JPS61155862A - Current transformer - Google Patents

Current transformer

Info

Publication number
JPS61155862A
JPS61155862A JP59274884A JP27488484A JPS61155862A JP S61155862 A JPS61155862 A JP S61155862A JP 59274884 A JP59274884 A JP 59274884A JP 27488484 A JP27488484 A JP 27488484A JP S61155862 A JPS61155862 A JP S61155862A
Authority
JP
Japan
Prior art keywords
current
winding
core
transformer
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59274884A
Other languages
Japanese (ja)
Inventor
Ryuzo Ueda
上田 隆三
Toshikatsu Sonoda
敏勝 園田
Toshiyuki Irisa
入佐 俊幸
Shigeo Takada
高田 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59274884A priority Critical patent/JPS61155862A/en
Publication of JPS61155862A publication Critical patent/JPS61155862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE:To obtain a device which is used for both AC and DC currents and transforms even a fine current with high precision by providing the 1st - the 4th windings, etc. CONSTITUTION:A transformer 1, a magnetic flux detecting circuit 4, a current amplifier 7, etc., are provided. The transformer 1 is constituted by providing primary winding 11, secondary winding 12, tertiary winding 13, and quadratic winding 14 around a core 15. The voltage induced across the winding 14 when a current I1 to be detected is zero is based upon an exciting current Iex and magnetism characteristics of the core 15, so the magnetism characteristic curve of the core 15 is symmetric between a plus and a minus side. The induced voltage of the winding 14 is also symmetric between a plus and a minus side and the asymmetric detection output of the circuit 4 is zero. When the current I1 is not zero, the core 15 is biased according to the level of the current. Consequently, positive and negative crest values of the voltage induced across the winding 14 are different. Therefore, when only a positive and a negative voltage whose amplitude are larger than some value are considered, it is known how the core 15 is biased by the current I1. For the purpose, a current I2 is flowed to the winding 12 by using an amplifier 7 so that the bias of the core 15 is zero, and then the level and polarity of the current I1 are known.

Description

【発明の詳細な説明】 [発明の分野] 本発明は、電流計の測定レンジを変えたり、検出系を被
検出電流から電位的に分離するため等の目的で用いられ
る変流装置に関し、特に、交直両用でかつ微少電流をも
高精度に変流することのできる変流装置に関する。
[Detailed Description of the Invention] [Field of the Invention] The present invention relates to a current transformation device used for purposes such as changing the measurement range of an ammeter or isolating a detection system from a current to be detected. The present invention relates to a current transformation device that can be used for both AC and DC functions and can transform even minute currents with high precision.

[発明の背景] 従来、この種の装置として交流電流計の測定範囲を拡大
するためや電流計を被測定回路から電気的に絶縁するた
めに用いられる変流器(CT)が知られている。しかし
、この変流器は、直流電流の測定には用いることができ
ない他、交流電流であってもmAオーダーの微少電流を
測定しようとすると、精度が悪く、また、2次巻線が数
百ターンにも及び被測定回路と結合する部分である変流
器本体が大型化するという不都合があった。
[Background of the Invention] Conventionally, as this type of device, a current transformer (CT) has been known, which is used to expand the measurement range of an AC ammeter and to electrically isolate the ammeter from the circuit under test. . However, this current transformer cannot be used to measure direct current, and even if it is an alternating current, it has poor accuracy when trying to measure minute currents on the order of mA, and the secondary winding is several hundreds of meters long. This has the disadvantage that the main body of the current transformer, which is the part that extends over the turns and is connected to the circuit under test, becomes larger.

また、1次巻線として例えば3相交流用であればこの3
相分の巻線を有するゼロ相電流検出用変流器も知られて
いる。この変流器は、2次巻線に誘起される出力が所定
方向へ給電される3相交流電流のアンバランス分である
ゼロ相i!流に比例することから漏電検出器として用い
られる。しかし、このゼロ相電流はmAオーダーである
ため、上述した一般の変流器と同様にその変流誤差は、
30〜数10%であり、精度および直線性が悪い上に、
2次巻線の巻数が多く大型であるという不都合があった
In addition, for example, if the primary winding is for three-phase AC, these three
Zero-phase current detection current transformers having phase windings are also known. In this current transformer, the output induced in the secondary winding is the zero phase i! It is used as an earth leakage detector because it is proportional to the current. However, since this zero-phase current is on the order of mA, the current transformation error is as in the general current transformer mentioned above.
30% to several 10%, and in addition to poor accuracy and linearity,
There is a disadvantage that the secondary winding has a large number of turns and is large.

また、エム、ミルコピツク他(M、 Milkovic
et al、)は、演算増幅器を用いて入力インビーダ
ンスの極めて小さい電流増幅回路を構成し、この回路に
変流器の2次出力を入力することによって、0.2〜2
0Aという広範囲の電流を高精度に変流でき、かつ変流
器を接続することによる電圧降下等の影響を極めて小さ
くした変流装置を提案している( I E E E  
T ransaction on M aanetic
s。
Also, M, Milkovic et al.
et al.) constructed a current amplification circuit with an extremely small input impedance using an operational amplifier, and by inputting the secondary output of a current transformer to this circuit,
We are proposing a current transformation device that can transform a wide range of current as low as 0A with high precision and extremely minimizes the effects of voltage drop etc. caused by connecting a current transformer (I E E E
Transaction on M aanetic
s.

Vol、  MAG−13,No、  5   Sep
tember  1977  )  。
Vol, MAG-13, No, 5 Sep
tember 1977).

しかし、この変流装置は交流専用であり、直流電流の変
流には用いることができない。
However, this current transformation device is only used for alternating current, and cannot be used for transforming direct current.

さらに、ジョナサン アール、 リーヘイ他(J on
athan R、L eehey et al、)は、
いわゆる磁気飽和検出器を用いた直流変流器を提案して
いる(IEEE、 1982. PE5CRecord
 、 PP438〜444)。しかし、この変流器は、
交直両用ではあるが、2次回路に時定数を有するため、
検出精度および検出速度に問題がある。
Furthermore, Jonathan Earle, Leahey et al.
Athan R, Leehey et al.)
proposed a DC current transformer using a so-called magnetic saturation detector (IEEE, 1982. PE5CRecord
, PP438-444). However, this current transformer
Although it is for both AC and DC use, it has a time constant in the secondary circuit, so
There are problems with detection accuracy and speed.

[発明の目的] 本発明は、上述の従来形における問題点に鑑みてなされ
たもので、交直両用でかつ微少電流をも精度良(変流す
ることのできる変流装置を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the problems of the conventional type described above, and an object of the present invention is to provide a current transformation device that can be used for both AC and DC functions and can transform minute currents with high accuracy. shall be.

[発明の概要] 上記目的を達成するため本発明では、被検出電流が流れ
る第1の巻線を含み少なくとも4つの巻線を有するトラ
ンスを用い、このトランスの第2の巻線に高周波電流を
流し、第3の巻線の誘起起電力によりコアの磁束レベル
を常時監視し、その平均レベルが等価的に零になるよう
に第4の巻線の電流を制御して被検出電流をこの第4の
巻線の電流として検出することを特徴とする。ここで、
磁束レベルの検出には、コアの磁化特性が、直流バイア
スにより異なることに着目している。すなわち、コアを
予め被検出電流の周波数に対して充分^い周波数の電流
源で励磁しておき、その励磁電流に対する2次誘起電圧
波形がバイアス分(被検出電流によって生じる起磁力)
によって異なるのを利用している。
[Summary of the Invention] In order to achieve the above object, the present invention uses a transformer having at least four windings including a first winding through which a current to be detected flows, and a high-frequency current is applied to a second winding of the transformer. The magnetic flux level of the core is constantly monitored by the electromotive force of the third winding, and the current of the fourth winding is controlled so that the average level becomes equivalently zero. It is characterized in that it is detected as the current of the No. 4 winding. here,
To detect the magnetic flux level, we focus on the fact that the magnetization characteristics of the core vary depending on the DC bias. In other words, the core is excited in advance by a current source with a frequency sufficiently high for the frequency of the current to be detected, and the secondary induced voltage waveform for the exciting current is the bias component (magnetomotive force generated by the current to be detected).
Different types are used depending on the situation.

[発明の効果] 従って、本発明の変流装置によれば、直流および交流の
双方の検出が可能となり、磁気飽和の問題もなくなる。
[Effects of the Invention] Therefore, according to the current transformation device of the present invention, both direct current and alternating current can be detected, and the problem of magnetic saturation is eliminated.

また、微少電流をも精度良く検出することができる。Furthermore, even minute currents can be detected with high accuracy.

[実施例の説明] 以下、図面を用いて本発明の詳細な説明する。[Explanation of Examples] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明の一実施例に係る変流装置の構成を示
す。同図の装置は、トランス1、高周波発振器2、抵抗
3、磁束検出回路4、加算演算器5、比例積分アンプ6
、電流増幅器7、および電流検出抵抗8等を具備する。
FIG. 1 shows the configuration of a current transformation device according to an embodiment of the present invention. The device in the figure includes a transformer 1, a high-frequency oscillator 2, a resistor 3, a magnetic flux detection circuit 4, an adder 5, and a proportional-integral amplifier 6.
, a current amplifier 7, a current detection resistor 8, and the like.

トランス1は、1次巻線11.2次巻線12、励磁巻線
13および検出巻線14の4つの巻線をコア(磁心)1
5に巻回したもので、1次巻線11は、被検出電流の通
る導線がコア15の中心部を通過するだけのいわゆる1
タ一ン巻線である。コア15は、電流検出精度上から保
磁力のできるだけ少ないものが好ましく、ここではアラ
イドケミカル社製で商品名が2826M Bのアモルフ
ァストロイダルコア(磁路長J −9,55c■、断面
積3 = 0.2246 m )を用いている。
A transformer 1 has four windings, a primary winding 11, a secondary winding 12, an excitation winding 13, and a detection winding 14, connected to a core (magnetic core) 1.
The primary winding 11 is a so-called single winding in which the conductor through which the current to be detected passes passes through the center of the core 15.
It is a tangent winding. The core 15 preferably has as little coercive force as possible from the viewpoint of current detection accuracy, and here we use an amorphous toroidal core manufactured by Allied Chemical Co., Ltd. under the trade name 2826MB (magnetic path length J -9,55cm, cross-sectional area 3 = 0). .2246 m) is used.

高周波発振器2は、例えば10kllzの正弦波電圧e
axを発生するが、ここでは、この発振器2の出力を抵
抗値の比較的高い抵抗3を介して励磁巻線13に供給す
ることにより、電流源として用いている。この励磁巻線
13に供給される電流1eXは、これだけでコア15を
充分に飽和させるだけ流している。
The high frequency oscillator 2 generates a sine wave voltage e of, for example, 10 kllz.
Here, the output of the oscillator 2 is used as a current source by supplying it to the excitation winding 13 via a resistor 3 having a relatively high resistance value. The current 1eX supplied to the excitation winding 13 is enough to sufficiently saturate the core 15.

磁束検出回路4は、上記1次巻l1111および励磁巻
線13に流れる電流i1+i@ににより検出巻線14に
誘起される電圧e4を基にコア15内の磁束変化を検出
し、その磁化曲線の正負非対象性に応じた検出出力φd
ξtを発生する。
The magnetic flux detection circuit 4 detects the magnetic flux change in the core 15 based on the voltage e4 induced in the detection winding 14 by the current i1+i@ flowing in the primary winding l1111 and the excitation winding 13, and detects the magnetic flux change in the core 15. Detection output φd according to positive/negative asymmetry
Generate ξt.

加算演算器5は、磁束検出回路4の検出出力電圧φda
tとコア磁束の目標値である電圧φr  =0とをアナ
ログ演算して磁束誤差信号ε(−φr −φ命t)を出
力する。
The addition calculator 5 detects the detected output voltage φda of the magnetic flux detection circuit 4.
Analog calculation is performed on t and the voltage φr=0, which is the target value of the core magnetic flux, to output a magnetic flux error signal ε(−φr−φ command t).

加算増幅器11、電力増幅器72及び電流検出抵抗8と
で電流アンプとして動作させる。いま、磁束の誤差信号
εをPIアンプを介して電流アンプの電流指令1 zr
とすれば、等価的に誤差が零になるようにI2は流れる
。よって、このI2の大きさを抵抗8のIR降下として
検出すれば、被検出電流の検出が可能となる。
The summing amplifier 11, the power amplifier 72, and the current detection resistor 8 are operated as a current amplifier. Now, the magnetic flux error signal ε is converted to the current command 1 of the current amplifier via the PI amplifier.
If so, I2 flows so that the error equivalently becomes zero. Therefore, by detecting the magnitude of I2 as the IR drop of the resistor 8, the current to be detected can be detected.

次に、この変流装置の動作を説明する。Next, the operation of this current transformation device will be explained.

この装置の動作原理は、Σφ=0に基づくものである。The operating principle of this device is based on Σφ=0.

今、予め、励磁用電源である高周波発振器2に比較的高
い抵抗3をつなぎ、電流源に近い形で巻@13に励11
電流fexを流しておく。
Now, in advance, connect a relatively high resistance 3 to the high frequency oscillator 2, which is the excitation power source, and connect the excitation 11 to the winding @13 in a form close to the current source.
Let the current fex flow.

先ず、被検出電流11が零の場合(但し、1次巻線11
の回路インピーダンスは零でないものとする)、検出巻
線14に誘起する電圧e4は、励磁電流faxとコア1
5の磁化特性に基づいて生じるので、このときのコア1
5の磁化特性曲線は、第2図(a)に示すように正負対
称である。また、検出巻5114の誘起電圧も第3図(
a)に示すように正負対称であり、磁束検出回路、4の
非対称性検出出力は零である。コア磁束の目標値はφr
 wOであるので、電流アンプの指令値は零となる。
First, when the detected current 11 is zero (however, if the primary winding 11
), the voltage e4 induced in the detection winding 14 is equal to the excitation current fax and the core 1
This occurs based on the magnetization characteristics of core 1, so core 1
The magnetization characteristic curve of No. 5 is symmetrical in positive and negative directions, as shown in FIG. 2(a). In addition, the induced voltage of the detection winding 5114 is also shown in Fig. 3 (
As shown in a), it is symmetrical in positive and negative directions, and the asymmetry detection output of the magnetic flux detection circuit 4 is zero. The target value of core magnetic flux is φr
Since wO, the command value of the current amplifier becomes zero.

次に、被検出電流11が零でない場合、コア15はこの
電流の大きさによって第2図(b)または(C)に示す
ように、バイアスされる。その結果、検出巻線14に生
じる電圧e4は、第3図(b)または(C)に示すよう
に、その平均値は零のままであるけれども、正および負
の各波高値は異なったものとなる。よって、正負電圧の
ある振幅以上のみに着目して、これらの面積比をとると
コア15が被検出電流■1によってどのようにバイアス
されているかを知ることができる。従って、コア15の
バイアス分が零になるように、すなわち被検出電流11
によって生じた磁束を相殺するように電流増幅器7を用
いて2次巻線12に電流12を流すようにすると、この
電流から被検比重1%E I +の大きさと極性とを知
ることができる。
Next, when the current to be detected 11 is not zero, the core 15 is biased as shown in FIG. 2(b) or (C) depending on the magnitude of this current. As a result, the average value of the voltage e4 generated in the detection winding 14 remains zero, as shown in FIG. 3(b) or (C), but the positive and negative peak values are different. becomes. Therefore, by focusing only on positive and negative voltages with amplitudes above a certain level and taking the area ratio of these, it is possible to know how the core 15 is biased by the detected current 1. Therefore, in order that the bias component of the core 15 becomes zero, that is, the detected current 11
If the current amplifier 7 is used to flow a current 12 through the secondary winding 12 so as to cancel out the magnetic flux generated by .

第4図は、第1図における磁束検出回路4のより具体的
な回路例を示す。同図の回路は、電圧増幅器41、スラ
イスレベル発生器42.43、スライス回路44.45
、加算器46、タイミング信号発生回路41、積分回路
48およびサンプルアンドホールド回路49を具備する
FIG. 4 shows a more specific example of the magnetic flux detection circuit 4 in FIG. 1. The circuit in the figure includes a voltage amplifier 41, slice level generators 42, 43, and slice circuits 44, 45.
, an adder 46, a timing signal generation circuit 41, an integration circuit 48, and a sample-and-hold circuit 49.

スライスレベル発生器42および43は、それぞれ正お
よび負の所定の電圧であるスライスレベル信号Vspお
よびVsnを発生する。これらのスライスレベル信号v
SpおよびVsnは、通常、絶対値が一致するように設
定する。
Slice level generators 42 and 43 generate slice level signals Vsp and Vsn, which are positive and negative predetermined voltages, respectively. These slice level signals v
Sp and Vsn are usually set so that their absolute values match.

スライス回路44.45は、磁束検出信号e4をスライ
スレベルvSpおよびVsnでスライスして絶対値がこ
れらのレベル以上の部分を出力する。
The slice circuits 44 and 45 slice the magnetic flux detection signal e4 at slice levels vSp and Vsn, and output the portions whose absolute values are equal to or higher than these levels.

タイミング信号発生回路41は、励磁用の高周波電圧e
e&と同期して所定のタイミングで積分リセット信号P
R,!3およびサンプルアンドホールド信号Ps、+を
発生する。
The timing signal generation circuit 41 generates a high frequency voltage e for excitation.
Integral reset signal P at a predetermined timing in synchronization with e&
R,! 3 and sample-and-hold signals Ps, +.

積分回路48は、タイミング信号発生回路47からの積
分リセット信号PR,Sでリセットされた後、次の信号
PR,Sが発生するまでの約1周期の間、スライス回路
44および45から出力され、加算器46で合成された
信号(第3図e 4sp  + e 4sn  )を積
分する。
After the integration circuit 48 is reset by the integration reset signal PR, S from the timing signal generation circuit 47, the signal is output from the slice circuits 44 and 45 for about one cycle until the next signal PR, S is generated. The adder 46 integrates the combined signal (e 4sp + e 4sn in FIG. 3).

サンプルアンドホールド回路49は、タイミング信号発
生回路47から積分リセット信号R3の直前に発生され
るサンプルアンドホールド信号5t−1により、そのと
きの積分回路48の出力値(第3図のΣφ)の周期の最
終値をホールドし、これを次の信号R3が発生するまで
の約1周期の間、正負非対称性検出信号φdetとして
出力する。
The sample-and-hold circuit 49 determines the period of the output value (Σφ in FIG. 3) of the integration circuit 48 at that time by the sample-and-hold signal 5t-1 generated from the timing signal generation circuit 47 immediately before the integral reset signal R3. The final value of is held and output as the positive/negative asymmetry detection signal φdet for about one cycle until the next signal R3 is generated.

したがって、第1図の回路において、この信号φdet
とコア磁束の目標値φr との偏差に基づいて2次電流
I2の電流指令1 zrを発生させ、この2次電流I2
を上記バイアス分が零になるように負帰還的に制御する
と、この2次電流値I2および抵抗8に生じる電圧降下
が被検出電流1+に比例する電圧となる。
Therefore, in the circuit of FIG. 1, this signal φdet
A current command 1zr of the secondary current I2 is generated based on the deviation between the target value φr of the core magnetic flux, and this secondary current I2
When is controlled in a negative feedback manner so that the bias component becomes zero, this secondary current value I2 and the voltage drop occurring across the resistor 8 become a voltage proportional to the detected current 1+.

第5図は、第1図の装置における直流特性すなわち被検
出直流電流11と出力電圧Vo  (またはm流1 +
dat )との関係を示す。同図において、(a)は、
トランス1の2次巻線12の巻数N2を100回とした
場合、(b)および(C)は、それぞれN2を10およ
び1回とした場合の特性を示す。
FIG. 5 shows the DC characteristics of the device shown in FIG. 1, that is, the detected DC current 11 and the output voltage Vo (or m current 1 +
dat). In the same figure, (a) is
When the number of turns N2 of the secondary winding 12 of the transformer 1 is 100 turns, (b) and (C) show the characteristics when N2 is 10 turns and 1 turn, respectively.

なお、いずれの場合も1次巻線11の巻数N1は1回、
励磁巻線13および検出巻線14の巻数N3およびN4
はそれぞれ10回とした。いずれのトランスを用いた場
合も直線性は極めて良く、測定誤差は、0、;p%以下
であった。
In addition, in any case, the number of turns N1 of the primary winding 11 is 1,
Number of turns N3 and N4 of excitation winding 13 and detection winding 14
were repeated 10 times each. When any transformer was used, the linearity was extremely good, and the measurement error was less than 0.p%.

なお、上述の実施例においては、直流電流を検出するも
のとして説明したが、この変流装置は、交流電流の検出
にも用いることが可能である。この場合、交流電流の検
出精度は、この交流電流の周波数が励磁電流の周波数に
近付く程低下するが、交流電流の周波数が励磁電流の数
10分の1以下と充分に低く、励11電流の1周期内の
交流電流の変化が直流とみなし得る程度に小さい範囲で
は、直流電流と同様の精度を得ることが可能である。
In addition, although the above-mentioned example was explained as a device for detecting direct current, this current transformation device can also be used for detecting alternating current. In this case, the detection accuracy of the alternating current decreases as the frequency of the alternating current approaches the frequency of the excitation current, but the frequency of the alternating current is sufficiently low at one-tenth or less of the excitation current, and In a range where changes in alternating current within one cycle are small enough to be considered direct current, it is possible to obtain accuracy similar to that of direct current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例に係る変流装置の概略の構成
を示すブロック図、第2図は第1図の変流装置に用いら
れるトランスの各直流バイアス状態における磁化特性図
、第3図は第1および第4図の回路の各部電圧波形図、
第4図は第1図における磁束検出回路の詳細回路図、そ
して第5図は第1図の装置の入出力特性図である。 1ニドランス、2:高周波発振器、 4:11束検出回路、7:電流増幅器、44.45ニス
ライス回路、48:積分回路、49:サンプルアンドホ
ールド回路。 特許出願人 三井石油化学工業株式会社代理人 弁理士
 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 第 1 図 第2図
FIG. 1 is a block diagram showing the general configuration of a current transformation device according to an embodiment of the present invention, FIG. 2 is a magnetization characteristic diagram in each DC bias state of the transformer used in the current transformation device of FIG. Figure 3 is a diagram of voltage waveforms at various parts of the circuits in Figures 1 and 4.
FIG. 4 is a detailed circuit diagram of the magnetic flux detection circuit shown in FIG. 1, and FIG. 5 is an input/output characteristic diagram of the device shown in FIG. 1 Nidorance, 2: High frequency oscillator, 4: 11 Flux detection circuit, 7: Current amplifier, 44.45 Nislice circuit, 48: Integrating circuit, 49: Sample and hold circuit. Patent Applicant Mitsui Petrochemical Industries Co., Ltd. Agent Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Ito Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、被検出電流が通流する第1の巻線を含み少なくとも
4つの巻線を有する変成器と、該変成器の第2の巻線に
該被検出電流の周波数より充分高い周波数でかつ該変成
器の磁心を飽和させるに足るピーク値の高周波定電流を
供給する高周波電流源と、該変成器の第3の巻線に誘起
される高周波出力電圧を基に該磁心内の高周波磁束の正
負非対称性に応じた検出出力を発生する磁束検出回路と
、該変成器の第4の巻線に対し該検出出力に応じた電流
を供給する第2の電流源とを具備し、上記被検出電流に
よって生じた磁束を相殺すべく電流を該第4の巻線へ供
給することにより被検出電流に対応した電流に変流する
ことを特徴とする変流装置。 2、前記高周波電流源から出力される高周波電流が正弦
波である特許請求の範囲第1項記載の変流装置。 3、前記磁束検出回路が、前記第3の巻線に誘起される
高周波電圧を所定のレベルでスライスして絶対値が該所
定レベル以上の部分のみを出力するスライス回路と、該
スライス回路から出力される高周波電圧の1周期分ずつ
を積分する積分回路と、該1周期分の積分出力を次の積
分出力が発生するまで保持するサンプルアンドホールド
回路とを具備する特許請求の範囲第1または2項記載の
変流装置。
[Claims] 1. A transformer having at least four windings including a first winding through which the current to be detected flows, and a second winding of the transformer having a frequency higher than the frequency of the current to be detected. a high-frequency current source that supplies a high-frequency constant current at a sufficiently high frequency and a peak value sufficient to saturate the magnetic core of the transformer; a magnetic flux detection circuit that generates a detection output according to the positive/negative asymmetry of high-frequency magnetic flux in the transformer; and a second current source that supplies a current to a fourth winding of the transformer according to the detection output. A current transformation device characterized in that the current is transformed into a current corresponding to the current to be detected by supplying a current to the fourth winding in order to offset the magnetic flux generated by the current to be detected. 2. The current transformation device according to claim 1, wherein the high frequency current output from the high frequency current source is a sine wave. 3. The magnetic flux detection circuit includes a slice circuit that slices the high frequency voltage induced in the third winding at a predetermined level and outputs only a portion whose absolute value is equal to or higher than the predetermined level; and an output from the slice circuit. Claim 1 or 2 comprising: an integrating circuit that integrates one period of the high-frequency voltage generated; and a sample-and-hold circuit that holds the integrated output for one period until the next integrated output is generated. Current transformation device as described in section.
JP59274884A 1984-12-28 1984-12-28 Current transformer Pending JPS61155862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274884A JPS61155862A (en) 1984-12-28 1984-12-28 Current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274884A JPS61155862A (en) 1984-12-28 1984-12-28 Current transformer

Publications (1)

Publication Number Publication Date
JPS61155862A true JPS61155862A (en) 1986-07-15

Family

ID=17547878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274884A Pending JPS61155862A (en) 1984-12-28 1984-12-28 Current transformer

Country Status (1)

Country Link
JP (1) JPS61155862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446657A (en) * 1987-08-17 1989-02-21 Nihon System Research Inst Inc Current measurement system
JP2010533856A (en) * 2007-07-19 2010-10-28 エアバス オペラシオン(エス.ア.エス) Improved current sensor
WO2014010187A1 (en) * 2012-07-09 2014-01-16 パナソニック株式会社 Current detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446657A (en) * 1987-08-17 1989-02-21 Nihon System Research Inst Inc Current measurement system
JP2010533856A (en) * 2007-07-19 2010-10-28 エアバス オペラシオン(エス.ア.エス) Improved current sensor
US8773112B2 (en) 2007-07-19 2014-07-08 Airbus Operations Sas Current sensor
WO2014010187A1 (en) * 2012-07-09 2014-01-16 パナソニック株式会社 Current detection device
JPWO2014010187A1 (en) * 2012-07-09 2016-06-20 パナソニックIpマネジメント株式会社 Current detector

Similar Documents

Publication Publication Date Title
EP3121609B1 (en) Direct-current residual-current detecting device
US4847554A (en) Current measuring and magnetic core compensating apparatus and method
US5132608A (en) Current measuring method and apparatus therefor
JPH10513549A (en) DC and AC current sensors with sub-loop operated current transformers
EP0380562B1 (en) Magnetometer employing a saturable core inductor
JPH0627151A (en) Amperometric converter operated on basis of compensation primciple
US3007106A (en) Current meter and probe therefor
KR20020027491A (en) Ac current detection device
US4626777A (en) D.C. current transformer circuits
JP2816175B2 (en) DC current measuring device
EP0601817B1 (en) Power calculation circuit
JPS61155862A (en) Current transformer
US6018238A (en) Hybrid non-contact clamp-on current meter
US2729781A (en) Electromagnetic transformer
EP0490880B1 (en) Negative feedback power supply apparatus
JPS61170661A (en) Electric current detector
JP2577800B2 (en) Automotive DC power supply current detector
JPS5965771A (en) Current detecting circuit
JP2617570B2 (en) Magnetic measuring device
JPH0429025B2 (en)
Leehey et al. DC current transformer
Kwiatkowski et al. Application of the thin film permalloy magnetoresistive sensors in electrical measurements
SU1182422A1 (en) Measuring direct current converter
JPS631253Y2 (en)
KR102039272B1 (en) A DC Power Current Detection Circuit