JPH01294303A - Conductive paste and solid-state electrolytic capacitor - Google Patents

Conductive paste and solid-state electrolytic capacitor

Info

Publication number
JPH01294303A
JPH01294303A JP12334788A JP12334788A JPH01294303A JP H01294303 A JPH01294303 A JP H01294303A JP 12334788 A JP12334788 A JP 12334788A JP 12334788 A JP12334788 A JP 12334788A JP H01294303 A JPH01294303 A JP H01294303A
Authority
JP
Japan
Prior art keywords
dust
conductive
conductive paste
electrolytic capacitor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12334788A
Other languages
Japanese (ja)
Inventor
Kazumi Naito
一美 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12334788A priority Critical patent/JPH01294303A/en
Publication of JPH01294303A publication Critical patent/JPH01294303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To prevent the deterioration in stability of the solid-state electrolytic capacitor in the title to a high temperature over a long period of time, by using as a conductive layer conductive paste having its excellent adhesion to an object of its application. CONSTITUTION:A conductive layer is formed out of conductive paste consisting of the mixture of a conductive high polymer, metal dust and a resin. A semiconductor whose conductivity is within 10<-5>S.cm<-1> and 10<4>S.cm<-1> is intended for the conductive high polymer application and then used generally in the form of dust. Materials serving as the metal dust, are referred to for example, silver dust, gold dust, palladium dust, nickel dust, silver-clad nickel dust, silver-clad copper dust, each dust of these alloys and the like. The ratio by weight of using the conductive high polymer to the metal dust ranges from 1/6 to 6 times the weight of the metal dust. Any resin on the market can be also used for the resin. This makes it possible to obtain a solid-state electrolytic capacitor of a low cost, being excellent in stability against a high temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、密着性に優れ、安価で、低抵抗の導電ペース
ト、および該導電ペーストをS電体層に利用した性能の
良好な固体電解コンデンサに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a conductive paste with excellent adhesion, low cost, and low resistance, and a solid electrolyte with good performance using the conductive paste as an S conductor layer. Concerning capacitors.

(従来の技術) 従来、導電ペーストは、金、銀、白金等の負金属を主成
分とする金属粉と、該金属粉を一体化するバインダー用
の樹脂との混合物である。
(Prior Art) Conventionally, a conductive paste is a mixture of metal powder whose main component is a negative metal such as gold, silver, or platinum, and a binder resin that integrates the metal powder.

また、従来の固体電解コンデンサは弁作用金属からなる
陽極基体に酸化皮膜層を形成し、この酸化皮膜層の外面
に対向電極として二酸化マンガン等の半導体層を形成し
、さらに銀ペースト等ににり導電体層を形成して接触抵
抗を減少している。
In addition, in conventional solid electrolytic capacitors, an oxide film layer is formed on an anode base made of a valve metal, a semiconductor layer such as manganese dioxide is formed as a counter electrode on the outer surface of this oxide film layer, and a layer of semiconductor such as manganese dioxide is formed on the outer surface of this oxide film layer. A conductive layer is formed to reduce contact resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、導電ペーストの金属粉が貴金属である場
合高価で、また樹脂よりも比重が大きいために保存中に
樹脂と分離を起し易く、使用に際しては部分的に不均一
性が現れ、作業性が劣り、金属粉が銅やニッケル等の卑
金属である場合は、安価であるが上記不均一性が現れる
とともに、高温安定性に問題があった。さらにこれら金
属粉と樹脂からなる導電ペーストが塗布される対象物と
の熱膨彊率の違いにより、高温放置時に密着性が低下す
る欠点があった。特に、該導電ペーストを固体電解コン
デンサの導電体層に利用した場合、上記固体電解コンデ
ンサは高温長期寿命試験を行うと経時的に損失係数が屑
入するという欠点があつ lこ 。
However, if the metal powder in the conductive paste is noble metal, it is expensive, and because it has a higher specific gravity than the resin, it is likely to separate from the resin during storage, resulting in partial non-uniformity during use and poor workability. On the other hand, when the metal powder is a base metal such as copper or nickel, although it is inexpensive, the above-mentioned non-uniformity appears and there are problems with high temperature stability. Furthermore, due to the difference in coefficient of thermal expansion between the metal powder and the object to which the conductive paste made of resin is applied, there is a drawback that adhesion deteriorates when left at high temperatures. Particularly, when the conductive paste is used in the conductor layer of a solid electrolytic capacitor, the solid electrolytic capacitor has the disadvantage that the loss factor is degraded over time when subjected to a high temperature long-term life test.

本発明は、上記の事情に鑑み、塗布対象物との密着性が
優れた安価な導電ペースト、および該導電ペーストを導
電体層に使用した、高温安定性が長期にわたって劣化し
ない固体電解コンデンサを提供することを目的とする。
In view of the above circumstances, the present invention provides an inexpensive conductive paste with excellent adhesion to an object to be coated, and a solid electrolytic capacitor whose high temperature stability does not deteriorate over a long period of time, using the conductive paste in a conductive layer. The purpose is to

〔課題を解決づるための手段〕[Means for solving problems]

上記の目的を達成するため、本発明においては、尊°;
セ性高分子と、金属粉と樹脂のU合物である導電ペース
ト、および弁作用金属からなる陽極基体に順次誘電体酸
化皮膜層、半導体層・導電体層を形成してなる固体電解
コンデンサにおいて、導電体R4が上記導電ペーストに
よって形成されている。
In order to achieve the above object, the present invention includes:
In a solid electrolytic capacitor in which a dielectric oxide film layer, a semiconductor layer and a conductor layer are sequentially formed on an anode substrate made of a conductive paste which is a U compound of a neutral polymer, a metal powder and a resin, and a valve metal. , the conductor R4 is formed of the conductive paste.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

以下、本発明の導電ペーストおよび固体電解コンデンサ
について説明する。
The conductive paste and solid electrolytic capacitor of the present invention will be explained below.

本発明の導電ペーストに使用づる導電性高分子としては
、電導度が10→8−cm−’から10’S・cm ’
の間にある半導体であり、一般に粉末状で使用される。
The conductive polymer used in the conductive paste of the present invention has an electrical conductivity of 10 → 8 cm-' to 10'S cm'.
It is a semiconductor between the two, and is generally used in powder form.

導電性、島分子は、主鎖に共役二重結合を有する高分子
化合物にドーパントをドープして得られる。主鎖に共役
二重結合をイアする高分子化合物の代表例として、ポリ
ヂオフェン、アセチレン高重合体、ポリピロール、ボリ
ノラン、ポリアニリン、ポリキノリン、ポリパラフェニ
レン、ボリア1ニレンサルファイド、ポリパラフェニレ
ンオキサイド、ボリアセン、ポリカルバゾール、ポリフ
ェノチアジン、ポリビリジニ1クム、ポリベンゾピリジ
ン、ポリビロリン、ポリピロレニン、ポリ(パラフェニ
レンチェニレン)およびこれらの共重合体等があげられ
る。これらの高分子化合物の製造方法としては、本発明
者等が先に提案した、例えば特開昭59−210914
、特開昭61−2728、特開昭61−224、特開I
N? 61−64729、特開[61−854411,
:記述した方法、或はJ、P011711.s(1:i
、POIVlll、Lett、[d、 189(198
0)、 J、Electroanal、Chem、 1
35173 (1982)。
Conductive island molecules are obtained by doping a polymer compound having a conjugated double bond in its main chain with a dopant. Typical examples of polymer compounds with conjugated double bonds in the main chain include polydiophene, acetylene polymer, polypyrrole, vorinolane, polyaniline, polyquinoline, polyparaphenylene, boria-1-nylene sulfide, polyparaphenylene oxide, boriacene, and polypropylene. Examples include carbazole, polyphenothiazine, polyviridine 1cum, polybenzopyridine, polyviroline, polypyrrolenin, poly(paraphenylenethienylene), and copolymers thereof. Methods for producing these polymer compounds include methods previously proposed by the present inventors, for example, in JP-A-59-210914.
, JP 61-2728, JP 61-224, JP I
N? 61-64729, JP-A [61-854411,
: The method described or J, P011711. s(1:i
, POIVllll, Lett, [d, 189 (198
0), J, Electroanal, Chem, 1
35173 (1982).

Hakromol、Chem、Rapid、Commu
m、 2551 (1981)、 J。
Hakromol, Chem, Rapid, Commu
m, 2551 (1981), J.

C,S Chem、Commun、854 (1979
)、 J、Polym、Sci。
C, S Chem, Commun, 854 (1979
), J. Polym, Sci.

Polym、Lett、Ed、  20187 (19
82)、  J、EIectroanal。
Polym, Lett, Ed, 20187 (19
82), J, EI electroanal.

Chem、  135173 (1982)、 J、C
hca+、Phys、  711506(1979) 
、 Bull、Chen、Soc、Japan 512
091 (1978)。
Chem, 135173 (1982), J.C.
hca+, Phys, 711506 (1979)
, Bull, Chen, Soc, Japan 512
091 (1978).

J、POlym、SCi、Polllllll、Che
m、[:6. 12357 (1974)、 J。
J, POlym, SCi, Pollllllll, Che.
m, [:6. 12357 (1974), J.

^pp1.Polym、sci、  202541  
(1976)、  HakromolChem、ユ26
130 (1969) 、 J、A、C,S、 824
669(1960)等に記述されている方法があげられ
る。
^pp1. Polym, sci, 202541
(1976), HakromolChem, Yu26
130 (1969), J.A.C.S., 824
669 (1960) and the like.

これらの高分子化合物に12 、 Br 2 、 SO
3。
These polymer compounds contain 12, Br2, SO
3.

As Fs 、Sb Fsなどのドーパントを化学的方
法を用いてドープすることにより、或はBF4−。
or by doping with dopants such as AsFs, SbFs, etc. using chemical methods.

C,JO4−、PF4− 、As Fs−などのアニオ
ンを電気化学的方法を用いてドープすることによって電
気伝導度が10−5〜104S−CIll−1の導電性
高分子が得られる。
By doping with anions such as C, JO4-, PF4-, As Fs-, etc. using an electrochemical method, a conductive polymer having an electrical conductivity of 10-5 to 104S-CIll-1 can be obtained.

本発明の導電ペーストに使用される金属粉としては市販
の金属粉がいずれも使用可能であり、例えば、銀粉、金
粉、パラジウム粉、銅粉、ニッケル粉、銀コートニッケ
ル粉、銀コート銅粉およびこれらの合金粉等があげられ
る。
Any commercially available metal powder can be used as the metal powder used in the conductive paste of the present invention, such as silver powder, gold powder, palladium powder, copper powder, nickel powder, silver coated nickel powder, silver coated copper powder, and Examples include alloy powders of these.

これら金属粉に対する導電性高分子の使用割合は、重量
で金属粉の176倍から6倍の範囲である。
The ratio of the conductive polymer to these metal powders ranges from 176 times to 6 times the weight of the metal powders.

導電性高分子の割合が金属粉の176倍未満であると作
製した導電ペーストの高温安定性が不充分となり、導電
性高分子の割合が金属粉の6倍を越えると導電性が不充
分となる。
If the ratio of conductive polymer is less than 176 times that of metal powder, the high temperature stability of the prepared conductive paste will be insufficient, and if the ratio of conductive polymer exceeds 6 times that of metal powder, conductivity will be insufficient. Become.

本発明のS電ペーストに使用される樹脂としては、市販
の何れの樹脂でも使用出来るが、その際、作業性を最適
状態にするため、粘度調節用として溶剤を添加してもよ
い。
Any commercially available resin can be used as the resin used in the S-electrode paste of the present invention, but in order to optimize workability, a solvent may be added to adjust the viscosity.

また、導電性高分子と金属粉の合邑と樹脂との比率を適
当に調節することにより任意の導電率を有する導電ペー
ストが得られるが、導電ペースト中に占める導電性高分
子と金属粉の含量の割合は、35〜95重猷%がよく、
特に55〜95重を五%が好ましい。導電性高分子と金
属粉の合量の割合が35重量%未満では、ペーストの導
電性が不充分となり、95重量%を越えるとペーストの
接着性が不充分となる。
In addition, by appropriately adjusting the ratio of the conductive polymer and metal powder mixture to the resin, a conductive paste with arbitrary conductivity can be obtained. The content ratio is preferably 35 to 95%,
In particular, 5% of 55 to 95 weight is preferable. If the total ratio of the conductive polymer and metal powder is less than 35% by weight, the paste will have insufficient electrical conductivity, and if it exceeds 95% by weight, the paste will have insufficient adhesiveness.

上記導電ペーストによって導電体層が形成された本発明
の固体電解コンデンサにおいて、陽極として用いられる
弁金RM体として、例えばアルミニウム、タンタル、ニ
オブ、チタン及びこれらを基質どする合金等、弁作用を
有づる金属がいずれも使用できる。
In the solid electrolytic capacitor of the present invention in which a conductive layer is formed using the above-mentioned conductive paste, the valve metal RM body used as the anode is made of a material having valve action, such as aluminum, tantalum, niobium, titanium, or an alloy containing these as a substrate. Any metal can be used.

陽極基体表面の酸化皮膜層は、陽極基体表層部分に設け
られた陽極基体自体の酸化物層であってもよく、あるい
は、陽極基体の表面上に設けられた他の誘電体酸化物の
層であってもよいが、特に陽極弁金属自体の酸化物から
なる層であることが望ましい。いずれの場合にも酸化物
層を設ける方法としては、電解液を用いたII!極化成
法など従来公知の方法を用いることができる。
The oxide film layer on the surface of the anode substrate may be an oxide layer of the anode substrate itself provided on the surface layer of the anode substrate, or another dielectric oxide layer provided on the surface of the anode substrate. However, it is particularly desirable that the layer be made of an oxide of the anode valve metal itself. In either case, the method of providing the oxide layer is II! using an electrolyte. Conventionally known methods such as polarization method can be used.

また、本発明において使用する半導体層の組成および作
製方法に特に制限はないが、コンデンサの性能を高める
ためには導電性高分子、二酸化鉛もしくは、二酸化鉛と
硫酸鉛を主成分としたものがよく、二酸化鉛、または二
酸化鉛と硫酸鉛を主成分とするものは、従来公知の化学
的析出法、或は電気化学的析出法で作製するのが好まし
い。
Furthermore, although there are no particular limitations on the composition and manufacturing method of the semiconductor layer used in the present invention, in order to improve the performance of the capacitor, conductive polymers, lead dioxide, or materials containing lead dioxide and lead sulfate as main components are recommended. It is preferable to produce lead dioxide, or one whose main components are lead dioxide and lead sulfate, by a conventionally known chemical precipitation method or electrochemical precipitation method.

半導体層を導電性高分子とした場合の半導体層の種類お
よび形成方法としては、本発明者等が先に提案した特開
昭60−17909、特開昭60−22311、特開昭
60−37114、特開昭60−37115、特開昭6
1−22613、特1;i昭22614、特開昭61−
85813、特開昭61−89619、特開昭61−9
1912、特開昭61−91913、特開昭62−43
12、特開昭62−29124、特開昭62−4710
9等に記載された種類および形成方法が採用される。
When the semiconductor layer is made of a conductive polymer, the types and formation methods of the semiconductor layer include those previously proposed by the present inventors, such as JP-A-60-17909, JP-A-60-22311, and JP-A-60-37114. , JP-A-60-37115, JP-A-6
1-22613, Special 1;
85813, JP-A-61-89619, JP-A-61-9
1912, JP-A-61-91913, JP-A-62-43
12, JP-A-62-29124, JP-A-62-4710
The types and forming methods described in No. 9 etc. are employed.

又、半導体層を二酸化鉛もしくは二酸化鉛と硫RWaを
主成分とする層とした場合の半導体層の形成方法は、例
えば本発明者等が特開昭62−185307、特1ft
!昭63−51621等に記載した方法を用いることが
出来る。
In addition, a method for forming a semiconductor layer when the semiconductor layer is a layer mainly composed of lead dioxide or lead dioxide and sulfur RWa is described by the present inventors, for example, in JP-A-62-185307, 1 ft.
! The method described in Sho 63-51621 etc. can be used.

本発明の固体電解コンデンサの導電体層には、上記導電
性8分子、金属粉および樹脂よりなる導電ペーストを使
用することが肝要である。この導電ペーストを使用する
ことにより高温安定性の良い固体電解コンデンサが作製
される。その理由は一般に固体電解コンデンサの高温安
定性は、半導体層と導電体層との熱膨張係数差を小さく
し、密着性を保持することによって解決できるが、上記
導電ペースト中の1wi性高分子は、半導体層と導電体
層との熱膨張係数差を小さくする効果を有しているため
である。
It is important to use a conductive paste made of the above-mentioned 8 conductive molecules, metal powder, and resin for the conductor layer of the solid electrolytic capacitor of the present invention. By using this conductive paste, a solid electrolytic capacitor with good high temperature stability can be manufactured. The reason for this is that the high-temperature stability of solid electrolytic capacitors can generally be solved by reducing the difference in thermal expansion coefficient between the semiconductor layer and the conductive layer and maintaining adhesion, but the 1wi polymer in the conductive paste is This is because it has the effect of reducing the difference in thermal expansion coefficient between the semiconductor layer and the conductor layer.

このように構成された本発明の固体電解コンデンサは例
えば樹脂モールド、樹脂ケース、金属製の外装ケース、
樹脂のディッピング、ラミネートフィルムによる外装に
より各種用途の汎用コンデンサ製品とすることができる
The solid electrolytic capacitor of the present invention configured as described above can be made of, for example, a resin mold, a resin case, a metal exterior case,
It can be made into a general-purpose capacitor product for various uses by resin dipping and laminate film exterior.

〔実施例〕〔Example〕

以下、実施例、比較例を示して、本発明を説明する。 Hereinafter, the present invention will be explained by showing Examples and Comparative Examples.

実施例1〜3 第1表に示した組成の3種の導電ペーストを作製し、電
解重合して得たポリピロール膜、ポリチオフェン膜およ
び二酸化鉛粉を10tの荷重で押圧付着せしめた基板に
それぞれ塗布し、100℃で減圧乾燥した。ついでこれ
らを105℃の温度下、2000時間放置したが表面抵
抗の変化はなく、ペーストと膜および基板との密着性は
何ら変化していないことを示した。
Examples 1 to 3 Three types of conductive pastes having the compositions shown in Table 1 were prepared and applied to a substrate on which a polypyrrole film obtained by electrolytic polymerization, a polythiophene film, and lead dioxide powder were adhered under pressure with a load of 10 tons. and dried under reduced pressure at 100°C. These were then left at a temperature of 105° C. for 2,000 hours, but there was no change in surface resistance, indicating that there was no change in the adhesion between the paste, film, and substrate.

以  下  余  白 第    1    表 比較例1 導電ペースト中にポリピロール粉末を加えずに銀粉90
重滑部とアクリル樹脂101吊部のみからなる導電ペー
ストを作製し、実施例1と同様な、電解車台で得たポリ
ピロール膜にこの導電ペーストを塗布し、100℃で減
圧乾燥した。これを105℃で2000時間放置したと
ころ表面抵抗が増大しペーストと膜との密着性が減少し
たことを示した。
Table 1 Comparative Example 1 Silver powder 90% without adding polypyrrole powder to conductive paste
A conductive paste consisting only of a heavy sliding part and an acrylic resin 101 hanging part was prepared, and this conductive paste was applied to a polypyrrole film obtained using an electrolytic chassis similar to that in Example 1, and dried under reduced pressure at 100°C. When this was left at 105° C. for 2000 hours, the surface resistance increased and the adhesion between the paste and the film decreased.

実施例4 長さ2 att 、幅0 、5 Crrrのアルミニウ
ム箔を陽極とし、交流により箔の表面を電気化学的にエ
ツチング処理した後、エツチングアルミニウム箔に陽極
端子をかしめ付けし、陽極リード線を接続した。
Example 4 An aluminum foil with a length of 2 att and a width of 0 and 5 Crrr was used as an anode, and the surface of the foil was electrochemically etched using alternating current.The anode terminal was caulked to the etched aluminum foil, and the anode lead wire was connected. Connected.

次いで、りん酸とりん酸アンモニウムの水溶液中で電気
化学的に処理してアルミナの酸化皮膜を形成し、低圧用
エツチングアルミニウム化成箔(約10μF / cM
 )を得た。ついで、酢Ml三水和物1モル/J水溶液
に化成箔を浸漬し、酢酸鉛三水和物2.4モル/Jの水
溶液と過SM Mアンモニウム4七ル/jの水溶液の混
合液(反応母液)に浸漬し、80℃で30分反応させ、
誘電体酸化皮膜層上に生じた二酸化鉛と硫酸鉛からなる
半導体層を水で充分洗浄した後、120℃で減圧乾燥し
た。生成した半導体層は二酸化鉛とi酸鉛から成り、二
酸化鉛が約25重量%含まれることを質但分析、X線分
析、赤外分光分析より確認した。
Next, an alumina oxide film is formed by electrochemical treatment in an aqueous solution of phosphoric acid and ammonium phosphate, and etched aluminum foil for low pressure (approximately 10 μF/cM
) was obtained. Next, the chemically modified foil was immersed in an aqueous solution of 1 mol/J of vinegar Ml trihydrate, and a mixed solution of an aqueous solution of 2.4 mol/J of lead acetate trihydrate and 47 mol/J of perSM-ammonium ( reaction mother liquor) and reacted at 80°C for 30 minutes,
The semiconductor layer made of lead dioxide and lead sulfate formed on the dielectric oxide film layer was thoroughly washed with water and then dried under reduced pressure at 120°C. The produced semiconductor layer was composed of lead dioxide and lead oxide, and it was confirmed by qualitative analysis, X-ray analysis, and infrared spectroscopy that it contained about 25% by weight of lead dioxide.

次いで、実施例3で作製した導電ペースト浴にこの半導
体層を形成した化成箔を浸漬し引き上げた後100℃で
減圧乾燥した。陰極を前記したペーストで接続した後樹
脂封口して固体電解コンデンサを作製した。
Next, the chemically formed foil with the semiconductor layer formed thereon was immersed in the conductive paste bath prepared in Example 3, pulled up, and dried under reduced pressure at 100°C. A solid electrolytic capacitor was produced by connecting the cathode with the paste described above and sealing with resin.

実施例5 実施例4と同様な化成箔を酢酸鉛三水和物1.0モル/
J水溶液に浸漬し、別に用意したステンレス箔を陰極と
して、電解反応を行い化成箔上に二酸化鉛からなる半導
体層を形成した。ついで実施例1の導電ペーストを使用
してWffi体層とし、固体電解コンデンサを作製した
Example 5 A chemically formed foil similar to Example 4 was mixed with 1.0 mol/lead acetate trihydrate.
It was immersed in a J aqueous solution, and an electrolytic reaction was carried out using a separately prepared stainless steel foil as a cathode to form a semiconductor layer made of lead dioxide on the chemically formed foil. Next, the conductive paste of Example 1 was used to form a Wffi body layer, and a solid electrolytic capacitor was manufactured.

実施例6 実施例4と同liな化成箔を正極、白金を負極として電
解液にビロールモノマーを0.02 M溶解さぜた0、
IMBu 4 N B F4アセトニトリロ溶媒を使用
して電解重合を行い、化成箔上にBF4−をドープした
ポリピロールの半導体層を形成した。
Example 6 0.02 M of virol monomer was dissolved in an electrolytic solution using the same chemically modified foil as in Example 4 as a positive electrode and platinum as a negative electrode.
Electrolytic polymerization was performed using IMBu 4 N B F 4 acetonitrile solvent to form a semiconductor layer of polypyrrole doped with BF 4 - on the chemically formed foil.

ついで実施例5と同様にして導電体層を形成し固体゛眉
解コンデンサを作製した。
Then, a conductive layer was formed in the same manner as in Example 5 to produce a solid-state capacitor.

実施例7 ビロールモノマーの代わりにヂオフェンモ、lマーを使
用し、また実施例2の導電ペーストを利用した以外は実
施例6と同様にして固体電解コンデンサを作製した。
Example 7 A solid electrolytic capacitor was produced in the same manner as in Example 6 except that diofenmo and l-mer were used instead of virol monomer and the conductive paste of Example 2 was used.

比較例2〜3 導電体層に比較例1で作製した導電ペーストを使用した
以外は実施例4および実施例6と同様にして固体電解コ
ンデンサを作製した。
Comparative Examples 2 to 3 Solid electrolytic capacitors were produced in the same manner as in Examples 4 and 6, except that the conductive paste produced in Comparative Example 1 was used for the conductor layer.

実施例4〜7、比較例2〜3において作’FJ l、た
固体電解コンデンサの特性値を一括して第2表に示づ。
The characteristic values of the solid electrolytic capacitors produced in Examples 4 to 7 and Comparative Examples 2 to 3 are summarized in Table 2.

第    2    表 第2表から明らかなように、導電性高分子と金属粉と樹
脂を含有したペースト層を導電体層とした固体電解コン
デンサは、高温安定性が改良され、良好な性質を示して
いる。
Table 2 As is clear from Table 2, solid electrolytic capacitors whose conductor layer is a paste layer containing a conductive polymer, metal powder, and resin have improved high-temperature stability and exhibit good properties. There is.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、水元1!11に係る導電ペーストは
、廉価で密着性に優れ、また該導電ペーストを導電体層
に利用した固体電解コンデンサは従来の固体電解コンデ
ンサに比して高温安定性に優れ、安価である等の長所を
有する。
As mentioned above, the conductive paste related to Mizumoto 1!11 is inexpensive and has excellent adhesion, and solid electrolytic capacitors using the conductive paste for the conductive layer are more stable at high temperatures than conventional solid electrolytic capacitors. It has advantages such as excellent performance and low cost.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性高分子と、金属粉と、樹脂の混合物である
ことを特徴とする導電ペースト。
(1) A conductive paste characterized by being a mixture of a conductive polymer, metal powder, and resin.
(2)弁作用金属からなる陽極基体の表面に順次誘電体
酸化皮膜層、半導体層、導電体層を形成してなる固体電
解コンデンサにおいて、上記導電体層が、請求項1記載
の導電ペーストによって形成されてなる固体電解コンデ
ンサ。
(2) A solid electrolytic capacitor in which a dielectric oxide film layer, a semiconductor layer, and a conductive layer are sequentially formed on the surface of an anode substrate made of a valve metal, wherein the conductive layer is formed by forming the conductive paste according to claim 1. Solid electrolytic capacitor made of
JP12334788A 1988-05-20 1988-05-20 Conductive paste and solid-state electrolytic capacitor Pending JPH01294303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12334788A JPH01294303A (en) 1988-05-20 1988-05-20 Conductive paste and solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12334788A JPH01294303A (en) 1988-05-20 1988-05-20 Conductive paste and solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01294303A true JPH01294303A (en) 1989-11-28

Family

ID=14858318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12334788A Pending JPH01294303A (en) 1988-05-20 1988-05-20 Conductive paste and solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01294303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187946A (en) * 2014-03-26 2015-10-29 国立大学法人山梨大学 conductive paste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595297A (en) * 1982-07-01 1984-01-12 日本電気株式会社 Band sharing type vocoder
JPS61112384A (en) * 1984-11-07 1986-05-30 Teijin Ltd Solar battery and manufacture thereof
JPS6347917A (en) * 1986-08-18 1988-02-29 昭和電工株式会社 Solid electrolytic capacitor
JPH01196844A (en) * 1988-02-02 1989-08-08 Seiko Epson Corp Mounting method for electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595297A (en) * 1982-07-01 1984-01-12 日本電気株式会社 Band sharing type vocoder
JPS61112384A (en) * 1984-11-07 1986-05-30 Teijin Ltd Solar battery and manufacture thereof
JPS6347917A (en) * 1986-08-18 1988-02-29 昭和電工株式会社 Solid electrolytic capacitor
JPH01196844A (en) * 1988-02-02 1989-08-08 Seiko Epson Corp Mounting method for electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187946A (en) * 2014-03-26 2015-10-29 国立大学法人山梨大学 conductive paste

Similar Documents

Publication Publication Date Title
US6804109B1 (en) Solid electrolyte capacitor having transition metal oxide underlayer and conductive polymer electrolyte
JP4600398B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US5694287A (en) Solid electrolytic capacitor with conductive polymer as solid electrolyte and method of manufacturing the same
JP3065286B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4315038B2 (en) Solid electrolytic capacitor
DE102004022110A1 (en) Process for the preparation of electrolytic capacitors
EP2892065B1 (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
KR100262709B1 (en) Electrically-conductive polymer and production method thereof and solid-electrolytic capacitor
JP2792469B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPS62118511A (en) Manufacture of solid electrolytic capacitor
JP3356018B2 (en) Capacitor and manufacturing method thereof
JPH01294303A (en) Conductive paste and solid-state electrolytic capacitor
JP3201466B2 (en) Conductive polymer terminals and solid electrolytic capacitors
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002008946A (en) Method of manufacturing solid electrolytic capacitor
JP2637207B2 (en) Solid electrolytic capacitors
JP3242464B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62189714A (en) Formation of semiconductor layer of solid electrolytic capacitor
JPH0558227B2 (en)
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0925417A (en) Heat-sensitive and electroconductive polymer, its production and solid electrolytic capacitor using the same electroconductive polymer
JPH0239413A (en) Solid electrolytic capacitor
JPH0770445B2 (en) Solid electrolytic capacitor
JPH06163329A (en) Manufacture of solid electrolytic capacitor
JPH11283876A (en) Solid electrolytic capacitor and manufacture thereof