JPS63309817A - Linear encoder - Google Patents

Linear encoder

Info

Publication number
JPS63309817A
JPS63309817A JP14636187A JP14636187A JPS63309817A JP S63309817 A JPS63309817 A JP S63309817A JP 14636187 A JP14636187 A JP 14636187A JP 14636187 A JP14636187 A JP 14636187A JP S63309817 A JPS63309817 A JP S63309817A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
reflected
lens
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14636187A
Other languages
Japanese (ja)
Inventor
Yojiro Iwamoto
岩本 洋次郎
Takao Inaba
高男 稲葉
Nobuyuki Osawa
大沢 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP14636187A priority Critical patent/JPS63309817A/en
Publication of JPS63309817A publication Critical patent/JPS63309817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To prevent output variation due to variation in the wavelength of laser light with temperature and to obtain a stable output regardless of the temperature variation by converging laser light from a diffraction grating on the focus position of a correcting lens and then generating parallel light. CONSTITUTION:The laser light emitted by a laser diode 22 is so adjusted by a lens 21 that the light is reflected by a reflecting mirror 26 and then converged on the diffraction grating 23. Then the light is diffracted spectrally by a beam splitter 20 and reflected light beams 34 and 35 from those reflecting mirrors 24a and 24b are incident on the diffraction grating at a predetermined angle. Those light beams diffracted twice by passing the grating 23 and glass substrate 25 before and after being reflected by a reflecting plate 26, projected while diverged, and collimated by a convex lens 27. The light is polarized circularly by a wavelength plate 28 and two component laser light beams interfere with each other and are split into transmitted light and reflected light by a beam splitter 29. Then those light beams reach photodetectors 31 and 33 through polarizing plates 30 and 32 and are converted photoelectrically. Those polarizing plates 30 and 32 are given a phase difference so as to discriminate the moving direction of the grating 23.

Description

【発明の詳細な説明】 く技術分野〉 本発明は光の回折及び干渉を利用したリニアエンコーダ
に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a linear encoder that utilizes light diffraction and interference.

〈従来技術〉 従来のリニアエンコーダとして、例えば特開昭61−1
30816があり、第7図ないし第9図に示すように構
成されている。
<Prior art> As a conventional linear encoder, for example, JP-A-61-1
30816, and is configured as shown in FIGS. 7 to 9.

第7図において、1はレーザー、2はコリメーターレン
ズ、3は反射部及び透過部が等間隔に設けられた回折格
子で被検物体に取り付けられている。4及び4′はm次
の正負の回折光、5及び5′はコーナーキューブ反射鏡
、7及び7′はビームスプリッタ−18及び8′は偏光
方位が互いに45°になるように設けた偏光板である。
In FIG. 7, 1 is a laser, 2 is a collimator lens, and 3 is a diffraction grating in which reflective parts and transmitting parts are provided at equal intervals, which are attached to the object to be inspected. 4 and 4' are m-order positive and negative diffracted lights, 5 and 5' are corner cube reflectors, 7 and 7' are beam splitters, and 18 and 8' are polarizing plates provided so that the polarization directions are 45 degrees to each other. It is.

ビームスプリッタ−7の出力光路に直交させて配設され
た回折格子3より所定角度で反射回折したレーザー光4
及び4′の光路に対し6及び6′の偏光板が配設される
(偏光方位が互いに直交するように配設される)。10
は凹面鏡であり、偏光板6.6′よりのレーザー光4.
4′を同一光路に戻されるように反射する。以上の構成
において、レーザー1から出射したレーザー光は、コリ
メーターレンX2によって平行光束となり、ビームスプ
リッタ−7を介して凹面鏡10の光路上の開口を通った
後、回折格子3で反射回折される。反射回折されたレー
ザー光4及び4′は、偏光板6及び6′を透過して凹面
鏡10で反射され、ノCの光路を戻って回折格子3を再
照射する。この時の照射位置は、回折格子3上のレーザ
ー光入射位置と同一位置となる。そして、再び回折格子
3によって回折されて重なり合い、凹面鏡の光路上の開
口部を再通過し、ビームスプリッタ−7及び7′により
分割される。分割された光はそれぞれ偏光板8及び8′
を透過して光検出器9及び9′に入射する。
Laser light 4 reflected and diffracted at a predetermined angle from a diffraction grating 3 disposed orthogonally to the output optical path of the beam splitter 7
Polarizing plates 6 and 6' are arranged for optical paths 6 and 4' (arranged so that their polarization directions are orthogonal to each other). 10
is a concave mirror, and the laser beam 4. from the polarizing plate 6.6' is reflected.
4' is reflected back to the same optical path. In the above configuration, the laser beam emitted from the laser 1 becomes a parallel beam by the collimator lens X2, passes through the aperture on the optical path of the concave mirror 10 via the beam splitter 7, and is then reflected and diffracted by the diffraction grating 3. . The reflected and diffracted laser beams 4 and 4' pass through the polarizing plates 6 and 6', are reflected by the concave mirror 10, return to the optical path of the laser beam C, and reirradiate the diffraction grating 3. The irradiation position at this time is the same as the laser beam incident position on the diffraction grating 3. Then, the beams are again diffracted by the diffraction grating 3, overlap each other, pass through the aperture on the optical path of the concave mirror, and are split by the beam splitters 7 and 7'. The divided lights are polarized by polarizing plates 8 and 8', respectively.
and enters the photodetectors 9 and 9'.

光検出器9及び9′の検出面一にで重なり合ったレーザ
ー光は干渉し、回折格子3の移動に伴なって明暗の変化
を生じる。又、偏光板6.6′及び8.8′の組み合わ
せにより、光検出VfP9及び9′の出力信号間に90
°の位相差をもたらし、回折格子3の移動方向を弁別で
きる。
The laser beams overlapped on the same detection surfaces of the photodetectors 9 and 9' interfere, causing a change in brightness and darkness as the diffraction grating 3 moves. Also, by combining the polarizing plates 6.6' and 8.8', there is a 90° difference between the output signals of the photodetectors VfP9 and 9'.
A phase difference of .degree. is provided, and the moving direction of the diffraction grating 3 can be discriminated.

このような構成によってレーザー1の発振波長が変動し
ても、回折格子3の移動量の測定誤差は起こり得ない。
With such a configuration, even if the oscillation wavelength of the laser 1 changes, an error in measuring the amount of movement of the diffraction grating 3 cannot occur.

又、レーザー1の発振波長の変動のために反射回折光4
及び4′の反射回折角が変化しても、凹面鏡10で反射
された後、必ず元の光路を戻るために光検出器9及び9
′の検出面上に生ずる干渉の明暗変化のS/N比が低下
することもない。
Also, due to fluctuations in the oscillation wavelength of the laser 1, the reflected diffracted light 4
Even if the reflection diffraction angles of 4' and 4' change, the photodetectors 9 and 9 ensure that the light returns to the original path after being reflected by the concave mirror 10.
There is no reduction in the S/N ratio of the change in brightness of interference occurring on the detection surface of '.

また、第8図及び第9図は第7図の構成の変形例である
。第8図の構成は透過回折光を利用したものであり、第
9図は凹面鏡10によって発散したレーザー光を集光さ
せる集光レンズ11を設けるようにしたものである。い
ずれも動作原理は第7図と同様であり、説明を省略する
Further, FIGS. 8 and 9 are modifications of the configuration shown in FIG. 7. The configuration shown in FIG. 8 utilizes transmitted diffracted light, and the configuration shown in FIG. 9 is provided with a condenser lens 11 that condenses laser light diverged by a concave mirror 10. The operating principle in both cases is the same as that shown in FIG. 7, and the explanation thereof will be omitted.

しかし、従来のリニアスケールにあっては、凹面鏡10
での反射光は平行光束であるため、光検出器に入る光が
すべて発散光になる。このため、凹面鏡から光電素子ま
での光路長を短くしな(1と出力低下を招くことになる
。さらに凹面鏡に面して偏光板を配設する必要があるた
め、凹面鏡に大型のものを用いざるを得す、装置が大型
化する。
However, in the conventional linear scale, the concave mirror 10
Since the reflected light is a parallel beam, all the light that enters the photodetector becomes diverging light. Therefore, it is necessary to shorten the optical path length from the concave mirror to the photoelectric element (1, which will result in a decrease in output. Furthermore, it is necessary to arrange a polarizing plate facing the concave mirror, so a large concave mirror is used. The equipment inevitably becomes larger.

また、第9図の構成では、出力低下の問題は解決するも
のの、凸レンズを用いる必要があるために部品点数が増
えるという不都合がある。
Furthermore, although the configuration shown in FIG. 9 solves the problem of decreased output, it has the disadvantage of increasing the number of parts because it requires the use of a convex lens.

く目的〉 本発明はこのような従来技術の欠点を解消し、簡単な構
成により温度変化1こ起因するレーザー発振波長の変動
を防止し、安定な出力が得られるようにしたリニアエン
コーグを提供することを目的とする。
Purpose of the present invention: The present invention eliminates the drawbacks of the prior art, and provides a linear encoder with a simple configuration that prevents fluctuations in laser oscillation wavelength caused by temperature changes and provides stable output. The purpose is to

く構成〉 上記の目的を達成するため、本発明は、移動方向に直交
させて脩イ溝を移動物体の表面に所定間隔に形成して構
成される回折格r−と、可干渉光を2方向に分割し、そ
の可干渉光の各々を前記回折格子の表面の同一点に集光
しで干渉させる光照射手段と、該手段による照射光が前
記回折格子による回折を受けて出射する干渉光と、その
干渉光を平行光にするレンズと、該レンズの出力光に基
づく干渉光を光電変換する光検出手段を設けたことを特
徴とするものである。次に本発明の実施例を図面と共に
説明する。
In order to achieve the above object, the present invention has a diffraction grating r-, which is configured by forming grooves at predetermined intervals on the surface of a moving object, perpendicular to the moving direction, and a a light irradiation means that divides the coherent light into different directions and focuses each of the coherent lights on the same point on the surface of the diffraction grating to cause interference; and interference light that the irradiation light from the means emits after being diffracted by the diffraction grating. The present invention is characterized in that it includes a lens that converts the interference light into parallel light, and a photodetector that photoelectrically converts the interference light based on the output light of the lens. Next, embodiments of the present invention will be described with reference to the drawings.

光の偏光方向によって透過光と反射光に入射光を分割す
る偏光ビームスプリ・ンター20に対し、透過光の光路
線に一致させてレンズ21及び該レンズ21にレーザー
光を照射する光源としてのレーザーダイオード22が配
設されている。偏光ビームスプリッタ−20より出力さ
れるレーザー光の各々を回折格子23の表面の同一点に
反射させるために反射ミラー24a、24bが、偏光ビ
ームスプリッタ−20に対し対称的に配設されている。
A laser as a light source that irradiates the lens 21 and the lens 21 with laser light in alignment with the optical path of the transmitted light for the polarizing beam splitter 20 that splits the incident light into transmitted light and reflected light according to the polarization direction of the light. A diode 22 is provided. Reflection mirrors 24a and 24b are arranged symmetrically with respect to the polarizing beam splitter 20 in order to reflect each of the laser beams output from the polarizing beam splitter 20 to the same point on the surface of the diffraction grating 23.

回折格子23はガラス基板25の片面に形成され、この
ガラス基板25の他面に回折格子23側よりの光を回折
格子23側へ反射させる反射板26が設けられている。
The diffraction grating 23 is formed on one side of a glass substrate 25, and a reflection plate 26 is provided on the other side of the glass substrate 25 to reflect light from the diffraction grating 23 side toward the diffraction grating 23 side.

反射板26からの光は、さらに回折ののち垂直方向に出
射するが、その先路内に凸レンズ27が配設され、さら
に波長板28及びビームスプリッタ−29が順次配設さ
れている。ビームスプリッタ−29の直進光路上には、
偏光板30及び光検出器31が順次配設され、さらにビ
ームスプリッタ−29の反射光路上には同様に偏光板3
2及び光検出器33が順次配設されている。次に、以上
の構成における動作について説明する。
The light from the reflection plate 26 is further diffracted and then emitted in the vertical direction, and a convex lens 27 is disposed in its forward path, and a wavelength plate 28 and a beam splitter 29 are further disposed in this order. On the straight optical path of the beam splitter 29,
A polarizing plate 30 and a photodetector 31 are arranged in this order, and a polarizing plate 3 is also arranged on the reflected optical path of the beam splitter 29.
2 and a photodetector 33 are arranged in this order. Next, the operation in the above configuration will be explained.

レーザーダイオード22によって発生したレーザー光は
、レンズ21によって26の反射ミラーで反射した後、
23の回折格子」ユで集光するよう調節されたのち、偏
光ビームスプリッタ−20に入光する。ビームスプリッ
タ−20によってP成分とS成分に分光された光は、反
射ミラー24a及び24bの各々に出射される。これら
反射ミラー 24 IL及び24bによる反射光34及
び35は回折格子23に対し、定められた角度で入射す
るように設定されている。すなわち、回折格子23に対
する入射角αは(1)式で求められる。
After the laser light generated by the laser diode 22 is reflected by the lens 21 and 26 reflective mirrors,
After the light is adjusted to be focused by the diffraction grating 23, it enters the polarizing beam splitter 20. The light split into P and S components by the beam splitter 20 is output to each of reflection mirrors 24a and 24b. The reflected lights 34 and 35 from these reflecting mirrors 24 IL and 24b are set to be incident on the diffraction grating 23 at a predetermined angle. That is, the angle of incidence α with respect to the diffraction grating 23 is determined by equation (1).

sinγ=sir+a−2n^/P ・・・・・・(1
)(なお、γは出射角、nは回折次数、Pは格子定数、
λはレーザー光波長である。) 第2図に示すように、回折格子23に入る反射光34は
、ガラス基板25に入射するときと、反射板26で反射
してガラス基板25を抜け、再度回折格子23を通過す
るときとで2回の回折を受け、発散しながら出射する。
sinγ=sir+a-2n^/P ・・・・・・(1
) (where γ is the emission angle, n is the diffraction order, P is the lattice constant,
λ is the laser light wavelength. ) As shown in FIG. 2, the reflected light 34 that enters the diffraction grating 23 enters the glass substrate 25, and when it is reflected by the reflection plate 26, passes through the glass substrate 25, and passes through the diffraction grating 23 again. It undergoes two diffraction steps and exits while diverging.

出射したレーザー光は凸レンズ27によって平行光にさ
れ、さらに波長板28(例えばλ/4波長板)に上りで
円偏光にされる。このとき、P成分とS成分のレーザー
光が干渉し合い、この干渉光はビームスプリッタ−29
でjul光と反射光に分けられる。通過光は偏光板30
を介して光検出器31に到達し、反射光は偏光板32を
介して光検出器33に到達し、各々充電変換される。偏
光板30及び32は回折格子23の移動方向の弁別及び
信号処理に必要な位相差(例えば90度)をつける働き
をする。
The emitted laser light is made into parallel light by a convex lens 27, and further made into circularly polarized light by a wavelength plate 28 (for example, a λ/4 wavelength plate). At this time, the P component and S component laser beams interfere with each other, and this interference light is transmitted to the beam splitter 29.
It can be divided into jul light and reflected light. Passing light passes through the polarizing plate 30
The reflected light reaches the photodetector 31 via the polarizing plate 32, and is charged and converted. The polarizing plates 30 and 32 function to provide a phase difference (for example, 90 degrees) necessary for discrimination of the movement direction of the diffraction grating 23 and signal processing.

第1図の構成においては、凸レンズ27の焦点位置が回
折格子23の表面にくるように配設されているため、第
2図の破線図示の如く、温度変化による波長変動に応じ
た回折角変化が生じても、レンズ27より出射されるレ
ーザー光の光束は全て平行になる。このように、各光束
が平行に保たれることにより、各光束の重なり具合にず
れが生じても、比較的広い温度範囲に及んでビジビリテ
ィは変わりにくく、S/N比も影響を受けにくい。
In the configuration shown in FIG. 1, since the focal position of the convex lens 27 is placed on the surface of the diffraction grating 23, the diffraction angle changes in response to wavelength fluctuations due to temperature changes, as shown by the broken line in FIG. Even if this occurs, all the beams of laser light emitted from the lens 27 will be parallel. In this way, since each light beam is kept parallel, even if there is a deviation in the degree of overlapping of each light beam, visibility is hard to change over a relatively wide temperature range, and the S/N ratio is also hard to be affected.

第4図は平行光束の重なり共合が回折角変化によって互
いにずれた旦γ° と、平行にずれたIDの■値特性を
示すものである。図中、特性Iは平行光束の反射回折角
γ°のずれによる特性を示し、特性■は平行光束のずれ
Dによる特性を示している。第4図より明らかなように
、平行にずれる場合は、角度が変化してずれるものより
もV値の変化がゆるやかで、D=0.4mmまでは、■
値はほぼ一定である。この程度のずれは、±30°Cの
温度変化(ただし、反射回折点から凸レンズまでの距離
20mmの場合)に相当し、実際の使用に際しては、温
度変化の影響をほぼ防止できると言える。
FIG. 4 shows γ° when the overlap and conjugation of parallel light beams are shifted from each other due to a change in the diffraction angle, and the ■ value characteristic of ID shifted in parallel. In the figure, characteristic I indicates a characteristic due to a deviation in the reflection and diffraction angle γ° of a parallel beam of light, and characteristic ■ indicates a characteristic due to a deviation D of a parallel beam of light. As is clear from Figure 4, when the deviation is parallel, the change in V value is more gradual than when the deviation is due to a change in angle, and up to D = 0.4 mm,
The value is almost constant. This degree of deviation corresponds to a temperature change of ±30°C (provided that the distance from the reflection diffraction point to the convex lens is 20 mm), and it can be said that the influence of temperature change can be almost prevented in actual use.

なお、回折角の変化によっ−C1反射2αがレンズの焦
点からvJ3図に示すようにずれるが、このずれδは(
2)式で求められる。
Note that due to changes in the diffraction angle, -C1 reflection 2α shifts from the focal point of the lens as shown in diagram vJ3, but this shift δ is (
2) It is determined by the formula.

・・・・・・・・・(2) (ただし、Zはガラス基板25の厚みである)ここでn
 = 1、P ” 2 pnl、Z = 2 m m 
、α=51゜−9= 26°、λ1=780nm(ただし25℃)、λ2=7
86nm(50℃)とすると、(2)式によりδ=0.
015mmとなる。このずれ量は実用上全く問題のない
値である。
・・・・・・・・・(2) (However, Z is the thickness of the glass substrate 25) Here, n
= 1, P ” 2 pnl, Z = 2 mm
, α=51°-9=26°, λ1=780nm (at 25°C), λ2=7
When it is 86 nm (50°C), δ=0.
It becomes 015mm. This amount of deviation is a value that poses no problem in practice.

第5図は本発明の他の実施例を示す要部の構成図である
。本実施例が第1図の実施例と異なる点は、凸レンズ2
7に代えて凹レンズ36を用いるようにしたことにある
。他の構成については全く同一であり、従って重複する
説明は省略する。この凹レンズ36の焦点にレーザー光
が集光するように21のレンズで調整されでおり前記実
施例と同様に回折格子23よりの回折光を平行光にする
ものである。また、第6図は光検出方法の他の実施例を
示す要部の構成図である。本実施例が第1図の実施例と
異なる点は、波長板28をビームスプリッタ−29のあ
とに移したことにある。このようにすれば、ビームスプ
リッタ−29を通過した光のP成分とS成分の間には、
波長板28で必要な位相差が与えられる。ビームスプリ
ッタ−29からの上記通過光と反射光(同位相)、それ
ぞれのP成分とS成分は偏光板30と32によって干渉
し合い、光検出器31.33で各々光電変換される。
FIG. 5 is a configuration diagram of main parts showing another embodiment of the present invention. The difference between this embodiment and the embodiment shown in FIG. 1 is that the convex lens 2
7 is replaced by a concave lens 36. The other configurations are completely the same, so redundant explanation will be omitted. The laser beam is adjusted by a lens 21 so that it is focused on the focal point of the concave lens 36, and the diffracted light from the diffraction grating 23 is made into parallel light as in the previous embodiment. Moreover, FIG. 6 is a block diagram of the main part showing another embodiment of the photodetection method. This embodiment differs from the embodiment shown in FIG. 1 in that the wave plate 28 is moved after the beam splitter 29. By doing this, there will be a gap between the P component and the S component of the light that has passed through the beam splitter 29.
The wave plate 28 provides the necessary phase difference. The above-mentioned passing light and reflected light (same phase) from the beam splitter 29, and their respective P and S components interfere with each other by polarizing plates 30 and 32, and are photoelectrically converted by photodetectors 31 and 33, respectively.

〈効果〉 以上説明した通り、本発明にれば、回折格子より出射す
るレーザー光を、補正用レンズの焦点位置で集光させて
平行光形成手段を設けるようにしたため、温度変化に起
因して生じるレーザー光の波長変化による出力変動を防
止し、温度変化によらず安定した出力を得ることができ
る。さらに、部品点数の低減が可能なため、保守調整の
簡易化、信頼性の向上及びコストダウン等を図ることが
可能になる。
<Effects> As explained above, according to the present invention, since the laser beam emitted from the diffraction grating is focused at the focal position of the correction lens and the parallel beam forming means is provided, the laser beam emitted from the diffraction grating is It is possible to prevent output fluctuations due to changes in the wavelength of the generated laser light, and to obtain stable output regardless of temperature changes. Furthermore, since the number of parts can be reduced, it is possible to simplify maintenance and adjustment, improve reliability, and reduce costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す構成図、第2図は回折格
子における回折状況を示す説明図、第3図は回折格子に
おける回折角及び反射角の角度設定を示す説明図、Ij
S4図は平行光束の重なり合いが回折角変化により角度
をもってずれた場合及び補正レンズにより平行にずれた
場合のV値との関係図、第5図は本発明の他の実施例の
要部を示す断面図、第7図は従来のリニアエンコーグの
一例を示す構成図、第8図及び第9図は第7図の従来装
置の2つの変形例を示す構成図である。 20.29・・・ビームスプリッタ−21・・・コリメ
ートレンズ  22・・・レーザーダイオード24a、
24b・・・反射ミラー  23・・・回折格子25・
・・ガラス基板  26・・・反射板  27・・・平
凸レン′X  28・・・λ/4板  30.32・・
・偏光板  31.33・・・光検出器  36・・・
両凸レンズ
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the diffraction situation in the diffraction grating, and FIG. 3 is an explanatory diagram showing the angular setting of the diffraction angle and reflection angle in the diffraction grating.
Figure S4 is a relationship diagram with the V value when the overlap of parallel light beams is shifted by an angle due to a change in the diffraction angle, and when it is shifted parallel by a correction lens, and Figure 5 shows the main part of another embodiment of the present invention. 7 is a block diagram showing an example of a conventional linear encoder, and FIGS. 8 and 9 are block diagrams showing two modified examples of the conventional device shown in FIG. 7. 20.29... Beam splitter 21... Collimating lens 22... Laser diode 24a,
24b... Reflection mirror 23... Diffraction grating 25.
...Glass substrate 26...Reflector plate 27...Plano-convex lens'X 28...λ/4 plate 30.32...
・Polarizing plate 31.33... Photodetector 36...
double convex lens

Claims (1)

【特許請求の範囲】[Claims] 移動方向に直交させて格子溝を移動物体の表面に所定間
隔に形成して構成される回折格子と、可干渉光を2方向
に分割し、その可干渉光の各々を前記回折格子の表面の
同一点に集光して干渉させる光照射手段と、該手段によ
る照射光が前記回折格子による回折を受けて発散しなが
ら出射する干渉光の出射点に焦点が合致するように配設
されると共に、その干渉光を平行光にする凸レンズと、
該レンズの出力光に基づく干渉光を光電変換する光検出
手段とを具備することを特徴とするリニアエンコーダ。
A diffraction grating is constructed by forming grating grooves at predetermined intervals on the surface of a moving object perpendicular to the moving direction, and a diffraction grating that divides coherent light into two directions, and divides each of the coherent lights into two directions on the surface of the diffraction grating. A light irradiation means for condensing light to the same point and causing interference, and the light irradiated by the means is arranged so that the focal point coincides with the emission point of the interference light emitted while being diffracted by the diffraction grating and diverged. , a convex lens that converts the interference light into parallel light,
A linear encoder comprising a photodetector for photoelectrically converting interference light based on the output light of the lens.
JP14636187A 1987-06-12 1987-06-12 Linear encoder Pending JPS63309817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14636187A JPS63309817A (en) 1987-06-12 1987-06-12 Linear encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14636187A JPS63309817A (en) 1987-06-12 1987-06-12 Linear encoder

Publications (1)

Publication Number Publication Date
JPS63309817A true JPS63309817A (en) 1988-12-16

Family

ID=15405980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14636187A Pending JPS63309817A (en) 1987-06-12 1987-06-12 Linear encoder

Country Status (1)

Country Link
JP (1) JPS63309817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167427A (en) * 1988-12-21 1990-06-27 Mitsutoyo Corp Grating interference type displacement gauge
GB2340935A (en) * 1998-08-20 2000-03-01 Sony Precision Technology Inc Optical displacement measurement system
DE19930687B4 (en) * 1998-07-02 2017-01-05 Dmg Mori Seiki Co., Ltd. Optical displacement measuring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174659A (en) * 1974-12-24 1976-06-28 Nippon Electric Co
JPS57207805A (en) * 1981-06-17 1982-12-20 Hitachi Ltd Displacement measuring device
JPS59163517A (en) * 1983-03-09 1984-09-14 Yokogawa Hokushin Electric Corp Optical scale reader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174659A (en) * 1974-12-24 1976-06-28 Nippon Electric Co
JPS57207805A (en) * 1981-06-17 1982-12-20 Hitachi Ltd Displacement measuring device
JPS59163517A (en) * 1983-03-09 1984-09-14 Yokogawa Hokushin Electric Corp Optical scale reader

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167427A (en) * 1988-12-21 1990-06-27 Mitsutoyo Corp Grating interference type displacement gauge
DE19930687B4 (en) * 1998-07-02 2017-01-05 Dmg Mori Seiki Co., Ltd. Optical displacement measuring system
GB2340935A (en) * 1998-08-20 2000-03-01 Sony Precision Technology Inc Optical displacement measurement system
GB2340935B (en) * 1998-08-20 2003-08-27 Sony Prec Technology Inc Optical displacement measurement system
DE19938869B4 (en) * 1998-08-20 2015-10-01 Dmg Mori Seiki Co., Ltd. Optical displacement measuring system

Similar Documents

Publication Publication Date Title
JP2006275654A (en) Displacement detector, displacement measuring apparatus, and fixed-point detector
JP3144143B2 (en) Optical displacement measuring device
JPH073344B2 (en) Encoder
JP4852318B2 (en) Displacement detector, polarizing beam splitter, and diffraction grating
US6407815B2 (en) Optical displacement measurement system
US6166817A (en) Optical displacement measurement system for detecting the relative movement of a machine part
JP4969057B2 (en) Displacement detection device, displacement measurement device, and fixed point detection device
JPH0718714B2 (en) encoder
JP5235554B2 (en) Optical displacement measuring device
US7933023B2 (en) Displacement detection apparatus, displacement measurement apparatus and fixed point detection apparatus
JPS63309817A (en) Linear encoder
JPH0781817B2 (en) Position measuring device
JP4023917B2 (en) Optical displacement measuring device
JPS6352342A (en) Optical pickup
JP2011017582A (en) Displacement measurement device using optical interferometer
JP2715623B2 (en) Encoder
JP2020076593A (en) Displacement detector
JP2582272B2 (en) Linear encoder
JP2003035570A (en) Diffraction interference type linear scale
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JPH03295416A (en) Encoder
JP2512873B2 (en) Luminous flux stabilizer
JP3392898B2 (en) Lattice interference displacement measuring device
JPS63309815A (en) Optical interference device
JPS61130816A (en) Linear encoder