JPH01294357A - Positive electrode for nonaqueous lithium secondary battery - Google Patents

Positive electrode for nonaqueous lithium secondary battery

Info

Publication number
JPH01294357A
JPH01294357A JP63125148A JP12514888A JPH01294357A JP H01294357 A JPH01294357 A JP H01294357A JP 63125148 A JP63125148 A JP 63125148A JP 12514888 A JP12514888 A JP 12514888A JP H01294357 A JPH01294357 A JP H01294357A
Authority
JP
Japan
Prior art keywords
positive electrode
titanium disulfide
particle size
energy density
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63125148A
Other languages
Japanese (ja)
Inventor
Tetsuzo Kojima
哲三 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63125148A priority Critical patent/JPH01294357A/en
Publication of JPH01294357A publication Critical patent/JPH01294357A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a positive electrode having high energy density by using titanium disulfide having specified particle size. CONSTITUTION:Titanium disulfide having a particle size of less than 30mum is used as a positive active material. Energy density per volume is expressed by the product of the weight of active material per volume and its utility factor. In a positive electrode using titanium disulfide, the weight of titanium disulfide per volume is relatively increased with increase in particle size, and use of titanium disulfide having a particle size less than 30mum is preferable to obtain the positive electrode having high energy density per volume. The positive electrode for a nonaqueous lithium secondary battery having high energy density per volume is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正極活物質に二硫化チタンを用いた非水リチ
ウム二次電池の正極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a positive electrode for a non-aqueous lithium secondary battery using titanium disulfide as a positive electrode active material.

従来の技術 負極にリチウムやリチウム合金、電解液に有機溶媒を用
いた非水リチウム二次電池は、金属の酸化物やカルコゲ
ン化合物を活物質とする正極と組み合わせることにより
、既存の鉛蓄電池やアルカリ蓄電池に比べて飛躍的に大
きなエネルギー密度を得ることが可能であるためにその
実現が待たれている。
Conventional technology Non-aqueous lithium secondary batteries, which use lithium or lithium alloys for the negative electrode and organic solvents for the electrolyte, can be used in combination with positive electrodes that use metal oxides or chalcogen compounds as active materials, making them easier to use than existing lead-acid batteries or alkaline batteries. Its realization is eagerly awaited because it is possible to obtain dramatically higher energy density than storage batteries.

非水リチウム二次電池用正極活物質とじては非常に多種
のものが、提案されているが、なかでも二硫化チタン(
Tie、 )を活物質として用いた正極は、充放電の繰
り返しに対する容量の安定性が極めて優れているなめに
最も有望であるとされている。
A wide variety of positive electrode active materials for nonaqueous lithium secondary batteries have been proposed, but titanium disulfide (
A positive electrode using Tie, ) as an active material is said to be the most promising because it has extremely excellent capacity stability against repeated charging and discharging.

二硫化チタンの充放電反応は、下記の式で示すように、
放電時には層状化合物であるTiS、の層間に[iがイ
ンターカレーションし、充電時には二硫化チタン層間よ
りリチウムが抜は出し負極に析出するというものである
The charging and discharging reaction of titanium disulfide is as shown by the following formula:
During discharging, [i intercalates between the layers of TiS, which is a layered compound, and during charging, lithium is extracted from between the titanium disulfide layers and deposited on the negative electrode.

xLi + Ti5z YLi、Ti52(X≦1)こ
のT is、に出入りするリチウムが多い程正極のエネ
ルギー密度(容量)は大きくなる。出入りするリチウム
の量は二硫化チタン1モルに対しリチウム1モルを最大
とし、Tiと Sの化学量論比によって決まるといわれ
ている。すなわち、二硫化チタンは通常Tiが化学量論
比よりも大きい側にずれる傾向があり、ずれが大きい程
インター力レ−ジョンするリチウムの量は1より小さく
なる。したがって、二硫化チタンの化学量論比がずれな
いようにするために、従来より二硫化チタンの合成方法
が検討されてきた。
xLi + Ti5z YLi, Ti52 (X≦1) The more lithium that goes in and out of this Tis, the greater the energy density (capacity) of the positive electrode. The amount of lithium that goes in and out is determined by the stoichiometric ratio of Ti and S, with a maximum of 1 mole of lithium per mole of titanium disulfide. That is, in titanium disulfide, Ti usually tends to shift to the side where the Ti ratio is larger than the stoichiometric ratio, and the larger the shift, the smaller the amount of lithium that undergoes interforce formation becomes less than 1. Therefore, in order to prevent the stoichiometric ratio of titanium disulfide from shifting, methods for synthesizing titanium disulfide have been studied.

発明が解決しようとする課題 非水リチウム二次電池用正極活物質として二硫化チタン
を用いた正極は、充放電の繰り返しに対する寿命特性は
非常に優れているが、平均放電電圧は2.1vであり、
二酸化マンガンやバナジウム酸化物等を用いた正極(平
均放電電圧は3vに近い)と比べてエネルギー密度は若
干少なく、二硫化チタンの化学量論比の検討のみでは不
十分であった。
Problems to be Solved by the Invention A positive electrode using titanium disulfide as a positive electrode active material for a non-aqueous lithium secondary battery has very good life characteristics against repeated charging and discharging, but the average discharge voltage is 2.1V. can be,
The energy density is slightly lower than that of positive electrodes using manganese dioxide, vanadium oxide, etc. (average discharge voltage is close to 3 V), and examination of the stoichiometric ratio of titanium disulfide alone was insufficient.

課題を解決するための手段 本発明では二硫化チタン、導電性粉末、結着剤の混合物
を集電体に保持させた非水リチウム二次電池用正極にお
いて、粒径が30μm未満の二硫化チタンを使うことを
特徴とするものであり、これによってよりエネルギー密
度の高い正極を得るものである。
Means for Solving the Problems The present invention provides a positive electrode for a non-aqueous lithium secondary battery in which a current collector holds a mixture of titanium disulfide, conductive powder, and a binder. This method is characterized by the use of , thereby obtaining a positive electrode with higher energy density.

作用 二硫化チタンは、六方晶の結晶形を有し、個々の粒子の
形状は一般的にはa軸方向に広がった六角形状で薄い板
状をしている。二硫化チタンを正極活物質として用いる
場合には前述したごとく化学量論比等、組成的な性状が
容量に影響を及ぼす一つの因子であるが、さらに二硫化
チタンの粒径が重要な因子であることを見出した。すな
わち二硫化チタンは主にいわゆるCVD法と呼ばれる塩
化チタン(TiC1)と硫化水素(H2S)とを気相で
析出させる方法、または三硫化チタン(TtSs )を
熱分解によって得る方法で合成される。
Functional titanium disulfide has a hexagonal crystal form, and the shape of each individual particle is generally a hexagonal shape extending in the a-axis direction and a thin plate shape. When titanium disulfide is used as a positive electrode active material, compositional properties such as stoichiometric ratio are one of the factors that affect capacity, as mentioned above, but the particle size of titanium disulfide is an even more important factor. I discovered something. That is, titanium disulfide is mainly synthesized by a so-called CVD method in which titanium chloride (TiC1) and hydrogen sulfide (H2S) are precipitated in a gas phase, or by a method in which titanium trisulfide (TtSs) is obtained by thermal decomposition.

そこで、これらの合成方法を制御することによって種々
の粒径の異なる二硫化チタンを合成し、それぞれ粒径の
異なる二硫化チタンを用いて正極板を作り特性の違いを
調べた結果、正極の容量当たりのエネルギー密度は、粒
径により大きく変化することがわかった。
Therefore, by controlling these synthesis methods, we synthesized titanium disulfide with various particle sizes, made positive electrode plates using titanium disulfide with different particle sizes, and investigated the differences in characteristics.As a result, we found that the capacity of the positive electrode It was found that the energy density per particle changes greatly depending on the particle size.

容量当たりのエネルギー密度は単位容積光たりの活物質
量とその利用率の積で決まるわけであるが、二硫化チタ
ンを使った正極では単位容積光たりの二硫化チタンの量
は、粒径の大きい方が相対的に多いが、一方その利用率
は粒径が10〜20μm程度で最大となる傾向がある。
The energy density per capacity is determined by the product of the amount of active material per unit volume of light and its utilization rate, but in the case of a positive electrode using titanium disulfide, the amount of titanium disulfide per unit volume of light is determined by the particle size. Although the larger the particle size, the larger the amount, the utilization rate tends to be maximum when the particle size is about 10 to 20 μm.

これら両者の関係から、容量当たりのエネルギー密度の
高い正極を得るためには粒径30μm未満の二硫化チタ
ンを用いることが好ましい。
From the relationship between these two, it is preferable to use titanium disulfide with a particle size of less than 30 μm in order to obtain a positive electrode with high energy density per capacity.

実施例 次に本発明を好適な実施例を用いて説明する。Example Next, the present invention will be explained using preferred embodiments.

三硫化チタンの熱分解で合成した二硫化チタン粉末な粒
径毎にふるい分けし、それぞれの粒径の二硫化チタンを
用いて次の条件で正極を作った。
Titanium disulfide powder synthesized by thermal decomposition of titanium trisulfide was sieved by particle size, and positive electrodes were made using titanium disulfide of each particle size under the following conditions.

二硫化チタン90部、アセチレンブラック10部。90 parts of titanium disulfide, 10 parts of acetylene black.

ポリテトラフルオロエチレン粉末10部の混合物0゜1
2gを、厚さ0.1111のニッケル板を加工して作っ
た10X 101111のエクスパンデッドメタルに充
填し、500kg/cn2の圧力で加圧成形した。
Mixture of 10 parts of polytetrafluoroethylene powder 0°1
2 g was filled into a 10×101111 expanded metal made by processing a nickel plate with a thickness of 0.1111, and pressure molded at a pressure of 500 kg/cn2.

次にリチウム板を相平衡とし、電解液にLiASFaを
1.5モル溶解したプロピレンカーボネート溶液を用い
て上記の正極の充放電を行い、その特性を調べた。尚、
充放電において電流密度は1nA/cn2、充電時の終
止電圧は2.8v、放電時の終止電圧は1゜5vとした
Next, with the lithium plate in phase equilibrium, the above positive electrode was charged and discharged using a propylene carbonate solution containing 1.5 moles of LiASFa dissolved in the electrolytic solution, and its characteristics were investigated. still,
During charging and discharging, the current density was 1 nA/cn2, the final voltage during charging was 2.8 V, and the final voltage during discharging was 1°5 V.

第1表に放電容量およびエネルギー密度の結果をまとめ
て示す。
Table 1 summarizes the results of discharge capacity and energy density.

第1表 第1表から明らかなように、大きな粒径のものを用いた
極板程厚みは小さく理論エネルギー密度は大きい、しか
し実際の容量当たりのエネルギー密度は粒径が30μm
未満の場合には320nAh/ccと高く、特に10μ
II以上20AL11未満では330IIAh/CCと
最高となるが、30μm以上になると急に減少している
Table 1 As is clear from Table 1, the electrode plate using a larger particle size has a smaller thickness and a higher theoretical energy density, but the actual energy density per capacity is 30 μm when the particle size is 30 μm.
If it is less than 320nAh/cc, it is high, especially 10μ
It reaches a maximum of 330IIAh/CC when it is II or more and less than 20AL11, but it suddenly decreases when it becomes 30 μm or more.

次に第1表に示した各正極の放電電圧特性を第1図に示
した0本発明による粒径が30μm未満の二硫化チタン
を用いた正極A、BおよびCはそれぞれ放電電圧が高く
放電時間も長いが、粒径が30μm以上のものを用いた
正極りおよびEでは放電電圧1時間とも大きく減少し、
本発明の正極に比べ特性的に大きく劣っていることがわ
かる。
Next, the discharge voltage characteristics of each positive electrode shown in Table 1 are shown in Figure 1.The positive electrodes A, B, and C according to the present invention using titanium disulfide with a particle size of less than 30 μm each have a high discharge voltage. Although the time is long, in the positive electrode and E using particles with a particle size of 30 μm or more, the discharge voltage decreases significantly after 1 hour.
It can be seen that the characteristics are significantly inferior to the positive electrode of the present invention.

発明の効果 以上述べたように本発明により、放電量が大きく、容積
当たりの実際のエネルギー密度が高い非水リチウム二次
電池用正極を得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a positive electrode for a non-aqueous lithium secondary battery that has a large discharge amount and a high actual energy density per volume.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、非水リチウム二次電池用正極の放電特性であ
る。 A、B、C・・・本発明による正極 り、E・・・比較のための正極 嵜 1 図 時間〔旧
FIG. 1 shows the discharge characteristics of a positive electrode for a non-aqueous lithium secondary battery. A, B, C...Positive electrode according to the present invention, E...Positive electrode for comparison 1 Figure Time [Old

Claims (1)

【特許請求の範囲】[Claims] 1、二硫化チタン、導電性粉末、結着剤の混合物を導電
体に保持してなる非水リチウム二次電池用正極において
、粒径が30μm未満の二硫化チタンを使用したことを
特徴とする非水リチウム二次電池用正極。
1. A positive electrode for a non-aqueous lithium secondary battery comprising a mixture of titanium disulfide, conductive powder, and a binder held in a conductor, characterized in that titanium disulfide with a particle size of less than 30 μm is used. Positive electrode for non-aqueous lithium secondary batteries.
JP63125148A 1988-05-23 1988-05-23 Positive electrode for nonaqueous lithium secondary battery Pending JPH01294357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63125148A JPH01294357A (en) 1988-05-23 1988-05-23 Positive electrode for nonaqueous lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63125148A JPH01294357A (en) 1988-05-23 1988-05-23 Positive electrode for nonaqueous lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH01294357A true JPH01294357A (en) 1989-11-28

Family

ID=14903055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125148A Pending JPH01294357A (en) 1988-05-23 1988-05-23 Positive electrode for nonaqueous lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH01294357A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654281A (en) * 1986-03-24 1987-03-31 W. R. Grace & Co. Composite cathodic electrode
JPS63250055A (en) * 1986-03-24 1988-10-17 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Cathode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654281A (en) * 1986-03-24 1987-03-31 W. R. Grace & Co. Composite cathodic electrode
JPS63250055A (en) * 1986-03-24 1988-10-17 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー Cathode

Similar Documents

Publication Publication Date Title
US6379843B1 (en) Nonaqueous secondary battery with lithium titanium cathode
TWI627785B (en) Anode active material for lithium secondary battery and method of preparing the same
JPH10236826A (en) Two-layer structure particulate composition and lithium ion secondary cell
JPH04319260A (en) Non-aqueous electrolyte secondary battery
JPH08124559A (en) Manufacture of lithium secondary battery and of negative electrode active material
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH06150928A (en) Non-aqueous electrolyte secondary battery
US5939224A (en) Nonaqueous electrolyte secondary battery
JPH0878006A (en) Lithium secondary battery
US6482546B1 (en) Rechargeable lithium battery
JPH10188977A (en) Lithium secondary battery
JP4052695B2 (en) Lithium secondary battery
EP1132984B1 (en) Non-Aqueous electrolyte secondary battery
JP2022512443A (en) Positive electrode active material for lithium secondary batteries and lithium secondary batteries containing them
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JPH04141954A (en) Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material
JP4530843B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH01294357A (en) Positive electrode for nonaqueous lithium secondary battery
JP4055414B2 (en) Positive electrode active material for lithium ion secondary battery
JPH04319259A (en) Non-aqueous electrolyte secondary battery
JP2000277115A (en) Lithium secondary battery
JPH0554887A (en) Nonaqueous electrolyte secondary battery