JP3242464B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP3242464B2
JP3242464B2 JP26326392A JP26326392A JP3242464B2 JP 3242464 B2 JP3242464 B2 JP 3242464B2 JP 26326392 A JP26326392 A JP 26326392A JP 26326392 A JP26326392 A JP 26326392A JP 3242464 B2 JP3242464 B2 JP 3242464B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrode
solid electrolytic
polymerization
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26326392A
Other languages
Japanese (ja)
Other versions
JPH0684708A (en
Inventor
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP26326392A priority Critical patent/JP3242464B2/en
Publication of JPH0684708A publication Critical patent/JPH0684708A/en
Application granted granted Critical
Publication of JP3242464B2 publication Critical patent/JP3242464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサの製
造方法、とりわけ固体電解質の含浸方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for impregnating a solid electrolyte.

【0002】[0002]

【従来の技術】表面に陽極酸化皮膜を有する弁作用金属
からなる陽極体電極と該電極に対向して構成された陰極
用電極との間に固体電解質を介在させてなる従来の固体
電解コンデンサには二酸化マンガンが用いられてきた。
しかしながら、この方法は二酸化マンガンを電極上に形
成させる際に、一般陽極体電極を硝酸マンガン溶液に浸
漬させた後、加熱分解を行うため、陽極酸化皮膜が損傷
を受けること、加えて二酸化マンガンによる修復性が乏
しいという欠点があった。
2. Description of the Related Art A conventional solid electrolytic capacitor in which a solid electrolyte is interposed between an anode electrode made of a valve metal having an anodic oxide film on its surface and a cathode electrode opposed to the electrode is used. Has used manganese dioxide.
However, in this method, when manganese dioxide is formed on the electrode, the general anodic body electrode is immersed in a manganese nitrate solution and then thermally decomposed, so that the anodized film is damaged, and in addition, the manganese dioxide is used. There is a disadvantage that the repairability is poor.

【0003】これらの欠点を補う方法としてTCNQ錯
体などの有機半導体を固体電解質として用いた固体電解
コンデンサが出現している。この含浸方法に関する代表
的な例として特開昭57−173928号報に記載され
ているようにTCNQ錯体を含む有機半導体を加熱融解
により液化させ、分解に至るまでの間に素子を入れ、急
冷固化させるものである。しかしながら、この固体電解
コンデンサはTCNQ錯体の電導度が低いこと、電極と
の接合性に乏しいこと、コストが高いことなどに加え、
コンデンサとしての特性において静電容量が小さく誘電
損失も大きく、TCNQ錯体の熱的な弱さにより耐熱性
に乏しいという欠点を有している。
As a method for compensating for these drawbacks, a solid electrolytic capacitor using an organic semiconductor such as a TCNQ complex as a solid electrolyte has appeared. As a typical example of this impregnation method, as described in JP-A-57-173928, an organic semiconductor containing a TCNQ complex is liquefied by heating and melting, and the element is put into the device until decomposition, followed by rapid cooling and solidification. It is to let. However, this solid electrolytic capacitor has low conductivity of the TCNQ complex, poor bonding with electrodes, high cost, and the like.
In terms of characteristics as a capacitor, it has a drawback that the capacitance is small, the dielectric loss is large, and the heat resistance is poor due to the thermal weakness of the TCNQ complex.

【0004】このような背景を基に、電導度が良好で、
誘電体皮膜との接合性も良好で加えてハンダ耐熱にも適
応できる導電性高分子を固体電解質として用いる固体電
解コンデンサが出現した。この試みの例としてはたとえ
ば特開昭62−118510号公報などがあるが、これ
はポリピロ−ル、ポリチオフェン、ポリ(イソチアナフ
テン)などのπ電子共役系を有する高分子化合物を誘電
体酸化皮膜上に直接電解重合を行い、必要に応じて電子
供与性化合物たとえばプロトン酸、アルカリ金属イオン
などをド−プ剤としてド−パントして電導度の特性向上
を図ったものである。しかしながらこの方法では高分子
化合物を電極上に重合形成させる際に、誘電体酸化皮膜
の欠陥部などの特殊な部分しか反応が起こらず、含浸性
は極めて悪く、皮膜欠陥部が増大し、修復化成を行って
も漏れ電流特性も極めて悪いものとなっていた。
[0004] Based on this background, the conductivity is good,
A solid electrolytic capacitor using a conductive polymer as a solid electrolyte, which has a good bondability with a dielectric film and can also be adapted to solder heat resistance, has appeared. An example of this attempt is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-118510, in which a polymer compound having a π-electron conjugate system such as polypyrrol, polythiophene, poly (isothianaphthene) is coated with a dielectric oxide film. Electrolytic polymerization is carried out directly thereon, and if necessary, an electron-donating compound such as a protonic acid or an alkali metal ion is doped as a doping agent to improve conductivity characteristics. However, in this method, when a polymer compound is polymerized and formed on the electrode, only a special portion such as a defective portion of the dielectric oxide film reacts, the impregnation property is extremely poor, the defective film portion increases, and the repair formation is increased. , The leakage current characteristics were extremely poor.

【0005】この様な問題点を解決する目的で、特開昭
63−173313号公報による方法が開示された。こ
れによれば誘電体酸化皮膜上にまず酸化剤を用いて化学
重合による導電性高分子層を形成させ、該ポリマ−を介
してメインとなる導電性高分子を電解重合を行い固体電
解質層を形成させるものである。しかしながら、この方
法によれば化学重合によって生成した導電性高分子層を
後の電解重合の際の給電部とするため、生産性が著しく
劣り、かなりの生産技術力を要するため生産コスト的に
も問題がある。又歩留まりも良くない。更に化学重合反
応を行うため誘電体酸化皮膜も高分子が酸化される際
に、皮膜そのものも該高分子の化学的結合の際、酸化還
元反応が起こり酸化皮膜耐圧が大きく低下し、漏れ電流
特性が不安定である。
For the purpose of solving such a problem, a method disclosed in Japanese Patent Application Laid-Open No. 63-173313 has been disclosed. According to this, first, a conductive polymer layer is formed on a dielectric oxide film by chemical polymerization using an oxidizing agent, and the main conductive polymer is electrolytically polymerized via the polymer to form a solid electrolyte layer. It is formed. However, according to this method, since the conductive polymer layer generated by chemical polymerization is used as a power supply part in the subsequent electrolytic polymerization, productivity is significantly inferior, and considerable production technology is required. There's a problem. Also, the yield is not good. Furthermore, when the polymer is oxidized in the dielectric oxide film due to the chemical polymerization reaction, the film itself also undergoes an oxidation-reduction reaction when the polymer is chemically bonded, and the withstand voltage of the oxide film is greatly reduced, resulting in leakage current characteristics. Is unstable.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する課題は固体電解質としての導電性高分子形成にあた
り、歩留まりの良好な電解重合の給電方法を提供し、加
えて誘電体酸化皮膜と導電性高分子との化学的な接合の
際、皮膜の酸化還元反応による劣化を防ぐことにある。
The problem to be solved by the present invention is to form a conductive polymer as a solid electrolyte, to provide a power supply method for electrolytic polymerization with a good yield, and to provide a dielectric oxide film and a conductive material. The purpose of the present invention is to prevent a film from being deteriorated by a redox reaction during chemical bonding with a conductive polymer.

【0007】[0007]

【課題を解決するための手段】本発明者は上記課題を解
決するため様々な検討を行った結果、上記課題を解決す
るための手段を見いだすに至った。本発明の基本となる
考え方は、電解重合時での給電が誘電体酸化皮膜を通し
て行った場合、高分子と皮膜との接合が電気化学的な酸
化還元に基づく化学結合によるため、皮膜の劣化が起こ
ることを確認、従って電解重合時には電流依存性から電
場依存性にしてやる必要があり、そのためには酸化還元
能力の強い酸化物を酸化皮膜表面に付着させ皮膜劣化を
防ぐと共に皮膜が高分子の酸化反応により還元された場
合ただちに皮膜を酸化させ修復させる事、また金属酸化
物そのものも導電性が良好であることが必要である。
The inventor of the present invention has conducted various studies to solve the above problems, and as a result, has found means for solving the above problems. The basic idea of the present invention is that when power supply during electrolytic polymerization is performed through a dielectric oxide film, the deterioration between the polymer and the film is reduced by chemical bonding based on electrochemical redox. Therefore, it is necessary to change from current dependence to electric field dependence during electropolymerization.To do so, an oxide with a strong redox ability is attached to the oxide film surface to prevent film deterioration and to make the film oxidized by the polymer. When reduced by the reaction, it is necessary that the film is immediately oxidized and repaired, and that the metal oxide itself has good conductivity.

【0008】上記の条件を満たすことで金属酸化物を選
定したところ過マンガン酸塩が良好であることを見いだ
した。マンガンは7価、5価、4価、2価と周囲の環境
によって極めて速やかに変化し酸化反応を促進させる。
しかしながら二酸化マンガンは電導度がある程度あるが
導電性高分子よりは劣る。従って電導度を更に良好にさ
せる必要があり、検討したところ二酸化鉛との混合物が
極めて良好な電導度を有することを見いだした。二酸化
鉛の生成には酢酸鉛溶液を過マンガン酸塩と反応させる
と二酸化鉛の生成と同時に二酸化マンガンも生成し所望
の混合酸化物の生成ができた。
When a metal oxide was selected by satisfying the above conditions, it was found that permanganate was good. Manganese changes very rapidly depending on the surrounding environment, such as pentavalent, pentavalent, tetravalent, and divalent, and promotes the oxidation reaction.
However, manganese dioxide has some conductivity but is inferior to conductive polymers. Therefore, it is necessary to further improve the conductivity, and upon examination, it has been found that a mixture with lead dioxide has an extremely good conductivity. When the lead acetate solution was reacted with permanganate to form lead dioxide, manganese dioxide was formed simultaneously with the formation of lead dioxide, and a desired mixed oxide could be formed.

【0009】即ち、導電性高分子化合物を固体電解質と
する固体電解コンデンサの製造方法において、導電性高
分子を化学重合もしくは電解重合によりコンデンサ用陽
極電極上に生成させる前処理として、酢酸鉛と過マンガ
ン酸塩の混合水溶液に該電極を浸漬処理し、化学的な酸
化還元反応により二酸化鉛と二酸化マンガンの混合物を
上記電極上に生成させることを特徴とする固体電解コン
デンサの製造方法である。
That is, in a method for manufacturing a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte, lead acetate and peroxide are used as pretreatment for forming a conductive polymer on a capacitor anode electrode by chemical polymerization or electrolytic polymerization. manga
The electrode is immersed in a mixed aqueous solution of
A mixture of lead dioxide and manganese dioxide by redox reaction
A method for producing a solid electrolytic capacitor, wherein the method is performed on the electrode .

【0010】[0010]

【作用】酢酸鉛に過マンガン酸塩を添加すると過マンガ
ン酸の酸化作用により二酸化鉛が生成し、同時に過マン
ガン酸も還元されて二酸化マンガンが生ずる。この二酸
化鉛も二酸化マンガンも水溶液に対する溶解性が乏しい
ため生成と同時に誘電体酸化皮膜上に速やかに析出され
る。この二酸化マンガンも二酸化鉛も電解コンデンサの
固体電解質として用いることができるものであり、その
双方の混合物にすると電導度はそれぞれ単独のものより
良好となる。またこの反応時の誘電体酸化皮膜の損傷は
反応が酢酸鉛と過マンガン酸との酸化還元反応による双
方の析出反応であるため、析出時に誘電体酸化皮膜との
酸化還元反応は起こらず皮膜劣化は極めて少ない。これ
が本発明の大きな効果である。これが従来通りの、たと
えば酢酸鉛と過硫酸との反応だと二酸化鉛の析出のみで
析出時に誘電体酸化皮膜の一部を還元させてしまい皮膜
劣化を誘発し大幅な漏れ電流増大となり特性不安定の大
きな要因となっていた。
When permanganate is added to lead acetate, lead dioxide is produced by the oxidizing action of permanganate, and at the same time, permanganate is also reduced to produce manganese dioxide. Since both lead dioxide and manganese dioxide have poor solubility in an aqueous solution, they are quickly deposited on a dielectric oxide film simultaneously with their formation. Both manganese dioxide and lead dioxide can be used as a solid electrolyte of an electrolytic capacitor, and when a mixture of both is used, the conductivity becomes better than that of a single electrolyte. The damage of the dielectric oxide film during this reaction is a precipitation reaction due to the redox reaction between lead acetate and permanganic acid, so the oxidation-reduction reaction with the dielectric oxide film does not occur during the deposition, and the film deteriorates. Is extremely small. This is a great effect of the present invention. If this is the same as before, for example, the reaction between lead acetate and persulfuric acid, only the precipitation of lead dioxide reduces a part of the dielectric oxide film at the time of deposition, causing film deterioration and causing a large increase in leakage current, resulting in unstable characteristics. Had become a major factor.

【0011】更にこの二酸化マンガンと二酸化鉛との混
合物を予め生成させてからポリピロ−ルなどの導電性高
分子を電解重合により生成させる際に、該酸化物の混合
物に給電させるという方法は不要であり、直接コンデン
サ陽極電極に給電させる方法を行っても誘電体酸化皮膜
の損傷は起こらない。これは二酸化マンガンになりきれ
なかった過マンガン酸が二酸化マンガンと二酸化鉛の混
合物中に残存し、電解重合時に誘電体酸化皮膜の劣化が
起こっても皮膜がアノ−ドの電場下におかれているため
直ちに皮膜を酸化修復させてしまうからである。
Further, when a mixture of manganese dioxide and lead dioxide is formed in advance and then a conductive polymer such as polypyrrol is formed by electrolytic polymerization, a method of supplying power to the oxide mixture is unnecessary. In addition, even if a method of directly supplying power to the capacitor anode electrode is used, the dielectric oxide film is not damaged. This is because permanganic acid, which could not be converted to manganese dioxide, remains in the mixture of manganese dioxide and lead dioxide, and even if the dielectric oxide film deteriorates during electrolytic polymerization, the film remains under the electric field of the anode. This causes the film to be immediately oxidized and repaired.

【0012】[0012]

【実施例】以下に本発明の具体的実施例について述べ
る。 (実施例1)厚さ90μmの高純度アルミニウム箔(9
9.99%)を交流により電解エッチングを行い約50
倍の表面倍率を有した電極箔を作製し、中性燐酸溶液に
て30V化成処理を行い誘電体皮膜を形成させた。次い
で100g/ lの過マンガン酸カリウム水溶液と300
g/ lの酢酸鉛水溶液を作製し、双方を混合させて直ち
に上記電極箔を浸漬させた。室温にて30分間反応を行
い、電極上に二酸化鉛と二酸化マンガンの混合物を析出
させた。次に0.1molのピロ−ルと0.05mol
のp−トルエンスルホン酸のトリ−nブチルアンモニウ
ム塩を含むアセトニトリル溶液にて1mA/cm2 の電
流で約40分間電解重合を行った。その時の給電は上記
電極箔の直接給電とした。 電解重合が終了した後、コ
ロイダルカ−ボンを塗布形成し、更に銀ペ−ストで陰極
引き出しリ−ドを取り出し、その後エポキシ樹脂で外装
し、固体電解コンデンサを作製した。
EXAMPLES Specific examples of the present invention will be described below. (Example 1) High-purity aluminum foil having a thickness of 90 μm (9
(9.99%) by electrolytic etching with alternating current
An electrode foil having twice the surface magnification was prepared, and subjected to a chemical conversion treatment with a neutral phosphoric acid solution at 30 V to form a dielectric film. Then 100 g / l potassium permanganate aqueous solution and 300 g
g / l of an aqueous lead acetate solution was prepared, and both were mixed and immediately immersed in the electrode foil. The reaction was carried out at room temperature for 30 minutes to precipitate a mixture of lead dioxide and manganese dioxide on the electrode. Next, 0.1 mol of pyrrole and 0.05 mol
Was subjected to electrolytic polymerization at a current of 1 mA / cm 2 for about 40 minutes in an acetonitrile solution containing tri-n-butylammonium p-toluenesulfonic acid. The power was supplied directly to the electrode foil at that time. After the electrolytic polymerization was completed, a colloidal carbon was applied and formed, and a cathode lead was taken out with a silver paste, and then packaged with an epoxy resin to produce a solid electrolytic capacitor.

【0013】(実施例2)実施例1と同一の処理を行っ
た電極箔を使用し、二酸化鉛と二酸化マンガンの混合物
の生成も実施例1と同様に行った。次いで10%ペルオ
クソ二硫酸ナトリウムと5%のベンゼンスルホン酸を含
有する水溶液を塗布した。その後窒素とピロ−ルの蒸気
からなる雰囲気中に曝しポリピロ−ルの酸化重合を行っ
た。重合が終了した後、コロイダルカ−ボンを塗布形成
し、更に銀ペ−ストで陰極引き出しリ−ドを取り出し、
その後エポキシ樹脂で外装し、固体電解コンデンサを作
製した。
Example 2 A mixture of lead dioxide and manganese dioxide was produced in the same manner as in Example 1 using the electrode foil treated in the same manner as in Example 1. Next, an aqueous solution containing 10% sodium peroxodisulfate and 5% benzenesulfonic acid was applied. Thereafter, it was exposed to an atmosphere composed of nitrogen and pyrrole vapor to carry out oxidative polymerization of polypyrrole. After the polymerization was completed, a colloidal carbon was applied and formed, and a cathode lead was taken out with silver paste.
Thereafter, the package was covered with an epoxy resin to produce a solid electrolytic capacitor.

【0014】(実施例3)実施例1と同一の処理を行っ
た電極箔を使用し、80g/ lの過マンガン酸カリウム
水溶液と200g/ lの酢酸鉛水溶液を作製し、双方を
混合させて直ちに上記電極箔を浸漬させた。室温にて6
0分間反応を行い、電極上に二酸化鉛と二酸化マンガン
の混合物を析出させた。次に0.1molのピロ−ルと
0.05molのp−トルエンスルホン酸のトリ−nブ
チルアンモニウム塩を含むアセトニトリル溶液にて1m
A/cm2 の電流で約40分間電解重合を行った。その
時の給電は上記電極箔の直接給電とした。 電解重合が
終了した後、コロイダルカ−ボンを塗布形成し、更に銀
ペ−ストで陰極引き出しリ−ドを取り出し、その後エポ
キシ樹脂で外装し、固体電解コンデンサを作製した。
Example 3 Using an electrode foil treated in the same manner as in Example 1, an aqueous solution of 80 g / l of potassium permanganate and an aqueous solution of 200 g / l of lead acetate were prepared and mixed. The electrode foil was immediately immersed. 6 at room temperature
The reaction was carried out for 0 minutes to precipitate a mixture of lead dioxide and manganese dioxide on the electrode. Next, 1 m of acetonitrile solution containing 0.1 mol of pyrrole and 0.05 mol of tri-n-butylammonium salt of p-toluenesulfonic acid was used.
Electropolymerization was performed at a current of A / cm 2 for about 40 minutes. The power was supplied directly to the electrode foil at that time. After the electrolytic polymerization was completed, a colloidal carbon was applied and formed, and a cathode lead was taken out with a silver paste, and then packaged with an epoxy resin to produce a solid electrolytic capacitor.

【0015】(比較例)実施例1と同一の処理を行った
電極箔を使用し、過硫酸アンモニウム0.04mol/
lと0.05mol/ lのパラトルエンスルホン酸との
水溶液に減圧下で5分間浸漬させ、次いで乾燥させた後
ピロ−ル2mol/ l含むアセトニトリル溶液に浸漬さ
せ化学酸化重合でポリピロ−ル薄膜を生成させた。次に
0.1molのピロ−ルと0.05molのp−トルエ
ンスルホン酸のトリ−nブチルアンモニウム塩を含むア
セトニトリル溶液にて1mA/cm2 の電流で約40分
間電解重合を行った。その時の給電は上記化学酸化重合
したポリピロ−ル薄膜を介して給電した。電解重合が終
了した後、コロイダルカ−ボンを塗布形成し、更に銀ペ
−ストで陰極引き出しリ−ドを取り出し、その後エポキ
シ樹脂で外装し、固体電解コンデンサを作製した。以上
の結果を表1に示した。
COMPARATIVE EXAMPLE An electrode foil treated in the same manner as in Example 1 was used.
l and 0.05 mol / l of an aqueous solution of p-toluenesulfonic acid under reduced pressure for 5 minutes, then dried and then immersed in an acetonitrile solution containing 2 mol / l of pyrrole to form a polypyrrol thin film by chemical oxidation polymerization. Generated. Next, electrolytic polymerization was carried out at a current of 1 mA / cm 2 for about 40 minutes in an acetonitrile solution containing 0.1 mol of pyrrole and 0.05 mol of tri-n-butylammonium salt of p-toluenesulfonic acid. At that time, power was supplied through the above-mentioned chemically oxidized and polymerized polypyrrole thin film. After the electrolytic polymerization was completed, a colloidal carbon was applied and formed, and a cathode lead was taken out with a silver paste, and then packaged with an epoxy resin to produce a solid electrolytic capacitor. Table 1 shows the above results.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】表1に示した通り、本発明により作製し
た固体電解コンデンサは、漏れ電流特性も大幅に改善さ
れ、加えて電極との接合状態も改善され含浸性が良好の
ため静電容量が増大し、損失の低下も明かである。又従
来の高分子の含浸方法に比べて作業性も大幅に改善され
るため歩留まりも良好になり、工業的、実用的価値大な
るものがある。
As shown in Table 1, the solid electrolytic capacitor manufactured according to the present invention has a significantly improved leakage current characteristic, and also has an improved bonding state with the electrodes and a good impregnation property, so that the capacitance is improved. Increases and the loss is also apparently reduced. In addition, the workability is greatly improved as compared with the conventional polymer impregnation method, so that the yield is improved, and there are industrial and practical values of great value.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 9/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01G 9/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性高分子化合物を固体電解質とする
固体電解コンデンサの製造方法において、導電性高分子
を化学重合もしくは電解重合によりコンデンサ用陽極電
極上に生成させる前処理として、酢酸鉛と過マンガン酸
塩の混合水溶液に該電極を浸漬処理し、化学的な酸化還
元反応により二酸化鉛と二酸化マンガンの混合物を上記
電極上に生成させることを特徴とする固体電解コンデン
サの製造方法。
1. A method for manufacturing a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte, wherein lead acetate and peroxide are used as pretreatment for forming a conductive polymer on a capacitor anode electrode by chemical polymerization or electrolytic polymerization. Manganic acid
The electrode is immersed in a mixed aqueous solution of salt and subjected to chemical redox.
The mixture of lead dioxide and manganese dioxide by reduction reaction
A method for producing a solid electrolytic capacitor, wherein the method is formed on an electrode .
JP26326392A 1992-09-03 1992-09-03 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3242464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26326392A JP3242464B2 (en) 1992-09-03 1992-09-03 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26326392A JP3242464B2 (en) 1992-09-03 1992-09-03 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0684708A JPH0684708A (en) 1994-03-25
JP3242464B2 true JP3242464B2 (en) 2001-12-25

Family

ID=17387034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26326392A Expired - Fee Related JP3242464B2 (en) 1992-09-03 1992-09-03 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3242464B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1860566B (en) * 2003-09-26 2012-02-22 昭和电工株式会社 Production method of a capacitor
EP1665301B1 (en) 2003-09-26 2018-12-12 Showa Denko K.K. Production method of a capacitor
JP4488303B2 (en) * 2003-09-26 2010-06-23 昭和電工株式会社 Capacitor manufacturing method

Also Published As

Publication number Publication date
JPH0684708A (en) 1994-03-25

Similar Documents

Publication Publication Date Title
EP1030324B1 (en) Sheet capacitor element and laminated solid electrolytic capacitor
JP3065286B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2778495B2 (en) Heat-resistant conductive polymer, solid electrolytic capacitor using the conductive polymer, and method of manufacturing the same
JP4315038B2 (en) Solid electrolytic capacitor
JPWO2006075551A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0456445B2 (en)
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3076259B2 (en) Oxidant solution for synthesis of heat-resistant conductive polymer and method for producing conductive polymer
JP3242464B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62118511A (en) Manufacture of solid electrolytic capacitor
JPS62165313A (en) Manufacture of solid electrolyte capacitor
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP2612007B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JPH0645195A (en) Manufacture of solid-state electrolytic capacitor
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
JP3213700B2 (en) Manufacturing method of capacitor
JP2901285B2 (en) Method for manufacturing solid electrolytic capacitor
JP2632944B2 (en) Solid electrolytic capacitors
JP2810100B2 (en) Method for manufacturing solid electrolytic capacitor
JP2898443B2 (en) Method for manufacturing solid electrolytic capacitor
JP2621089B2 (en) Solid electrolytic capacitors
JPH0684706A (en) Solid electrolytic capacitor and its manufacture
JPH02251126A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees