JPH01291180A - Magnetism detecting device - Google Patents

Magnetism detecting device

Info

Publication number
JPH01291180A
JPH01291180A JP63120066A JP12006688A JPH01291180A JP H01291180 A JPH01291180 A JP H01291180A JP 63120066 A JP63120066 A JP 63120066A JP 12006688 A JP12006688 A JP 12006688A JP H01291180 A JPH01291180 A JP H01291180A
Authority
JP
Japan
Prior art keywords
magnetic field
circuit
magnetic
magnetoresistive element
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63120066A
Other languages
Japanese (ja)
Other versions
JPH0799390B2 (en
Inventor
Kosei Tagawa
孝生 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63120066A priority Critical patent/JPH0799390B2/en
Publication of JPH01291180A publication Critical patent/JPH01291180A/en
Publication of JPH0799390B2 publication Critical patent/JPH0799390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a measured value corresponding to the polarity by allowing an AC or DC magnetic field to work on a magneto-resistance element by a loop circuit. CONSTITUTION:On a non-magnetic insulating substrate 1, a magneto-resistance element 2 consisting of a film-like ceramic electromotive conductor is formed. Also, on the substrate 1, a loop line 3 is formed by an integral construction with the element 2 by a printing technique, and an excitation power source 4 for allowing a current to flow to the loop line 3 and generating a magnetic field is provided. In this state, by the loop line 3, the magnetic field is generated so as to work on the element 2, and a resistance of the element 2 at the time when a magnetic field to be measured and the magnetic field which has been generated by the loop line 3 have worked simultaneously on the element 2 is detected by a detecting part. Accordingly, by generating a suitable magnetic field by the loop line 3, the polarity of the magnetic field to be measured can be detected.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、超電導材料よりなる磁気抵抗素子を用いて
生体磁気や地磁気等による微弱磁界を測定できるように
した磁気検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a magnetic detection device capable of measuring weak magnetic fields due to biomagnetism, terrestrial magnetism, etc. using a magnetoresistive element made of a superconducting material.

〈従来の技術〉 従来、このような磁気検出装置としては第5図に示すよ
うなものがある。この磁気検出装置はアルミナ板等の非
磁性絶縁性基板(図示U′ず)上にシルクスクリーンや
スプレーによって製作された超電導材料よりなる磁気抵
抗素子5Iに、この磁気抵抗素子51の両端に設けられ
た電流電極52a。
<Prior Art> Conventionally, as such a magnetic detection device, there is one shown in FIG. This magnetic detection device is installed at both ends of a magnetoresistive element 5I made of a superconducting material manufactured by silk screen or spraying on a non-magnetic insulating substrate (not shown in the figure) such as an alumina plate. current electrode 52a.

52bを介してマイクロアンペアからミリアンペアオー
ダの電流を流し、その電流電極52a、52bより内側
に設けられた電圧電極53a、53b間の電圧を測定す
ることにより、上記電圧電極53a。
The voltage electrode 53a is formed by passing a current on the order of microamperes to milliamperes through the voltage electrode 52b and measuring the voltage between the voltage electrodes 53a and 53b provided inside the current electrodes 52a and 52b.

53b間の磁気抵抗素子51の抵抗Rを測定するように
している。
The resistance R of the magnetoresistive element 51 between the magnetoresistive elements 53b and 53b is measured.

上記抵抗Rは磁気抵抗素子51に作用する磁界Bによっ
て変わり、電流が一定の場合の磁界Bに対する抵抗Rの
変化は第6図に示すようになる。
The resistance R changes depending on the magnetic field B acting on the magnetoresistive element 51, and the change in resistance R with respect to the magnetic field B when the current is constant is as shown in FIG.

従って、この抵抗Rを測定することにより磁界を測定す
ることができる。
Therefore, by measuring this resistance R, the magnetic field can be measured.

〈発明が解決しようとする課題〉 ところで、上記磁気抵抗素子51の基板の垂直方向に磁
気隙があって、その磁気隙によって磁気抵抗素子51に
作用する磁界Bが第7図(A)に示すように時間と共に
変化した場合、抵抗Rは第7図(C)に示すようになる
。次に、同じような状況下で第7図(B)に示すような
磁界Bが作用した場合の抵抗Rはやはり第7図(C)の
ようになる。すなわち、上記従来の磁気検出装置では、
第7図(A)および(B)に示すような極性の異なる磁
界が磁気抵抗素子51に作用しても、抵抗値は共に第7
図(C)に示すようになり、磁界の極性の違いを検出で
きないという問題がある。このことは、例えば心磁等に
よる微弱磁界をらとに医療診断を行なう場合等には大き
な問題となる。
<Problems to be Solved by the Invention> By the way, there is a magnetic gap in the vertical direction of the substrate of the magnetoresistive element 51, and the magnetic field B acting on the magnetoresistive element 51 due to the magnetic gap is shown in FIG. 7(A). When the resistance R changes over time as shown in FIG. 7(C), the resistance R becomes as shown in FIG. 7(C). Next, under similar circumstances, when a magnetic field B as shown in FIG. 7(B) is applied, the resistance R becomes as shown in FIG. 7(C). That is, in the conventional magnetic detection device described above,
Even if magnetic fields with different polarities as shown in FIGS.
As shown in Figure (C), there is a problem in that the difference in the polarity of the magnetic field cannot be detected. This becomes a big problem, for example, when medical diagnosis is performed using a weak magnetic field generated by magnetocardiography or the like.

そこで、この発明の目的は、超電導材料よりなる磁気抵
抗素子を用いて微弱磁界の極性の違いを検出することが
できる磁気検出装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a magnetic detection device capable of detecting a difference in polarity of a weak magnetic field using a magnetoresistive element made of a superconducting material.

く課題を解決するための手段〉 上記目的を達成するため、第1の発明は、超電導材料よ
りなる磁気抵抗素子と、その磁気抵抗素子の抵抗を検出
する検出部を有して磁界を測定する磁気検出装置におい
て、磁界を上記磁気抵抗素子に作用させるように発生ず
るループ回路を備えたことを特徴としている。
Means for Solving the Problems> In order to achieve the above object, the first invention measures a magnetic field by having a magnetoresistive element made of a superconducting material and a detection section that detects the resistance of the magnetoresistive element. The magnetic detection device is characterized in that it includes a loop circuit that generates a magnetic field so as to act on the magnetoresistive element.

また、第2の発明は、超電導材料よりなる磁気抵抗素子
と、その磁気抵抗素子の抵抗を検出する検出部を有して
磁界を測定する磁気検出装置において、被測定磁界の周
波数よりも十分大きな周波数の電圧を発生する交流電源
と、上記交流電源に接続され、上記交流電源の周波数と
同じ周波数の交流磁界を上記磁気抵抗素子に作用させる
ように発生するループ回路と、被測定磁界と上記ループ
回路が発生した交流磁界とが上記磁気抵抗素子に同時に
作用したときに上記検出部が検出した検出値の増減を検
出する第1増減検出回路と、」二足交流電源が発生した
電圧の増減を検出する第2増減検出回路と、上記第1増
減検出回路の出力と上記第2増減検出回路の出力をうけ
て、上記両出力が同じ極性を持っているか否かを判別す
る判別回路と、上記判別回路が上記両出力が同じ極性を
持っていると判別したときに、上記検出部が検出した検
出値をそのまま出力し、上記判別回路が上記両出力が同
じ極性を持っていないと判別したときに、上記検出部が
検出した検出値をその正負を反転させて出力する選択反
転回路と、上記選択反転回路が出力した検出値から上記
交流磁界の周波数と同じ周波数の成分を除去するローバ
スフィルタとを備えたことを特徴としている。
Further, a second invention provides a magnetic detection device that measures a magnetic field by having a magnetoresistive element made of a superconducting material and a detection section that detects the resistance of the magnetoresistive element, which has a frequency sufficiently higher than the frequency of the magnetic field to be measured. an AC power source that generates a voltage at a certain frequency; a loop circuit that is connected to the AC power source and generates an AC magnetic field having the same frequency as the frequency of the AC power source so as to act on the magnetoresistive element; a magnetic field to be measured; and the loop circuit. a first increase/decrease detection circuit that detects an increase/decrease in the detected value detected by the detection section when an alternating current magnetic field generated by the circuit simultaneously acts on the magnetic resistance element; a second increase/decrease detection circuit for detecting; a determination circuit for receiving the output of the first increase/decrease detection circuit and the output of the second increase/decrease detection circuit and determining whether or not the two outputs have the same polarity; When the discrimination circuit determines that both outputs have the same polarity, the detection value detected by the detection section is output as is, and when the discrimination circuit determines that both outputs do not have the same polarity. a selection inversion circuit that inverts the positive/negative of the detection value detected by the detection section and outputs it; and a low-pass filter that removes a component of the same frequency as the frequency of the alternating current magnetic field from the detection value output by the selection inversion circuit. It is characterized by having the following.

また、第3の発明は、超電導材料よりなる磁気抵抗素子
と、その磁気抵抗素子の抵抗を検出する検出部を有して
磁界を測定する磁気検出装置において、磁界を上記磁気
抵抗素子に作用させるように発生するループ回路と、そ
のループ回路に直流磁界を発生させる直流電源とを備え
、被測定磁界と上記直流磁界が上記磁気抵抗素子に同時
に作用したときに上記磁気抵抗素子の抵抗値がその磁気
抵抗素子の最小抵抗値よりも大きくなるようにしたこと
を特徴としている。
Further, a third invention is a magnetic detection device that measures a magnetic field by having a magnetoresistive element made of a superconducting material and a detection section that detects the resistance of the magnetoresistive element, in which a magnetic field is applied to the magnetoresistive element. and a DC power source that generates a DC magnetic field in the loop circuit, and when the magnetic field to be measured and the DC magnetic field simultaneously act on the magnetic resistance element, the resistance value of the magnetic resistance element is It is characterized in that the resistance value is greater than the minimum resistance value of the magnetoresistive element.

く作用〉 第1の発明においては、ループ回路が磁界を磁気抵抗素
子に作用させろように発生し、被測定磁界と上記ループ
回路が発生した磁界が上記磁気抵抗素子に同時に作用し
たときの上記磁気抵抗素子の抵抗を検出部が検出する。
In the first invention, the loop circuit generates a magnetic field to act on the magnetoresistive element, and when the magnetic field to be measured and the magnetic field generated by the loop circuit simultaneously act on the magnetoresistive element, A detection unit detects the resistance of the resistance element.

従って、ループ回路に適当な磁界を発生させることによ
り被測定磁界の極性を検出できる。
Therefore, the polarity of the magnetic field to be measured can be detected by generating an appropriate magnetic field in the loop circuit.

また、第2の発明においては、交流電源が被測定磁界の
周波数よりも十分大きな周波数の電圧を発生し、上記交
流電源に接続されたループ回路が、上記交流電源の周波
数と同じ周波数の交流磁界を磁気抵抗素子に作用させる
ように発生する。そして被測定磁界と上記ループ回路が
発生した交流磁界が上記磁気抵抗素子に同時に作用した
ときに検出部が検出した検出値の増減を第1増減検出回
路が検出する一方、上記交流電源が発生した電圧の増減
を第2増減検出回路が検出する。そして、判別回路が上
記第1増減検出回路の出力と上記第2増減検出回路の出
力をうけて、この両出力が同じ極性を持っているか否か
を判別し、選択反転回路が、上記判別回路が上記両出力
が同じ極性を持っていると判別したときに、上記検出部
が検出した検出値をそのまま出力し、上記判別回路が」
二記両出力が同じ極性を持っていないと判別したときに
、上記検出部が検出した検出値をその正負を反転さけて
出力する。次にローバスフィルタが、上記選択反転回路
が出力した検出値から上記交流磁界の周波数と同じ周波
数の成分を除去する。
Further, in the second invention, the AC power source generates a voltage with a frequency sufficiently higher than the frequency of the magnetic field to be measured, and the loop circuit connected to the AC power source generates an AC magnetic field having the same frequency as the frequency of the AC power source. is generated so as to act on the magnetoresistive element. The first increase/decrease detection circuit detects an increase or decrease in the detection value detected by the detection unit when the magnetic field to be measured and the AC magnetic field generated by the loop circuit simultaneously act on the magnetic resistance element, while the AC power source A second increase/decrease detection circuit detects an increase/decrease in voltage. Then, a discrimination circuit receives the output of the first increase/decrease detection circuit and the output of the second increase/decrease detection circuit, and discriminates whether or not these two outputs have the same polarity. When it determines that both of the outputs have the same polarity, it outputs the detection value detected by the detection section as is, and the determination circuit outputs the detected value as it is.
When it is determined that the two outputs do not have the same polarity, the detection value detected by the detection section is output with its sign reversed. Next, a low-pass filter removes a component of the same frequency as the frequency of the alternating magnetic field from the detected value outputted by the selection inversion circuit.

このように、被測定磁界と交流磁界が磁気抵抗素子に同
時に作用したときに検出部が検出した検出値の増減の極
性と交流磁界を発生するための電圧の増減の極性との同
異を判別して、両極性が同じ場合は検出値をそのまま出
力し、両極性が異なる場合は検出値をその正負を反転さ
せて出力するようにしているので、被測定磁界の極性に
応じた極性の測定値を得ることができる。
In this way, it is possible to determine whether the polarity of the increase or decrease in the detected value detected by the detection unit when the magnetic field to be measured and the alternating magnetic field act simultaneously on the magnetoresistive element is the same as or different from the polarity of the increase or decrease in the voltage for generating the alternating magnetic field. When the polarities are the same, the detected value is output as is, and when the polarities are different, the detected value is output with its sign reversed, so it is possible to measure the polarity according to the polarity of the magnetic field being measured. value can be obtained.

また、第3の発明においては、上記磁界抵抗素子に被測
定磁界と上記ループ回路による直流磁界が同時に作用し
たときに、上記磁気抵抗素子の抵抗値がその磁気抵抗素
子の最小抵抗値よりも大きくなるように、上記ループ回
路に直流磁界を発生させる。従って、上記磁気抵抗素子
の抵抗値と上記直流磁界に対する抵抗値との差の極性を
検出することにより、被測定磁界の極性を求めることが
できる。
Further, in the third invention, when the magnetic field to be measured and the DC magnetic field from the loop circuit simultaneously act on the magnetic field resistance element, the resistance value of the magnetic resistance element is larger than the minimum resistance value of the magnetic resistance element. A DC magnetic field is generated in the loop circuit so that Therefore, by detecting the polarity of the difference between the resistance value of the magnetoresistive element and the resistance value to the DC magnetic field, the polarity of the magnetic field to be measured can be determined.

〈実施例〉 以下、この発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図はこの発明の一実施例における主要部の概略構成
図である。
FIG. 1 is a schematic diagram of the main parts in an embodiment of the present invention.

第1図において、■は非磁性絶縁性基板、2は」二足基
板l上に形成された膜状セラミック超電導体よりなる磁
気抵抗素子、3は上記基板I上に印刷技術により上記磁
気抵抗素子2と一体構造で形成されたループ線、4は上
記ループ線に電流を流して磁界を発生させるための励磁
電源である。
In FIG. 1, ■ is a non-magnetic insulating substrate, 2 is a magnetoresistive element made of a film-like ceramic superconductor formed on a bipedal substrate L, and 3 is a magnetoresistive element formed on the substrate I by printing technology. A loop wire 2 is integrally formed with the loop wire, and 4 is an excitation power source for causing a current to flow through the loop wire to generate a magnetic field.

上記励磁電源4を交流電源とし、上記ループ線3に交流
磁界を発生させて、被測定磁界をその極性と共に測定す
るようにした磁気検出装置の測定回路の一例を第2図に
示し、この測定回路の動作を説明するための磁界の波形
と回路各部における波形を第3図に示す。
FIG. 2 shows an example of a measuring circuit of a magnetic detection device in which the excitation power source 4 is an AC power source, generates an AC magnetic field in the loop wire 3, and measures the magnetic field to be measured together with its polarity. FIG. 3 shows the waveforms of the magnetic field and the waveforms at various parts of the circuit to explain the operation of the circuit.

第3図(A)は被測定磁界の波形を示している。FIG. 3(A) shows the waveform of the magnetic field to be measured.

この被測定磁界は、従来例において第7図(B)に示し
た被測定磁界と同様に時間によって極性が異なっている
。また、第3図(13)は上記ループ線3によって発生
される交流磁界を示している。この交流磁界は図では理
解を容易にするために実際の周波数より低く描かれてい
るが、上記第3図(A)に示された被測定磁界の周波数
に比べて十分大きな周波数を持った正弦波の微小基準磁
界である。
The polarity of this magnetic field to be measured differs depending on the time, similar to the magnetic field to be measured shown in FIG. 7(B) in the conventional example. Further, FIG. 3 (13) shows the alternating current magnetic field generated by the loop wire 3. Although this alternating magnetic field is drawn at a lower frequency than the actual frequency in the diagram for ease of understanding, it is a sine wave with a frequency sufficiently larger than the frequency of the magnetic field to be measured shown in Figure 3 (A) above. It is a minute reference magnetic field of waves.

この交流磁界の瞬時値は振幅をSm、角周波数をωとす
ると、S=Smsinωtとして表わされる。
The instantaneous value of this alternating magnetic field is expressed as S=Sm sin ωt, where Sm is the amplitude and ω is the angular frequency.

ここで振幅Smの大きさは被測定磁界の振幅と同等かあ
るいはそれ以下で良い。また、角周波数ωは被測定磁界
の角周波数に比べて十分大きくする必要があるが、後で
信号を処理する関係でむやみに大きくするのは好ましく
なく、被測定磁界の時間変化すなわち最高周波数成分に
よって決まるものであり、生体磁界の場合はKHzのオ
ーダーとなる。
Here, the amplitude Sm may be equal to or smaller than the amplitude of the magnetic field to be measured. Also, the angular frequency ω needs to be sufficiently large compared to the angular frequency of the magnetic field to be measured, but it is not preferable to increase it unnecessarily because the signal will be processed later. In the case of a biomagnetic field, it is on the order of KHz.

上記第3図(A)に示す被測定磁界に第3図(B)に示
す交流磁界を加えると、第3図(C)に示す波形の磁界
となる。そして、この合成磁界が第1図に示す磁気抵抗
素子2に作用した場合の磁気抵抗素子2の抵抗の変化を
、この磁気抵抗素子2に接続された図示しない検出部が
検出する。上記磁気抵抗素子2の特性は第6図に示すよ
うな特性であるため、上記検出部の検出値は第3図(D
)に示すような信号電圧となる。すなわち、被測定磁界
(A)が正の領域にある時刻t。からLlの間では第3
図(C)に示す合成磁界と同じ特性を示すが、被測定磁
界(A)が零の領域にある時刻1.からむ、の間では図
のような全波整流のような特性を示し、時刻り、以後は
第3図(c)の合成磁界に対して反転特性を示す。
When the AC magnetic field shown in FIG. 3(B) is added to the magnetic field to be measured shown in FIG. 3(A) above, a magnetic field having a waveform shown in FIG. 3(C) is obtained. Then, a detection section (not shown) connected to the magnetoresistive element 2 detects a change in resistance of the magnetoresistive element 2 when this composite magnetic field acts on the magnetoresistive element 2 shown in FIG. Since the characteristics of the magnetoresistive element 2 are as shown in FIG. 6, the detection value of the detection section is as shown in FIG.
) The signal voltage will be as shown below. That is, the time t when the magnetic field to be measured (A) is in the positive region. 3rd between Ll and
It shows the same characteristics as the composite magnetic field shown in Figure (C), but at time 1 when the magnetic field to be measured (A) is in the zero region. Between 1 and 2, it exhibits a characteristic similar to full-wave rectification as shown in the figure, and after 2 hours, it exhibits an inversion characteristic with respect to the composite magnetic field shown in FIG. 3(c).

ここで、第3図(B)の波形と第3図(D)の波形を比
較して、両波形の増減の方向が一致している領域では、
第3図(D)の値(V、)はそのままとし、増減の方向
が異なる領域ではVIの極性を反転させれば第3図(C
)に示す特性と同じ特性の測定値が得られる。
Here, by comparing the waveforms in FIG. 3(B) and the waveforms in FIG. 3(D), in areas where the directions of increase and decrease of both waveforms are the same,
If the value (V, ) in Figure 3(D) is left as is, and the polarity of VI is reversed in regions where the directions of increase and decrease are different, Figure 3(C)
) can be obtained with the same characteristics as shown in ().

そこで、第3図(B)に示す基準磁界を発生するための
電圧を第2図に示す微分回路21で微分し、第3図(D
)に示す検出値を第2図に示すバイパスフィルタ(HP
F)22で低周波成分を除去したのち微分回路23で微
分する。上記微分回路21の出力を第3図(G)に示し
、微分回路23の出力を第3図(E)に示す。上記HP
F’22は被測定磁界の時間的変化が少ない場合には必
ずしも必要ではない。次に、上記微分回路21の出力(
G)と上記微分回路23の出力(E)をそれぞれ2値化
回路24.25で正の部分を“High”、負の部分を
“Low”として2値化すると、第3図(H)および第
3図(F)に示す出力が得られる。2@化回路24.2
5の出力(H)、(F)は比較回路26で一致性が確認
され、第3図(I)に示す信号が得られる、この比較回
路26はごく普通に使われている排他的論理和ゲートで
あり、2値化出力(F)、(H)が一致している場合は
“High”を出力し、不一致の場合は“Low”を出
力するようになっている。
Therefore, the voltage for generating the reference magnetic field shown in FIG. 3(B) is differentiated by the differentiating circuit 21 shown in FIG.
) is detected by the bypass filter (HP) shown in Figure 2.
F) After removing low frequency components in step 22, differentiation is performed in a differentiating circuit 23. The output of the differentiating circuit 21 is shown in FIG. 3 (G), and the output of the differentiating circuit 23 is shown in FIG. 3 (E). The above website
F'22 is not necessarily necessary when there is little temporal change in the magnetic field to be measured. Next, the output of the differentiating circuit 21 (
When the output (E) of the differential circuit 23 and the output (E) of the differentiating circuit 23 are respectively binarized by the binarization circuits 24 and 25 with the positive part set to "High" and the negative part set to "Low", the results are shown in Fig. 3 (H) and The output shown in FIG. 3(F) is obtained. 2@ conversion circuit 24.2
The outputs (H) and (F) of 5 are checked for consistency by a comparison circuit 26, and the signal shown in FIG. 3 (I) is obtained. This comparison circuit 26 is a commonly used exclusive OR It is a gate, and is designed to output "High" when the binarized outputs (F) and (H) match, and output "Low" when they do not match.

上記比較回路26の出力(1)は選択反転回路27に入
力される。この選択反転回路27はこの出力(1)と上
記検出値(D)とをうけて、出力(1)が“l(igh
”の場合は検出値(D)をそのまま出力し、出力(1)
が“Low”の場合は検出値(D)を極性を反転させて
出力する。従って、選択反転回路27の出力波形は第3
図(J)に示すようになり、この波形は第3図(C)に
示す合成磁界の波形と同じになる。この出力(J)を交
流基準磁界と同じ周波数の周波数成分を除去するローバ
スフィルタ(LPF)28を通すと、第3図(A)に示
す被測定磁界と同じ波形の出力が得られる。
The output (1) of the comparison circuit 26 is input to the selection inversion circuit 27. This selection inversion circuit 27 receives this output (1) and the detection value (D), and the output (1) becomes "l(high)".
”, the detected value (D) is output as is, and output (1)
When is "Low", the detected value (D) is output with its polarity inverted. Therefore, the output waveform of the selection inversion circuit 27 is
The waveform becomes as shown in Figure (J), and this waveform is the same as the waveform of the composite magnetic field shown in Figure 3 (C). When this output (J) is passed through a low-pass filter (LPF) 28 that removes frequency components having the same frequency as the AC reference magnetic field, an output having the same waveform as the measured magnetic field shown in FIG. 3(A) is obtained.

第4図は、第1図に示す励磁電源4を直流電源とし、ル
ープ線3に直流磁界を発生させるようにした磁気検出装
置の動作を説明したものである。
FIG. 4 explains the operation of a magnetic detection device in which the excitation power source 4 shown in FIG. 1 is a DC power source and generates a DC magnetic field in the loop wire 3.

この磁気検出装置はループ線3に直流バイアス磁界B。This magnetic detection device applies a DC bias magnetic field B to the loop line 3.

を発生させ、第・3図(A)に示すような被測定磁界に
よる動作点をこのバイアス磁界B。分だけシフトさせ、
磁気抵抗素子2の抵抗値がその抵抗最低点よりも高くな
るようにしたものである。
This bias magnetic field B is used to generate an operating point due to the magnetic field to be measured as shown in Fig. 3 (A). Shift by
The resistance value of the magnetoresistive element 2 is made higher than its lowest resistance point.

このようにして得られた測定値から直流磁界分を差引く
ことにより被測定磁界の極性に応じた測定値が得られる
By subtracting the DC magnetic field from the measured value thus obtained, a measured value corresponding to the polarity of the magnetic field to be measured can be obtained.

この磁気検出装置は上述した交流磁界を発生ずるように
した磁気検出装置と比べて装置か部用であるが、動作範
囲が狭くリアリティもやや低下するが実用機への応用が
高い。
This magnetic detection device is for use in a separate part of the device, compared to the above-mentioned magnetic detection device that generates an alternating magnetic field, and although its operating range is narrower and the reality is slightly lower, it is more applicable to practical equipment.

このように、ループ線に交流や直流を流して、磁気抵抗
素子2に被測定磁界に加えて交流磁界や直流磁界を作用
させることにより、被測定磁界の極性に応じた測定値を
得ることができる。
In this way, by flowing an alternating current or direct current through the loop wire and causing the alternating current or direct current magnetic field to act on the magnetoresistive element 2 in addition to the magnetic field to be measured, it is possible to obtain a measured value according to the polarity of the magnetic field to be measured. can.

上記実施例においては、ループ線を印刷技術で基板上に
作成したが、ワイヤーよりなるループ線としてもよいし
、ループ線を別な基板上に構成し、その基板を基板Iに
接近さ仕ておいてもよい。
In the above embodiment, the loop line was created on the substrate by printing technology, but it may also be made of a wire, or the loop line may be formed on a separate substrate and that substrate brought close to the substrate I. You can leave it there.

このループ線の用途としては、上述した用途の他に、こ
のループ線に基準電流を流して磁気抵抗素子や装置全体
の動作確認や補正を行なうようにすることができる。更
に、磁気抵抗素子に対する角度が可変になるように配置
され、被測定磁界の方向確認を行なうために用いられる
。また、複数のループ線を互いに異なる角度になるよう
に配置し、各ループ線に位相差のある基準電流を流すこ
とにより被測定磁界の方向確認を行なうことも可能であ
る。
In addition to the above-mentioned uses, this loop line can be used to flow a reference current through this loop line to check and correct the operation of the magnetoresistive element and the entire device. Furthermore, it is arranged so that the angle with respect to the magnetoresistive element is variable, and is used to confirm the direction of the magnetic field to be measured. It is also possible to confirm the direction of the magnetic field to be measured by arranging a plurality of loop lines at different angles and passing reference currents having a phase difference through each loop line.

〈発明の効果〉 以上より明らかなように、この発明の磁気検出装置は、
ループ回路によって交流磁界または直流磁界を磁気抵抗
素子に作用させるようにしているので、被測定磁界の極
性が変わる場合にもその極性に応じた測定値を得ること
かできる。
<Effects of the Invention> As is clear from the above, the magnetic detection device of the present invention has the following effects:
Since the loop circuit causes an alternating current magnetic field or a direct current magnetic field to act on the magnetoresistive element, even if the polarity of the magnetic field to be measured changes, it is possible to obtain a measured value according to the polarity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における主要部の概略構成
図、第2図は上記実施例におけるループ線に交流磁界を
発生させて磁界を測定するための測定回路図、第3図は
上記測定回路の動作を説明するための波形図、第4図は
上記実施例においてループ線に直流磁界を発生させた場
合の動作説明図、第5図は従来例の要部構成図、第6図
は超電導材料よりなる磁気抵抗素子の一般的な特性を示
す図、第7図は上記磁気抵抗素子に作用する磁界と測定
値の一例を示す図である。 !・・・基板、2・・・磁気抵抗素子、3・・・ループ
線、4・・・励磁電源、21.23・・・微分回路、2
6・・・比較回路、27・・・選択反転回路、28・・
・ローバスフィルタ。 特 許 出 願 人  シャープ株式会社代 理 人 
弁理士  青 山 葆ほか1名第3図 第4図 第57 −8   u    8 第7図
Fig. 1 is a schematic configuration diagram of the main parts in an embodiment of the present invention, Fig. 2 is a measurement circuit diagram for generating an alternating magnetic field in the loop wire in the above embodiment and measuring the magnetic field, and Fig. 3 is a diagram of the above embodiment. A waveform diagram for explaining the operation of the measurement circuit, Fig. 4 is an explanatory diagram of the operation when a DC magnetic field is generated in the loop wire in the above embodiment, Fig. 5 is a configuration diagram of the main part of the conventional example, and Fig. 6 7 is a diagram showing general characteristics of a magnetoresistive element made of a superconducting material, and FIG. 7 is a diagram showing an example of a magnetic field acting on the magnetoresistive element and measured values. ! ... Substrate, 2... Magnetoresistive element, 3... Loop wire, 4... Excitation power supply, 21.23... Differential circuit, 2
6... Comparison circuit, 27... Selection inversion circuit, 28...
・Low bass filter. Patent applicant: Sharp Corporation Agent
Patent attorney Aoyama Ao and one other person Figure 3 Figure 4 Figure 57 -8 u 8 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)超電導材料よりなる磁気抵抗素子と、その磁気抵
抗素子の抵抗を検出する検出部を有して磁界を測定する
磁気検出装置において、 磁界を上記磁気抵抗素子に作用させるように発生するル
ープ回路を備えたことを特徴とする磁気検出装置。
(1) In a magnetic detection device that measures a magnetic field by having a magnetoresistive element made of a superconducting material and a detection section that detects the resistance of the magnetoresistive element, a loop is generated to cause a magnetic field to act on the magnetoresistive element. A magnetic detection device characterized by comprising a circuit.
(2)超電導材料よりなる磁気抵抗素子と、その磁気抵
抗素子の抵抗を検出する検出部を有して磁界を測定する
磁気検出装置において、 被測定磁界の周波数よりも十分大きな周波数の電圧を発
生する交流電源と、 上記交流電源に接続され、上記交流電源の周波数と同じ
周波数の交流磁界を上記磁気抵抗素子に作用させるよう
に発生するループ回路と、 被測定磁界と上記ループ回路が発生した交流磁界が上記
磁気抵抗素子に同時に作用したときに上記検出部が検出
した検出値の増減を検出する第1増減検出回路と、 上記交流電源が発生した電圧の増減を検出する第2増減
検出回路と、 上記第1増減検出回路の出力と上記第2増減検出回路の
出力をうけて、上記両出力が同じ極性を持っているか否
かを判別する判別回路と、 上記判別回路が上記両出力が同じ極性を持っていると判
別したときに、上記検出部が検出した検出値をそのまま
出力し、上記判別回路が上記両出力が同じ極性を持って
いないと判別したときに、上記検出部が検出した検出値
をその正負を反転させて出力する選択反転回路と、 上記選択反転回路が出力した検出値から上記交流磁界の
周波数と同じ周波数の成分を除去するローバスフィルタ
とを備えたことを特徴とする磁気検出装置。
(2) In a magnetic detection device that measures a magnetic field by having a magnetoresistive element made of a superconducting material and a detection unit that detects the resistance of the magnetoresistive element, a voltage with a frequency sufficiently higher than the frequency of the magnetic field to be measured is generated. a loop circuit connected to the AC power source and generating an AC magnetic field having the same frequency as the frequency of the AC power source so as to act on the magnetoresistive element; and a magnetic field to be measured and an AC generated by the loop circuit. a first increase/decrease detection circuit that detects an increase/decrease in the detection value detected by the detection section when a magnetic field simultaneously acts on the magnetoresistive element; and a second increase/decrease detection circuit that detects an increase/decrease in the voltage generated by the AC power source. , a discrimination circuit that receives the output of the first increase/decrease detection circuit and the output of the second increase/decrease detection circuit and determines whether or not the two outputs have the same polarity; and the discrimination circuit determines whether the two outputs have the same polarity. When it is determined that the output has polarity, the detection unit outputs the detected value as it is, and when the determination circuit determines that the two outputs do not have the same polarity, the detection unit outputs the detection value detected by the detection unit. The present invention is characterized by comprising: a selection inversion circuit that inverts the sign of the detected value and outputs it; and a low-pass filter that removes a component of the same frequency as the frequency of the alternating current magnetic field from the detection value outputted by the selection inversion circuit. magnetic detection device.
(3)超電導材料よりなる磁気抵抗素子と、その磁気抵
抗素子の抵抗を検出する検出部を有して磁界を測定する
磁気検出装置において、 磁界を上記磁気抵抗素子に作用させるように発生するル
ープ回路と、そのループ回路に直流磁界を発生させる直
流電源とを備え、 被測定磁界と上記直流磁界が上記磁気抵抗素子に同時に
作用したときに上記磁気抵抗素子の抵抗値がその磁気抵
抗素子の最小抵抗値よりも大きくなるようにしたことを
特徴とする磁気検出装置。
(3) In a magnetic detection device that measures a magnetic field by having a magnetoresistive element made of a superconducting material and a detection section that detects the resistance of the magnetoresistive element, a loop is generated to cause a magnetic field to act on the magnetoresistive element. circuit, and a DC power supply that generates a DC magnetic field in the loop circuit, and when the magnetic field to be measured and the DC magnetic field simultaneously act on the magnetic resistance element, the resistance value of the magnetic resistance element becomes the minimum value of the magnetic resistance element. A magnetic detection device characterized in that the resistance value is greater than the resistance value.
JP63120066A 1988-05-17 1988-05-17 Magnetic detection device Expired - Fee Related JPH0799390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63120066A JPH0799390B2 (en) 1988-05-17 1988-05-17 Magnetic detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63120066A JPH0799390B2 (en) 1988-05-17 1988-05-17 Magnetic detection device

Publications (2)

Publication Number Publication Date
JPH01291180A true JPH01291180A (en) 1989-11-22
JPH0799390B2 JPH0799390B2 (en) 1995-10-25

Family

ID=14777045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63120066A Expired - Fee Related JPH0799390B2 (en) 1988-05-17 1988-05-17 Magnetic detection device

Country Status (1)

Country Link
JP (1) JPH0799390B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966382A (en) * 1972-10-26 1974-06-27
JPS53139512A (en) * 1977-05-11 1978-12-05 Mitsubishi Electric Corp Information detector
JPS5771504A (en) * 1980-10-22 1982-05-04 Fujitsu Ltd Read out system for magnetoresistive element
JPS57192879A (en) * 1981-05-22 1982-11-27 Nec Corp Magnetic sensor
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966382A (en) * 1972-10-26 1974-06-27
JPS53139512A (en) * 1977-05-11 1978-12-05 Mitsubishi Electric Corp Information detector
JPS5771504A (en) * 1980-10-22 1982-05-04 Fujitsu Ltd Read out system for magnetoresistive element
JPS57192879A (en) * 1981-05-22 1982-11-27 Nec Corp Magnetic sensor
JPS5917175A (en) * 1982-07-20 1984-01-28 Aisin Seiki Co Ltd Detecting element of magnetic field for extremely low temperature

Also Published As

Publication number Publication date
JPH0799390B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
CA1067580A (en) Circuit for measuring the ground resistance of an ungrounded power circuit
JPH05187900A (en) Error detecting circuit for magnetic flow-rate measuring apparatus
US11269023B2 (en) Magnetic field detection device and method of detecting magnetic field
WO2005040837A1 (en) Magnetic bridge electric power sensor
JPH02212774A (en) Zerocross detector
WO2015056397A1 (en) Electric current measurement apparatus and electric current measurement method
JPH01291180A (en) Magnetism detecting device
US5248934A (en) Method and apparatus for converting a conventional DC multimeter to an AC impedance meter
KR100451480B1 (en) Clamp type current mesuring apparatus capable of measuring ac and dc current
JP2000056000A (en) Magnetic sensor device and current sensor device
JPH0452901B2 (en)
JPH04269680A (en) High sensitivity magnetic field detector
US3417338A (en) Phase-sensitive gated switching means
JP2000162294A (en) Magnetic field sensor
JP5557181B2 (en) Synchronous detection circuit, fluxgate sensor, and FM demodulator
JPS60228967A (en) Clamp sensor
JPH0569631U (en) Capacity type electromagnetic flow meter
JPS61155862A (en) Current transformer
JP2001141799A (en) Squid magnetic field detection device
JPH06167516A (en) Current sensor
JPH08264850A (en) Superconducting magnetic detecting device
SU1061064A1 (en) Material electric conductivity non-linearity coefficient measuring method
JPH05273270A (en) Reactance sensor
JPH03131781A (en) Squid fluxmeter measurement system
JPH03111770A (en) Measuring method for critical current of superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees