights, 7 is beam splitter 1
8 and 8' are polarizing plates provided so that the polarization directions are at 45 degrees to each other. Polarizing plates 6 and 6' are arranged for the optical paths of the lights 4 and 4' which are reflected and diffracted at a predetermined angle by the diffraction grating 3 arranged orthogonally to the output optical path of the beam splitter 7 (the polarization direction is (arranged perpendicularly to each other). Corner cubes 10 and 10' reflect the diffracted light 4.4' from the polarizing plate 6.6' so that it is returned to the same optical path. In the above configuration, the light emitted from the light source 1 becomes a parallel beam of light by the collimator lens 2, and is reflected and diffracted by the diffraction grating 3. The reflected and diffracted lights 4 and 4' pass through the polarizing plates 6 and 6', are reflected by the corner cubes 10 and 10', and reirradiate the diffraction grating 3. Then, the beams are diffracted again by the diffraction grating 3, overlap each other, and are split by the beam splitter 7. The divided lights pass through polarizing plates 8 and 8', respectively, and are sent to a photodetector 9.
and 9'. The overlapping diffracted lights by the polarizing plates 8 and 8' interfere with each other, causing changes in brightness and darkness as the diffraction grating 3 moves.

又、偏光板6.6′及び8.8′の組み合わせにより、
光検出器9及び9′の出力信号間に90゜の位相差をも
たらし、回折格子3の移動方向を弁別できる。
Also, by the combination of polarizing plates 6.6' and 8.8',
A phase difference of 90° is provided between the output signals of the photodetectors 9 and 9', and the direction of movement of the diffraction grating 3 can be discriminated.

[発明が解決しようとする問題点] しかし上記構成のリニアエンコーダにあっては、可干渉
光が平行光束で回折格子に斜めに入射するために第3図
に示すように、回折格子の7−リエ・イメージは、R−
P2/λ(λ:光源波長、P:格子定数)のピッチRで
生じる(即ち、格子と同一な像がピッチRで存在する 
)。一方、入射から出射点までの距離が変わると出力振
幅の大きさは第4図に示すようにピッチRに応じて変化
する。tjS3図において、回折格子23がら反射系2
4までの距離が変化すると、その距離変化は光の入射が
斜めなため、入射部回折格子と出射部回折格子が相対的
に逆方向に移動するのと同一の状態が生じ、第4図の曲
線に沿って明暗の信号が生じ、反射光量に変動を生じさ
せる。
[Problems to be Solved by the Invention] However, in the linear encoder having the above configuration, since the coherent light is parallel and obliquely enters the diffraction grating, as shown in FIG. Rie image is R-
occurs at a pitch R of P2/λ (λ: light source wavelength, P: grating constant) (i.e., an image identical to the grating exists at a pitch R
). On the other hand, when the distance from the input point to the output point changes, the magnitude of the output amplitude changes according to the pitch R as shown in FIG. In the tjS3 diagram, the reflection system 2 from the diffraction grating 23
When the distance to 4 changes, since the incident light is oblique, the same situation occurs as the entrance diffraction grating and the exit diffraction grating relatively move in opposite directions, as shown in Figure 4. Bright and dark signals are generated along the curve, causing variations in the amount of reflected light.

従来、この変動を防ぐため、第5図のように、回折格子
23と反射光とが垂直を保つように位置決めすると共に
、反射板に代えてコーナーキューブ、キャッツアイ等の
光学系36を用いていた。
Conventionally, in order to prevent this fluctuation, as shown in FIG. 5, the diffraction grating 23 and the reflected light are positioned so that they are perpendicular to each other, and an optical system 36 such as a corner cube or cat's eye is used instead of a reflector. Ta.

しかし、かがる方法では回折光の方向を格子面に垂直な
方向にしか選ぶことができないと共に、キャッツアイ等
を用いるために装置が高価になるという不具合がある。
However, in the darning method, the direction of the diffracted light can only be selected perpendicular to the lattice plane, and the apparatus is expensive because it uses a cat's eye or the like.

本発明は、上記従来技術の実情に鑑みてなされたもので
、7−リエ・イメージの影響を排除すると共に照射光の
回折角が回折格子に対して垂直にならない入射角でも使
用が可能なようにしたリニアエンコーダにおける反射光
量変動の補正方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned state of the prior art, and it eliminates the influence of the 7-lier image and allows use even at an incident angle where the diffraction angle of the irradiated light is not perpendicular to the diffraction grating. The present invention aims to provide a method for correcting variations in the amount of reflected light in a linear encoder.

[問題点を解決するための手段] 上記目的を達成するために本発明は、移動方向に直交さ
せて格子を移動物体の表面に所定間隔に形成して構成さ
れる回折格子と、可干渉光を2方向に分割し、その可干
渉光の各々を前記回折格子の表面の同一位置に重ねて干
渉させる光照射手段と、該手段による照射光が前記回折
格子による回折を受けて出射する干渉光を平行光にする
集光用レンズと、該レンズの出力光に基づく干渉光を光
電変換する光検出手段とを具備するリニアエンコーダに
おいて、前記光照射手段による照射光が平行光束ではな
い状態で前記回折格子の表面に照射するようにしたもの
である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a diffraction grating formed by forming gratings at predetermined intervals on the surface of a moving object perpendicular to the moving direction, and a coherent light beam. light irradiation means that divides the light into two directions and causes each of the coherent lights to overlap and interfere at the same position on the surface of the diffraction grating; and interference light that the light irradiated by the means is diffracted by the diffraction grating and emitted. In the linear encoder, the linear encoder includes a condensing lens that converts the light into parallel light, and a light detection means that photoelectrically converts interference light based on the output light of the lens, when the light irradiated by the light irradiation means is not a parallel light flux. It is designed to irradiate the surface of the diffraction grating.

[作用] 回折格子に対する入射光を平行光束としででは無く、紋
られた光束の状態あるいは発散した光束の状態で与える
ことにより、回折格子の7−リエ・イメージのピッチと
回折格子のビ・ンチとを不一致にし、出力信号の変動を
生じさせることが無ν・。
[Operation] By giving the incident light to the diffraction grating not as a parallel beam but in the form of a patterned beam or a diverging beam, the pitch of the 7-lie image of the diffraction grating and the beam angle of the diffraction grating can be changed. There is no possibility of causing a mismatch with the output signal and causing fluctuations in the output signal.

[実施例] 本発明は出力信号の変動が回折格子に対し入射光が平行
光束で与えられる場合に生ずる点に注目し、入射光が紋
られた光束あるいは発散した光束になるようにしたもの
である。以下、本発明の一実施例を入射光が発散した光
束の場合について、図面に基づいて説明する。第1図に
示すように、光の偏光方向によって透過光と反射光に入
射光を分割する偏光ビームスプリッタ20に対し、透過
光の光路線に一致させてレンズ系21及び該レンズ系2
1にレーザ光を照射する光源としてのレーザダイオード
22が配設されでいる。偏光ビームスプリッタ20より
出力されるレーザー光の各々を回折格子23の表面の同
一位置に反射させるために反射ミラー24a、241〕
が、偏光ビームスプリッタ−20に対し対称的に配設さ
れでいる。回折格子23はガラス基盤25の片面に形成
され、このガラス基板25の他面に回折格子23側より
一〇− の回折光を回折格子23側へ反射させる反射板26が設
けられている。反射板26からの光は、さらに回折格子
23で回折ののち垂直方向に出射するが、その先路内に
凸レンズ27が配設され、さらに波長板28及びビーム
スプリッタ−29が順次配設されている。 ビームスプ
リッタ−29の直進光路上には、偏光板30及び光検出
器31が順次配設され、さらにビームスプリ・/ター2
9の反射光路上には同様に偏光板32及び光検出器33
が順次配設されでいる。次に、以上の構成における動作
について説明する。
[Embodiment] The present invention focuses on the fact that fluctuations in the output signal occur when incident light is applied to a diffraction grating in the form of a parallel beam, and the present invention is designed so that the incident light becomes a shaped beam or a diverging beam. be. DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings in the case where the incident light is a divergent luminous flux. As shown in FIG. 1, for a polarizing beam splitter 20 that splits incident light into transmitted light and reflected light according to the polarization direction of the light, a lens system 21 and a lens system 2
A laser diode 22 is provided as a light source for irradiating laser light to the laser diode 1 . Reflection mirrors 24a, 241 to reflect each of the laser beams output from the polarizing beam splitter 20 to the same position on the surface of the diffraction grating 23]
are arranged symmetrically with respect to the polarizing beam splitter 20. The diffraction grating 23 is formed on one side of a glass substrate 25, and a reflection plate 26 is provided on the other side of the glass substrate 25 to reflect the 10 - diffracted light from the diffraction grating 23 side to the diffraction grating 23 side. The light from the reflection plate 26 is further diffracted by the diffraction grating 23 and then emitted in the vertical direction, but a convex lens 27 is disposed in its forward path, and a wavelength plate 28 and a beam splitter 29 are further disposed in this order. There is. A polarizing plate 30 and a photodetector 31 are sequentially arranged on the straight optical path of the beam splitter 29, and the beam splitter/ter 29
Similarly, a polarizing plate 32 and a photodetector 33 are placed on the reflected optical path of 9.
are arranged in sequence. Next, the operation in the above configuration will be explained.

レーザーダイオード22によって発生したレーザー光は
、レンズ系21によって26の反射ミラーで反射した後
、23の回折格子上で十分に発散するよう調節されたの
ち、偏光ビームスプリッタ−20に入射する。
The laser beam generated by the laser diode 22 is reflected by a reflecting mirror 26 by a lens system 21, and is adjusted to be sufficiently divergent on a diffraction grating 23, and then enters a polarizing beam splitter 20.

ビームスプリンター20によってP成分とS成分に分光
された光は、反射ミラー24a及び24.bの各々に出
射される。これら反射ミラー 24a及び 24.bに
よる反射光34及び35は回折格子23に対し、定めら
れた角度で入射するように設定されている。ナなわち、
回折格子23に対する入射角αは(1)式又は(2)式
で求められる。
The light separated by the beam splinter 20 into a P component and an S component is reflected by reflection mirrors 24a and 24. It is emitted to each of b. These reflecting mirrors 24a and 24. The reflected lights 34 and 35 from b are set to be incident on the diffraction grating 23 at a predetermined angle. Well,
The angle of incidence α with respect to the diffraction grating 23 is determined by equation (1) or equation (2).

Sin β =Sin α −nλ /P ・・・ ・
・・ (1)Sinγ=Sinα−2n^/P・・・・
・・(2)(なお、γは出射角、nは回折次数、Pは格
子定数、入はレーザー光波長、βは回折角である。)第
2図に示すように、回折格子23に入る反射光34は、
ガラス基板251こ入射するときと、反射板26で反射
してガラス基板25を抜け、再度回折格子23を通過す
るときとで2回の回折を受け、発散しながら出射する。
Sin β = Sin α −nλ /P ・・・・
... (1) Sinγ=Sinα-2n^/P...
...(2) (In addition, γ is the output angle, n is the diffraction order, P is the lattice constant, input is the laser beam wavelength, and β is the diffraction angle.) As shown in FIG. 2, the light enters the diffraction grating 23. The reflected light 34 is
The light is diffracted twice: when it enters the glass substrate 251, and when it is reflected by the reflection plate 26, passes through the glass substrate 25, and passes through the diffraction grating 23 again, and is emitted while diverging.

出射したレーザー光は凸レンズ271゛よって平行光に
され、さらに波長板28(例えばλ/4波長板)によっ
て円偏光にされる。この時、凸レンズ27はその焦点が
レンズ系21の焦点と一致するように配置されている。
The emitted laser beam is made into parallel light by a convex lens 271, and further made into circularly polarized light by a wavelength plate 28 (for example, a λ/4 wavelength plate). At this time, the convex lens 27 is arranged so that its focal point coincides with the focal point of the lens system 21.

この円偏光になった回折光はビームスプリッタ−29で
通過光と反射光に分けられる。通過光は偏光板30を介
して光検出器31に到達し、反射光は偏光板32を介し
て光検出器33に到達し、各々光電変換される。偏光板
30及び32は相互の回折光を干渉させ回折格子23の
移動方向の弁別及び信号処理に必要な位相差(例えば9
0度)をつける働きをする。
This circularly polarized diffracted light is split by a beam splitter 29 into passing light and reflected light. The transmitted light reaches the photodetector 31 via the polarizing plate 30, and the reflected light reaches the photodetector 33 via the polarizing plate 32, and is photoelectrically converted. The polarizing plates 30 and 32 interfere with each other's diffracted lights to create a phase difference (for example, 9
0 degrees).

第1図に示すレンズ系21は回折格子23への入射光が
発散した光束になるようにし、7−リエ・イメージが回
折格子面で拡大されるようにしてる。これによって回折
格子23と回折格子23の7−リエ・イメージのピッチ
とが全く異なるものとなり、相互に作用することは無い
。したがって、格子面と反射板 26 との間の距離が
変化しても、出力信号に変動を生じさせることが無い。
The lens system 21 shown in FIG. 1 causes the light incident on the diffraction grating 23 to become a diverging beam of light, so that the 7-lier image is magnified on the surface of the diffraction grating. As a result, the pitches of the diffraction grating 23 and the 7-lier image of the diffraction grating 23 are completely different and do not interact with each other. Therefore, even if the distance between the grating surface and the reflection plate 26 changes, the output signal does not change.

また、回折光を格子面に対し任意の方向にとることがで
き、いずれの方向に対しても出力変動を補正することが
できる。さらに、コーナーキューブ、キャッツアイ等が
不要であるため、部品数の低減が可能になり、信頼性の
向上及び保守調整の簡略化が可能になる。尚、第1図に
示したレンズ系21で光束を紋ることによっても第6図
に示すように回折格子23と7−リエ・イメージのピン
チとが全く異なるものとなり、出力変動を補正すること
ができる。ただし、この場合凸レンズ27の焦点は紋ら
れた光束の集光点と一致させる必要がある。また、紋ら
れた光束を用いる場合は、第2図に示した凸レンズ27
に代え、第7図に示すように凹レンズ37を用いること
もできる。この場合、凹レンズ37の焦点位置に左右の
入射光35.35’が集光されるようにレンズ系21の
位置関係が調整される。したがって、この場合も第2図
と同様に回折格子23のピッチと7−リエ・イメージの
ピッチを大きく異ならせることができ、格子面と反射板
26間の匪離の変化に起因する出力信号の変動が防止さ
れる。
Further, the diffracted light can be taken in any direction with respect to the grating plane, and output fluctuations can be corrected in any direction. Furthermore, since corner cubes, cat's eyes, etc. are not required, the number of parts can be reduced, reliability can be improved, and maintenance and adjustment can be simplified. Furthermore, by filtering the light beam with the lens system 21 shown in FIG. 1, the pinch of the diffraction grating 23 and the 7-lier image become completely different as shown in FIG. 6, and it is possible to correct output fluctuations. I can do it. However, in this case, the focal point of the convex lens 27 needs to coincide with the condensing point of the reflected light beam. In addition, when using a shaped light beam, the convex lens 27 shown in FIG.
Instead, a concave lens 37 may be used as shown in FIG. In this case, the positional relationship of the lens system 21 is adjusted so that the left and right incident lights 35 and 35' are focused on the focal position of the concave lens 37. Therefore, in this case as well, as in FIG. Fluctuations are prevented.

[発明の効果] 以上説明した通り、本発明によれば、回折格子の入射光
が平行光束にならないようにしたため、格子スケールの
厚み、回折格子面から反射体までの距離の変化にかかわ
らず7−リエ・イメージに起因する出力信号の変動を防
止し、かつ照射光の回折角が回折格子に対して垂直にな
らない。入射角において出力変動の補正を行なうことが
できる。
[Effects of the Invention] As explained above, according to the present invention, since the incident light on the diffraction grating is prevented from becoming a parallel beam, the 7 - Prevent fluctuations in the output signal due to ray images, and the diffraction angle of the illuminating light is not perpendicular to the diffraction grating. Correction of output fluctuations can be performed at the angle of incidence.

また、キャッツアイ等を必要としないため、部品点数を
減らし、メンテナンスを簡易化することができる。
Furthermore, since a cat's eye or the like is not required, the number of parts can be reduced and maintenance can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるリニアエンコーダの構成図
、第2図は第1図のリニアエンコーダにおける回折格子
周辺部の構成の詳細を示す断面図、第3図は回折格子へ
の入射光が平行光束である場合の7−リエ・イメージの
発生説明図、第4図は入射光が平行光束である場合のガ
ラス基板25の厚み変化に対応した出力信号振幅特性図
、第5図は従来における反射光量変動補正手段を示す構
成図、第6図、第7図は第1図のリニアエンコーダに用
いられる他の回折格子周辺部の構成を示す断面図である
。第8図は従来のリニアエンコーダを示す図である。 20.29・・・ビームスプリッタ  21・・・レン
ズ系  22・・・レーザダイオード  23・・・回
折格子  24a、24b・・・反射ミラー  25・
・・ガラス基板  26・・・反射板  27・・・凸
レンズ28・・・波長板  30.32・・・偏光板 
 31.33・・・光検出器  37・・・凹レンズ特
許出願人 株式会社 東京精密 第2図 第3図 図面の浄書(内容に変更なし)′ 第4図 格子からの出射点までの光路長 第6図 手続補正書(自発) 1.事件の表示 昭和62年特許願第327817号 2、発明の名称 リニアエンコーダにおける 反射光量変動の補正方法 3、補正をする者 事件との関係  特許出願人 住所 東京都三鷹市下達雀九丁目7番1号「自発」 5、補正により増加する発明の数 6、補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 け)明細書第2頁第18行の「上りの」を「を通り」と
(2)明細書第3頁第3行の1して」を「するように」
と補正する。 (3)明細書第3頁第17行〜第18行の「入射するた
め」と「第3図」の開にある1−に」を削除する。 (4)明細書第6頁第7行の「なるようにし」と「たち
のである。」の開に「、入射光が平行光束にならないよ
うにし」を加入する。 (5)明細書第7頁第13行〜第16行の「レンズ系2
1によって・・・・・・・・・・・・・・・・・・・・
・・・・・に入射する。」を次のように補正する。 「レンズ系21によって、26の反射板で反射した後2
3の回折格子上で十分に発散するように調節され、偏向
ビームスプリンター20に入射する。」 (6)明細書第8百第15行〜第16行の「この時、・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・ように配置されている。」を削除する。 (7)明細書第9頁第7行の1拡大」を「発散」と補正
する。 (8)明細書第10頁第7行〜第8行の「左右の入射光
35.35′が集光される」を次のように補正する。 [i;六/7′I X 1#誉 2 l   q ζ 
清デ里をへ ハ ス 1(9)明細書$10頁第2O行
〜第11頁ttiJ1行の「垂直にならない」と「入射
角において」の間にある「。」を削除する。 以上 手続補正書(方式) 1、事件の表示 昭和62年特許願第327817号2
、発明の名称 リニアエンコーダにおける 反射光量変動の補正方法 3、補正する者 事件との関係  特許出願人 住所 東京都三鷹市下連雀九丁目7番1号昭和63年3
月29日(発送臼) 5、補正の対象 図面 6、補正の内容 第4図中の文字を拡大表示(内容に変更なし)。 適正図面を別紙添付する。
FIG. 1 is a configuration diagram of a linear encoder to which the present invention is applied, FIG. 2 is a sectional view showing details of the configuration of the surrounding area of the diffraction grating in the linear encoder of FIG. 1, and FIG. 3 is a diagram showing incident light on the diffraction grating Fig. 4 is an output signal amplitude characteristic diagram corresponding to the thickness change of the glass substrate 25 when the incident light is a parallel light flux, and Fig. 5 is a conventional diagram. FIGS. 6 and 7 are cross-sectional views showing the structure of other diffraction grating peripheral parts used in the linear encoder of FIG. 1. FIGS. FIG. 8 is a diagram showing a conventional linear encoder. 20.29... Beam splitter 21... Lens system 22... Laser diode 23... Diffraction grating 24a, 24b... Reflection mirror 25.
...Glass substrate 26...Reflector plate 27...Convex lens 28...Wave plate 30.32...Polarizing plate
31.33... Photodetector 37... Concave lens Patent applicant Tokyo Seimitsu Co., Ltd. Figure 6 Procedural Amendment (Voluntary) 1. Indication of the case 1985 Patent Application No. 327817 2 Title of the invention Method for correcting reflected light amount variation in a linear encoder 3 Person making the correction Relationship to the case Patent applicant address 7-1 Shimotatsujaku 9-chome, Mitaka City, Tokyo No. ``Spontaneous'' 5, Number of inventions increased by amendment 6, ``Detailed explanation of the invention'' column 7 of the specification subject to the amendment, Contents of the amendment) ``Upstream'' on page 2, line 18 of the specification (2) ``to pass'' and (2) ``to do'' on page 3, line 3 of the specification.
and correct it. (3) Delete "for incidence" and "1- in the opening of FIG. 3" from lines 17 to 18 on page 3 of the specification. (4) In the 7th line of page 6 of the specification, add ``to prevent the incident light from becoming a parallel beam of light'' between ``to make it happen'' and ``tachi no deru.''. (5) “Lens system 2” on page 7, lines 13 to 16 of the specification
By 1・・・・・・・・・・・・・・・・・・
It is incident on... ” is corrected as follows. After being reflected by 26 reflecting plates by lens system 21, 2
The beam is adjusted to sufficiently diverge on the diffraction grating No. 3, and then enters the deflection beam splinter 20. ” (6) No. 800, lines 15 to 16 of the specification “At this time,
・・・・・・・・・・・・・・・・・・・・・・・・
It is arranged like... ” to be deleted. (7) "1 enlargement" on page 9, line 7 of the specification is corrected to "divergence." (8) "Left and right incident lights 35.35' are focused" in lines 7 and 8 of page 10 of the specification is corrected as follows. [i; 6/7'I X 1#honor 2 l q ζ
1 (9) Delete "." between "not perpendicular" and "at the angle of incidence" from page 10, line 2O to page 11, line ttiJ1 of the specification. Written amendment to the above procedure (method) 1. Indication of the case Patent Application No. 327817 of 1988 2
, Title of the invention: Method for correcting reflected light intensity fluctuations in linear encoders 3, Relationship with the person making the correction: Patent applicant address: 9-7-1 Shimorenjaku, Mitaka City, Tokyo, March 1988
March 29th (shipping mortar) 5. Drawing subject to correction 6. Contents of correction The characters in Fig. 4 are enlarged (no changes to the contents). Appropriate drawings are attached separately.

Claims (1)

【特許請求の範囲】[Claims] 移動方向に直交させて格子を移動物体の表面に所定間隔
に形成して構成される回折格子と、可干渉光を2方向に
分割し、その可干渉光の各々を前記回折格子の表面の同
一位置に重ねて干渉させる光照射手段と該手段による照
射光が前記回折格子による回折を受けて出射する干渉光
を平行光にする集光用レンズと、該レンズの出力光に基
づく干渉光を光電変換する光検出手段とを具備するリニ
アエンコーダにおいて、前記光照射手段による照射光の
回折角が回折格子に対して垂直にならない入射角でも入
射可能としたリニアエンコーダの反射光量変動補正方法
A diffraction grating is constructed by forming gratings at predetermined intervals on the surface of a moving object perpendicular to the direction of movement; A light irradiation means for overlapping the position and making it interfere; a condensing lens that converts the interference light emitted by the light emitted by the means into parallel light after being diffracted by the diffraction grating; and a photoconductor for converting the interference light based on the output light of the lens into a parallel light. A method for correcting a variation in reflected light amount of a linear encoder comprising a light detecting means for converting the light, in which the diffraction angle of the light irradiated by the light irradiation means can be incident even at an incident angle that is not perpendicular to the diffraction grating.
JP62327817A 1987-12-24 1987-12-24 Linear encoder Expired - Fee Related JP2582272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327817A JP2582272B2 (en) 1987-12-24 1987-12-24 Linear encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327817A JP2582272B2 (en) 1987-12-24 1987-12-24 Linear encoder

Publications (2)

Publication Number Publication Date
JPH01295116A true JPH01295116A (en) 1989-11-28
JP2582272B2 JP2582272B2 (en) 1997-02-19

Family

ID=18203311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327817A Expired - Fee Related JP2582272B2 (en) 1987-12-24 1987-12-24 Linear encoder

Country Status (1)

Country Link
JP (1) JP2582272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970255B1 (en) * 2003-04-23 2005-11-29 Nanometrics Incorporated Encoder measurement based on layer thickness

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163517A (en) * 1983-03-09 1984-09-14 Yokogawa Hokushin Electric Corp Optical scale reader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163517A (en) * 1983-03-09 1984-09-14 Yokogawa Hokushin Electric Corp Optical scale reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970255B1 (en) * 2003-04-23 2005-11-29 Nanometrics Incorporated Encoder measurement based on layer thickness

Also Published As

Publication number Publication date
JP2582272B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
KR920018502A (en) Imaging device
JPS63311121A (en) Encoder
KR960035481A (en) Super Resolution Optical Head Unit
JPH02231525A (en) Encoder
JPH0718714B2 (en) encoder
US5298727A (en) Device for reading bar codes on semiconductor surfaces
JP2560513B2 (en) Diffraction interference encoder
JP3672438B2 (en) Optical encoder device
JPH01295116A (en) Correcting method for variation in reflected light quantity of linear encoder
US5760959A (en) Interferential position measuring device with three detectors
JP4798911B2 (en) Diffraction interference type linear scale
JP2715623B2 (en) Encoder
JPS63309817A (en) Linear encoder
JPH03115920A (en) Zero-point position detector
JPS61242779A (en) Method of detecting inclination and focus of laser beam in laser beam machining device
JPH02147816A (en) Scale reader
JP3955072B2 (en) Multi-beam scanning device and multi-beam detection method for multi-beam scanning device
JPH0298618A (en) Positioning detector
JPH05203408A (en) Phase difference detector
JP2512873B2 (en) Luminous flux stabilizer
JPS61130816A (en) Linear encoder
JPS63309815A (en) Optical interference device
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JP2002311388A (en) Optical system
JPS63172905A (en) Method and device for separating diffracted light

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees