JPH01290595A - Formation of si/al2o3/si multilayered structure - Google Patents
Formation of si/al2o3/si multilayered structureInfo
- Publication number
- JPH01290595A JPH01290595A JP11692488A JP11692488A JPH01290595A JP H01290595 A JPH01290595 A JP H01290595A JP 11692488 A JP11692488 A JP 11692488A JP 11692488 A JP11692488 A JP 11692488A JP H01290595 A JPH01290595 A JP H01290595A
- Authority
- JP
- Japan
- Prior art keywords
- al2o3
- single crystal
- crystal film
- grown
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015572 biosynthetic process Effects 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 8
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 18
- 229910003158 γ-Al2O3 Inorganic materials 0.000 abstract description 19
- 229910007264 Si2H6 Inorganic materials 0.000 abstract description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 238000000635 electron micrograph Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000002128 reflection high energy electron diffraction Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002524 electron diffraction data Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 1
- 229910000525 Si/Al2O3 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910008425 Si—Al2O3 Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、集積回路、トランジスタ等の半導体製造工
業に於いて用いられるSi膜 At203/Si多層構
造の形成法に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a method for forming a Si film At203/Si multilayer structure used in the industry for manufacturing semiconductors such as integrated circuits and transistors.
「従来技術及びその問題点」
Si基板上への単結晶絶縁膜は、3次元集積回路やSO
I (Si on In5ulator)素子実現のた
めに必要な要素の1つである。"Prior art and its problems" Single crystal insulating films on Si substrates are used for three-dimensional integrated circuits and SO
It is one of the elements necessary for realizing an I (Si on In5ulator) element.
そのためこれまで種々の絶縁膜が検討されてきているが
、実用上程々の問題点が残されており、未だ充分満足す
べきものではない。For this reason, various insulating films have been studied so far, but they still have some problems in practical use and are not yet fully satisfactory.
しかして、Si基板上にAl2O3膜をエピタキシャル
法させ、更にその上にSi膜をエピタキシャル成長させ
た三層の多層構造が可能となれば、種々の有意義な効果
が生ずる。まず、基板がSiであるため、5OS(Si
on 5apphire)と比較して価格が格段に下
がるため、大口径の5ol(Si on In5ula
ter)基板を製作することが可能となり、しかもエピ
タキシャルSi/γ−Al2O3/基板Siというサン
ドイッチ構造をとるため、圧縮応力が軽減される利点が
得られる。更に、以下に述べるような優れた利点も有し
ている。If it becomes possible to create a three-layer multilayer structure in which an Al2O3 film is epitaxially grown on a Si substrate and a Si film is epitaxially grown thereon, various significant effects will be produced. First, since the substrate is Si, 5OS (Si
On 5apphire), the price is significantly lower than the large diameter 5ol (Si on 5apphire).
ter) substrate, and since it has a sandwich structure of epitaxial Si/γ-Al2O3/substrate Si, it has the advantage of reducing compressive stress. Furthermore, it also has excellent advantages as described below.
(1) S i トy −A I2O3間の格子不整合
は、2.42トSO3よりも小さくなる。(1) The lattice mismatch between S i -A I2O3 is smaller than 2.42t SO3.
(2) γ−Al2O3/Siの界面準位は、lX1O
eVca−’と低い。(2) The interface level of γ-Al2O3/Si is lX1O
It is as low as eVca-'.
(3) Naや他の不純物のバリアーとして効果的に働
く。(3) Works effectively as a barrier against Na and other impurities.
(4)耐放射線損傷効果が大きい。(4) Great radiation damage resistance effect.
(5)高い比誘電率(ε−8〜9)を有している。(5) It has a high dielectric constant (ε-8 to 9).
(6)γ−A1゜03は、1100℃の高温下でも安定
であるどのような特徴を有するγ−Al2O3を、減圧
気相成長法でSi基板上に成長させるには、従来は10
00°C近い基板温度が必要であったが、このような高
温度では、多層構造を形成し3次元集積回路とするには
、温度が高すぎる問題があった。即ち、Siに半導体デ
バイスを組み込んでその上にγ−Al2O3絶縁膜を形
成するのに、1000℃近い温度であると、半導体デバ
イス中の不純物濃度が異なってくるからである。(6) γ-A1゜03 is stable even at a high temperature of 1100°C. Conventionally, in order to grow γ-Al2O3 on a Si substrate by low pressure vapor phase epitaxy, it takes 10
Although a substrate temperature close to 00° C. was required, there was a problem that such a high temperature was too high to form a multilayer structure to form a three-dimensional integrated circuit. That is, when a semiconductor device is assembled in Si and a γ-Al2O3 insulating film is formed thereon, if the temperature is close to 1000° C., the impurity concentration in the semiconductor device will differ.
本発明は、このような欠点を解消し、低い成長温度でγ
−Al O絶縁膜を成長させるSi/Al2O3/S+
多層構造の形成法を提供することを目的とする。The present invention eliminates these drawbacks and allows γ to be grown at a low growth temperature.
-Si/Al2O3/S+ to grow AlO insulating film
The purpose is to provide a method for forming a multilayer structure.
「問題点を解決するための手段」 エビ層を形成させるものである。"Means to solve problems" This forms a shrimp layer.
本発明者等は、上記目的を達成するため鋭意研究の結果
、トリメチルアルミニウムとN20ガスとを5xlO−
”)ル以下の分圧よりも低い分圧下で分子線とし、基板
温度720〜800℃の反応条件でSi基板上にエピタ
キシャル成長させることによって、基板上に極めて良質
のγ−AI、、03単結晶膜が形成し得ることを見い出
し、本発明に到達した。In order to achieve the above object, the present inventors conducted intensive research and discovered that trimethylaluminum and N20 gas were mixed at 5xlO-
By epitaxially growing a molecular beam on a Si substrate under the reaction conditions of a substrate temperature of 720 to 800°C, extremely high quality γ-AI,. The present invention was achieved by discovering that a film can be formed.
即ち本発明は、トリメチルアルミニウムとN20ガスと
をガスソースとし、5XIQ’)ル以下の低い分圧下、
720〜800°Cの低温度で、分子線エピタキシャル
法により、Si基板上にγ−Al2O3単結品■りを成
長させ、ついで該γ−Al2O3単結晶膜上にSiの単
結晶膜を成長させることを特徴とする。That is, the present invention uses trimethylaluminum and N20 gas as gas sources, and under a low partial pressure of 5XIQ') or less,
At a low temperature of 720 to 800°C, a γ-Al2O3 single crystal is grown on a Si substrate by molecular beam epitaxial method, and then a Si single crystal film is grown on the γ-Al2O3 single crystal film. It is characterized by
「実施例」 次に1本発明の実施例を挙げ、本発明を更に説明する。"Example" Next, one example of the present invention will be given to further explain the present invention.
本発明の方法を概略的に説明すれば、まず第1図に示す
ように、Siウェハー上にγ−Al2O3単結晶膜を成
長させ、ついでその上にSi2H6により、Siとが判
明した。Briefly explaining the method of the present invention, first, as shown in FIG. 1, a γ-Al2O3 single crystal film was grown on a Si wafer, and then Si was formed on the film using Si2H6.
基板として2インチのSi (100)ウェハーを用い
て、分子線エピタキシャル成長装置内で、基板温度72
0〜800℃に加熱し、反応ガスとしてN2ガスでへブ
リングしたトリメチルアルミニウムの分圧3X10
トルとN20ガス分圧5XIO−”)ルとを用い、γ−
Al2O3結晶膜のエピタキシャル成長を行なった。Using a 2-inch Si (100) wafer as a substrate, the substrate temperature was 72°C in a molecular beam epitaxial growth apparatus.
Partial pressure 3X10 of trimethylaluminum heated to 0-800°C and bubbled with N2 gas as reaction gas
γ-
An Al2O3 crystal film was epitaxially grown.
本発明に於いては1反応温度は720℃〜800 ’0
である必要があるが、720℃より低い温度であっては
、γ−Al2O3が単結晶化しないし、また80O”C
:を越えた温度であっては、前記したように多層構造と
する場合に半導体デバイス中の不純物濃度が異なったり
、γ−A I 203単結晶の表面凹凸が激しくなるか
らである。In the present invention, one reaction temperature is 720°C to 800'0
However, if the temperature is lower than 720℃, γ-Al2O3 will not become a single crystal, and the temperature will be lower than 80O”C.
This is because, if the temperature exceeds 100 nm, the impurity concentration in the semiconductor device will differ in the case of forming a multilayer structure as described above, and the surface unevenness of the γ-AI 203 single crystal will become severe.
基板(7) S i ノ方位は、(100) 、 (1
11) すどに関係なく、エピタキシャル成長が可能で
あった。The orientation of the substrate (7) S i is (100), (1
11) Epitaxial growth was possible regardless of the edge.
面方位の関係は、第2図及び第3図の反射電子線回折パ
ターンから、下記のようになっているこγ−Al2O3
(100)/S+(100)γ−A I203(111
)/Sl (111)上記のように成長した膜の組成は
、AIと0からできていることが、オージェ電子分光法
により分析して確認されている。From the reflected electron beam diffraction patterns in Figures 2 and 3, the relationship between the plane orientations is as follows: γ-Al2O3
(100)/S+(100)γ-A I203(111
)/Sl (111) It has been confirmed by analysis using Auger electron spectroscopy that the composition of the film grown as described above is composed of AI and 0.
ついで、このようにして形成したγ−Al2O3(1o
O)/5i(100) 上ニ、 Si、、H6ガスヲ用
IT’ ”C、Siノxビタキシャル成長を行ない、成
長した膜が5i(100)/γ−Al2O3(100)
/S+(100)の構造になっていることが、第4図の
反射電子線回折の結果から明らかになった。この第3層
目のSiの成長は、分子線エピタキシャル成長であれば
、約700℃で成長可能であり、気相成長法では通常の
SO8成長と同様の条件で成長することが実験により確
認されている。Next, γ-Al2O3 (1o
O)/5i(100) On the top, Si, H6 gas is used for IT' ”C, SiOx bitaxial growth is performed, and the grown film is 5i(100)/γ-Al2O3(100)
/S+(100) structure was revealed from the reflection electron diffraction results shown in FIG. It has been experimentally confirmed that this third layer of Si can be grown at approximately 700°C using molecular beam epitaxial growth, and that it can be grown under the same conditions as normal SO8 growth using vapor phase growth. There is.
「発明の効果」
以上述べた如く本発明によるときは、著しく顕著な電気
的特性を示し且つ高温熱処理時の安定性に優れた絶縁膜
をSi基板上に容易に形成させることができるので、3
次元集積回路やSO■素子実現に貢献するところ極めて
大きい。"Effects of the Invention" As described above, according to the present invention, it is possible to easily form an insulating film on a Si substrate that exhibits remarkable electrical characteristics and has excellent stability during high-temperature heat treatment.
It will greatly contribute to the realization of dimensional integrated circuits and SO2 devices.
第1図は、本発明のSl/Al2Cl3/S+多層構造
を示す説明図、
第2図(1)は、デポジション前5i(100)基板の
RHEED像を示す電子顕微鏡写真、第2図(2)は。
デポジション前の反射電子線回折パターン、第2図(3
)は、デポジション後のγ−Al2O3(100)/S
+ (100)のRHEED像を示す電子顕微鏡写真、
第2図(4)は、デポジション後のγ−Al2O3(1
00)/5i(100)の反射電子回折パターン、
第3図(1)は、デポジション前5i(111)基板の
RHEED像を示す電子顕微鏡写真、第3図(2)は。
デポジション前の反射電子線回折パターン、第3図(3
)は、デポジション後のγ−Al2O3(111)/5
i(II+)のRHEErJ像を示す電子顕微鏡写真、
第3図(4)は、デポジション後のγ−A!203(1
11)/5i(111)の反射電子回折パターン、
第4図(1)は、γ−Al2O3(100)/Sl (
100)基板上にエピタキシャル成長させた5i(10
0)膜からのRHEED像を示す電子顕微鏡写真、第4
図(2)は、Si(+00)/γ−Al2O3(100
)/5i(100)表面の反射電子線回折パターンであ
る。
特許出願人 東横化学株式会社
同 豊橘技術料学大学長 本多波雄Sj2/−1e
第2図FIG. 1 is an explanatory diagram showing the Sl/Al2Cl3/S+ multilayer structure of the present invention, FIG. 2 (1) is an electron micrograph showing a RHEED image of a 5i (100) substrate before deposition, and FIG. )teeth. Backscattered electron diffraction pattern before deposition, Figure 2 (3
) is γ-Al2O3(100)/S after deposition
+ Electron micrograph showing a RHEED image of (100),
Figure 2 (4) shows γ-Al2O3 (1
00)/5i(100), FIG. 3(1) is an electron micrograph showing the RHEED image of the 5i(111) substrate before deposition, and FIG. 3(2) is the electron micrograph showing the RHEED image of the 5i(111) substrate before deposition. Backscattered electron diffraction pattern before deposition, Figure 3 (3
) is γ-Al2O3(111)/5 after deposition
Electron micrograph showing RHEerJ image of i(II+),
FIG. 3 (4) shows γ-A after deposition! 203(1)
The reflected electron diffraction pattern of γ-Al2O3(100)/Sl (11)/5i(111), Figure 4(1), is
100) 5i (10
0) Electron micrograph showing RHEED image from membrane, 4th
Figure (2) shows Si(+00)/γ-Al2O3(100
)/5i (100) surface reflection electron beam diffraction pattern. Patent applicant Toyoko Chemical Co., Ltd. President of Toyotachi University of Technology Namio Honda Sj2/-1e Figure 2
Claims (1)
スとし、5×10^−^5トル以下の低い分圧下、72
0℃〜800℃の低温度で、分子線エピタキシャル法に
より、Si基板上にγ−Al_2O_3単結晶膜を成長
させ、ついで該γ−Al_2O_3単結晶膜上にSiの
単結晶膜を成長させることを特徴とするエピタキシャル
法によるSi/Al_2O_3/Si多層構造の形成法
。Using trimethylaluminum and N_2O gas as gas sources, under a low partial pressure of less than 5×10^-^5 Torr, 72
A γ-Al_2O_3 single crystal film is grown on a Si substrate at a low temperature of 0°C to 800°C by molecular beam epitaxial method, and then a Si single crystal film is grown on the γ-Al_2O_3 single crystal film. Characteristic method for forming a Si/Al_2O_3/Si multilayer structure using an epitaxial method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11692488A JPH01290595A (en) | 1988-05-16 | 1988-05-16 | Formation of si/al2o3/si multilayered structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11692488A JPH01290595A (en) | 1988-05-16 | 1988-05-16 | Formation of si/al2o3/si multilayered structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01290595A true JPH01290595A (en) | 1989-11-22 |
JPH057359B2 JPH057359B2 (en) | 1993-01-28 |
Family
ID=14699049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11692488A Granted JPH01290595A (en) | 1988-05-16 | 1988-05-16 | Formation of si/al2o3/si multilayered structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01290595A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07187892A (en) * | 1991-06-28 | 1995-07-25 | Internatl Business Mach Corp <Ibm> | Silicon and its formation |
-
1988
- 1988-05-16 JP JP11692488A patent/JPH01290595A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07187892A (en) * | 1991-06-28 | 1995-07-25 | Internatl Business Mach Corp <Ibm> | Silicon and its formation |
Also Published As
Publication number | Publication date |
---|---|
JPH057359B2 (en) | 1993-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4622082A (en) | Conditioned semiconductor substrates | |
JPH033364A (en) | Semiconductor device | |
JPH10163114A (en) | Semiconductor device and manufacturing method thereof | |
JP2001525121A (en) | Recovery of silicon carbide substrate with adjusted surface | |
US4789421A (en) | Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal | |
US20060130745A1 (en) | Domain epitaxy for thin film growth | |
JP2002234799A (en) | Method of producing silicon carbide film and method of producing silicon carbide multilayer film structure | |
JPS6126216A (en) | Method for growing compound semiconductor | |
JPH06232058A (en) | Preparation of epitaxial semiconductor structure | |
JPH01290595A (en) | Formation of si/al2o3/si multilayered structure | |
Shastry et al. | Epitaxial GaAs grown directly on (100) Si by low pressure MOVPE using low temperature processing | |
JP3985288B2 (en) | Semiconductor crystal growth method | |
JP2002261011A (en) | Multilayer structure substrate for device | |
JPH01266716A (en) | Gaas/si multilayer and gaas growth method | |
JPS6258614A (en) | Arsenide galium epitaxial wafer and manufacture thereof | |
JPH01261300A (en) | Heteroepitaxial growth of al2o3 single crystal film on si substrate by reduce pressure vapor growth | |
JP2747823B2 (en) | Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate | |
JPS63229812A (en) | Semiconductor wafer | |
JP2863238B2 (en) | Laminate having atomic layer controlled oxide layer on silicon substrate and method of manufacturing the same | |
JPS63137412A (en) | Manufacture of semiconductor substrate | |
JPH01243513A (en) | Compound semiconductor substrate | |
JPH03188619A (en) | Method for heteroepitaxially growing iii-v group compound semiconductor on different kind of substrate | |
JPH0775222B2 (en) | Method for manufacturing InP semiconductor thin film | |
JPH0697654B2 (en) | Method for manufacturing compound semiconductor device | |
JPH01246818A (en) | Heat treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |