JPH01290255A - Semiconductor memory and manufacture thereof - Google Patents

Semiconductor memory and manufacture thereof

Info

Publication number
JPH01290255A
JPH01290255A JP63119201A JP11920188A JPH01290255A JP H01290255 A JPH01290255 A JP H01290255A JP 63119201 A JP63119201 A JP 63119201A JP 11920188 A JP11920188 A JP 11920188A JP H01290255 A JPH01290255 A JP H01290255A
Authority
JP
Japan
Prior art keywords
insulating film
film
mos transistor
capacitor electrode
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63119201A
Other languages
Japanese (ja)
Inventor
Akira Kurosawa
黒澤 景
Hidehiro Watanabe
秀弘 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63119201A priority Critical patent/JPH01290255A/en
Priority to KR1019890006619A priority patent/KR900019227A/en
Priority to US07/353,765 priority patent/US4951175A/en
Priority to DE3916228A priority patent/DE3916228C2/en
Publication of JPH01290255A publication Critical patent/JPH01290255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/377DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate having a storage electrode extension located over the transistor

Abstract

PURPOSE:To prevent a short circuit between a gate electrode and a capacitor electrode and the increase in a leakage current effectively by a method wherein a base film is provided to the outside of a contact hole on an insulating film under a lower capacitor electrode. CONSTITUTION:A semiconductor memory has such a laminated type capacitor cell structure that a capacitor is laminated on a MOS transistor through the intermediary of an insulating film 6, and lower capacitor electrodes 71 and 72 are in contact with a source diffusion layer 51 or a drain diffusion layer 52 of the MOS transistor through the intermediary of a contact hole bored in the insulating film 6. And, a base film is provided to the outside of the contact hole on the insulating film 6 under the lower capacitor electrodes 71 and 72. The base film, for instance, of the same conductive film as the lower capacitor electrodes 71 and 72 are pattern-formed concurrently with the electrodes 71 and 72 to be a part of the electrodes 71 and 72. By these processes, even if pinholes occur in the insulating film 6 at various treatments performed before the formation of the capacitor, a short circuit and an increase in a leakage current caused by the pinholes can be prevented.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、半導体記憶装置に係り、特に積層型キャパシ
タ・セル構造のダイナミック型RAM(DRAM)の構
造および製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a semiconductor memory device, and more particularly to the structure and manufacturing method of a dynamic RAM (DRAM) having a stacked capacitor cell structure.

(従来の技術) DRAMは高集積化の一途を辿り、それに伴ってキャパ
シタ面積が減少して、メモリ内容の誤読出しや放射線に
よるデータ破壊等が大きい問題になっている。この様な
問題を解決するため、キャパシタに様々な構造を持たせ
る提案がなされている。その一つが積層型キャパシタ・
セル構造である。これは、素子分離された半導体基板上
に先ずMOSトランジスタを形成し、その上を絶縁膜で
覆ってこれにコンタクト孔を開け、MO3I−ランジス
タのソースまたはドレイン拡散層にコンタクトする下部
キャパシタ電極を形成し、更にキャパシタ絶縁膜を介し
て上部キャパシタ電極を形成して、メモリセルを構成す
る。
(Prior Art) As DRAMs continue to become more highly integrated, the area of capacitors decreases, causing serious problems such as erroneous reading of memory contents and data destruction due to radiation. In order to solve these problems, proposals have been made to provide capacitors with various structures. One of them is the multilayer capacitor.
It has a cell structure. In this method, a MOS transistor is first formed on an isolated semiconductor substrate, then an insulating film is placed over the MOS transistor, a contact hole is formed in the MOS transistor, and a lower capacitor electrode is formed to contact the source or drain diffusion layer of the MO3I-transistor. Then, an upper capacitor electrode is further formed via a capacitor insulating film to constitute a memory cell.

このように積層型キャパシタ・セルでは。In this way, in a stacked capacitor cell.

MOSトランジスタが形成された上に層間絶縁膜を介し
てキャパシタが形成されるため1通常下部キャパシタの
加工を容易にするためにその下の層間絶縁膜表面をでき
る限り滑らかにすることが行われる。具体的な方法とし
ては例えば1層間絶縁膜にCVDSiO2膜を用いた場
合、900℃程度のPOCR3ガス中で300分程の熱
処理を行うことにより2表面をリンガラス化する方法が
ある。これにより、(VDSi02膜表面が一部流動を
起こして滑らかになる。その後、フッ酸系のエツチング
液で1分程度表面のリンガラス膜をエツチングすること
により、滑らかな表面形状が得られる。こうして滑らか
な表面形状を得た後、そのCV D S i O2膜に
コンタクト孔を開けて、下部キャパシタ電極、キャパシ
タ絶縁膜そして上部キャパシタ電極を順次形成する。
Since a capacitor is formed on a MOS transistor through an interlayer insulating film, the surface of the interlayer insulating film thereunder is usually made as smooth as possible in order to facilitate processing of the lower capacitor. As a specific method, for example, when a CVDSiO2 film is used as the first interlayer insulating film, there is a method of converting the second surface into phosphorous glass by performing heat treatment for about 300 minutes in POCR3 gas at about 900°C. As a result, the VDSi02 film surface partially flows and becomes smooth. Then, by etching the phosphorus glass film on the surface for about 1 minute with a hydrofluoric acid-based etching solution, a smooth surface shape can be obtained. After obtaining a smooth surface shape, a contact hole is opened in the CV D Si O 2 film, and a lower capacitor electrode, a capacitor insulating film, and an upper capacitor electrode are sequentially formed.

しかしながらこの様な従来の方法では2次のような問題
が生じる。第1に1層間絶縁膜であるCVD5iOz膜
をリンガラス化して流動化させた場合、その後にフッ酸
系のエツチング液例えばフッ化アンモニウムなどの緩衝
フッ酸により1000人程度0表面剥離を行うが、この
とき5i02膜の脆弱な部分が深くエツチングされてピ
ンホールが発生する。そうするとこの後コンタクト孔を
開けてキャパシタを積層形成した時に。
However, such a conventional method causes the following secondary problem. First, when the CVD 5iOz film, which is an interlayer insulating film, is made into phosphor glass and fluidized, the surface is then removed using a hydrofluoric acid-based etching solution such as buffered hydrofluoric acid such as ammonium fluoride using about 1000 people. At this time, the weak parts of the 5i02 film are deeply etched and pinholes are generated. Then, when the contact hole is opened and the capacitor is laminated after this.

既に形成されているMOSトランジスタのゲート電極と
下部キャパシタ電極の間で短絡事故やリーク電流の増大
をもたらす。第2に1層間絶縁膜としてのCVD5i0
2膜にコンタクト孔を開けた後、キャパシタ電極を形成
する前に、希フッ酸処理を行ってコンタクト孔に露出し
た基板表面に形成される自然酸化膜を除去することが行
われるが。
This causes a short circuit accident and an increase in leakage current between the gate electrode of the MOS transistor that has already been formed and the lower capacitor electrode. Second, CVD5i0 as an interlayer insulating film
After forming a contact hole in the two films and before forming a capacitor electrode, a dilute hydrofluoric acid treatment is performed to remove a natural oxide film formed on the surface of the substrate exposed to the contact hole.

このときにもCVD5i02膜の脆弱な部分が深くエツ
チングされてピンホールが形成される。これも、キャパ
シタ電極とMOSトランジスタのゲート電極短絡事故や
リーク電流増大の原因となる。
At this time as well, the weak portions of the CVD5i02 film are deeply etched to form pinholes. This also causes a short-circuit accident between the capacitor electrode and the gate electrode of the MOS transistor and an increase in leakage current.

(発明が解決しようとする課題) 以上のように従来の積層型キャパシタ・セル構造のDR
AMの製造法では、MOSトランジスタのゲート電極と
MOSトランジスタ上に積層されるキャパシタの短絡事
故が発生し易く、製品の歩留りおよび信頼性を低下させ
る。という問題があった。
(Problem to be solved by the invention) As described above, the DR of the conventional stacked capacitor cell structure
In the AM manufacturing method, a short-circuit accident between the gate electrode of a MOS transistor and a capacitor stacked on the MOS transistor is likely to occur, reducing the yield and reliability of the product. There was a problem.

本発明は、この様な問題を解決した積層型キャパシタ・
セル構造のDRAMとその製造方法を提供することを目
的とする。
The present invention is a multilayer capacitor that solves these problems.
An object of the present invention is to provide a DRAM with a cell structure and a method for manufacturing the same.

[発明の構成] (課題を解決するための手段) 本発明にかかるDRAMは、MOSトランジスタの上に
絶縁膜を介してキャパシタが積層され。
[Structure of the Invention] (Means for Solving the Problems) A DRAM according to the present invention has a capacitor stacked on a MOS transistor with an insulating film interposed therebetween.

下部キャパシタ電極が絶縁膜に開けられたコンタクト孔
を介してMOSトランジスタのソースまたはドレイン拡
散層にコンタクトする積層型キャノぐシタ・セル構造を
基本とし、その下部キヤ、<シタ電極下の絶縁膜上コン
タクト孔の外側に下地膜を有することを特徴とする。下
地膜は例えば、下部キャパシタ電極と同じ導体膜により
下部キャパシタ電極と同時にパターン形成されて下部キ
ャパシタ電極の一部となる。または下地膜として、前記
絶縁膜とは異種の絶縁膜が用いられる。
The base is a stacked capacitor cell structure in which the lower capacitor electrode contacts the source or drain diffusion layer of the MOS transistor through a contact hole made in the insulating film. It is characterized by having a base film on the outside of the contact hole. For example, the base film is patterned using the same conductive film as the lower capacitor electrode at the same time as the lower capacitor electrode, and becomes a part of the lower capacitor electrode. Alternatively, an insulating film different from the above-mentioned insulating film is used as the base film.

本発明のDRAMを製造する第1の方法は。The first method for manufacturing the DRAM of the present invention is as follows.

MOSトランジスタが形成された基板上を第1の絶縁膜
で覆い、これにコンタクト孔を開ける前に下部キャパシ
タ電極の一部となる第1の導体膜を積層形成し、これら
第1の絶縁膜と第1の導体膜の積層膜にコンタクト孔を
開けて、MOSトランジスタのソースまたはドレイン拡
散層とコンタクトする下部キャパシタ電極の残部となる
第2の導体膜を形成する。そして第1および第2の導体
膜を同時にバターニングして下部キャパシタ電極を形成
し、この上にキャパシタ絶縁膜を介して第3の導体膜に
より上部キャパシタ電極を形成する。
The substrate on which the MOS transistor is formed is covered with a first insulating film, and before contact holes are formed in this, a first conductive film that will become a part of the lower capacitor electrode is laminated, and these first insulating films and A contact hole is opened in the laminated film of the first conductor film, and a second conductor film is formed to form the remainder of the lower capacitor electrode in contact with the source or drain diffusion layer of the MOS transistor. Then, the first and second conductor films are simultaneously patterned to form a lower capacitor electrode, and an upper capacitor electrode is formed thereon by a third conductor film with a capacitor insulating film interposed therebetween.

この後、全面を第2の絶縁膜で覆い、コンタクト孔を開
けてMOSトランジスタのドレインまたはソース拡散層
にコンタクトするビット線を形成する。
Thereafter, the entire surface is covered with a second insulating film, and a contact hole is opened to form a bit line that contacts the drain or source diffusion layer of the MOS transistor.

本発明の第2の方法は2M0Sトランジスタが形成され
た基板上を第1の絶縁膜で覆い、これにコンタクト孔を
開ける前に更に第2の絶縁膜を積層形成し、これら第1
の絶縁膜と第1の絶縁膜の積層膜にコンタクト孔を開け
て、MOSトランジスタのソースまたはドレイン拡散層
とコンタクトする下部キャパシタ電極を形成する。そし
て下部キャパシタ電極上にキャパシタ絶縁膜を介して上
部キャパシタ電極を形成する。この後、全面を第3の絶
縁膜で覆い、コンタクト孔を開けてMOSトランジスタ
のドレインまたはソース拡散層にコンタクトするビット
線を形成する。
A second method of the present invention is to cover a substrate on which a 2M0S transistor is formed with a first insulating film, and then, before forming a contact hole thereon, further layer a second insulating film,
A contact hole is formed in the laminated film of the insulating film and the first insulating film to form a lower capacitor electrode that contacts the source or drain diffusion layer of the MOS transistor. Then, an upper capacitor electrode is formed on the lower capacitor electrode with a capacitor insulating film interposed therebetween. Thereafter, the entire surface is covered with a third insulating film, and a contact hole is opened to form a bit line that contacts the drain or source diffusion layer of the MOS transistor.

(作用) 本発明の積層型キャパシタ・セル構造では。(effect) In the stacked capacitor cell structure of the present invention.

キャパシタの下地に層間絶縁膜として本来ある絶縁膜と
別に下地膜を有するから、キャパシタ形成前の各種処理
等により絶縁膜にピンホールが形成されている場合にも
、それによる短絡事故やリーク電流増大を防止すること
ができる。特に下地膜として、下部キャパシタ電極と同
じ導体膜を用いて下部キャパシタ電極と同じパターンに
形成すれば、下部キャパシタ電極の厚みが実質的に厚い
ものとなる。従って上部キャパシタ電極をこの下部キャ
パシタ電極の上面および側面に対向するように形成する
ことにより、側面での面積を稼ぐことができ、大きいキ
ャパシタ容量を得ることができる。
Since the capacitor has a base film separate from the original insulating film as an interlayer insulating film under the capacitor, even if pinholes are formed in the insulating film due to various treatments before forming the capacitor, short circuits and leakage current increases due to this. can be prevented. In particular, if the same conductive film as the lower capacitor electrode is used as the base film and formed in the same pattern as the lower capacitor electrode, the lower capacitor electrode will be substantially thicker. Therefore, by forming the upper capacitor electrode so as to face the upper surface and side surfaces of the lower capacitor electrode, the area on the side surfaces can be increased and a large capacitance can be obtained.

また本発明の第1の方法によれば、MOSトランジスタ
が形成された基板上に居間絶縁膜としての第1の絶縁膜
を形成した後、こけにコンタクト孔を開ける前にキャパ
シタ電極の一部となる第1の導体膜を重ねる。従ってこ
の第1の導体膜により、コンタクト孔形成後の希フッ酸
処理による層間絶縁膜のエツチングが防止される。この
結果。
Further, according to the first method of the present invention, after forming a first insulating film as a living room insulating film on a substrate on which a MOS transistor is formed, and before forming a contact hole in a moss, a part of a capacitor electrode is formed. The first conductive film is overlaid. Therefore, this first conductor film prevents the interlayer insulating film from being etched by the dilute hydrofluoric acid treatment after the contact hole is formed. As a result.

キャパシタ電極とMOSトランジスタのゲート電極間短
絡事故やリーク電流増大を防止することができる。また
この第1の方法によれば、下部キャパシタ電極は2層の
導体膜の積層膜により厚く構成されるから、これをパタ
ーン形成した時に側面にできるキャパシタ面積が大きく
なり、大きいセル容量を得ることができる。
It is possible to prevent short-circuit accidents between the capacitor electrode and the gate electrode of the MOS transistor and an increase in leakage current. Furthermore, according to this first method, since the lower capacitor electrode is formed thickly by a laminated film of two layers of conductor films, when this is patterned, the area of the capacitor formed on the side surface becomes large, and a large cell capacitance can be obtained. I can do it.

第2の方法によれば1層間絶縁膜となる第1の絶縁膜形
成後、コンタクト孔形成前に第2の絶縁膜を堆積するか
ら、平滑化のためのフッ酸処理により第1の絶縁膜にピ
ンホールが形成されたとしても、第2の絶縁膜によりそ
れが埋められ、従ってキャパシタ電極とMOSトランジ
スタのゲート電極間の短絡事故を防止することができる
。特に第1の絶縁膜と第2の絶縁膜を異種材料膜とすれ
ば、コンタクト孔形成後の希フッ酸処理で第1の絶縁膜
のエツチングを効果的に防止することができる。例えば
、第1の絶縁膜にCV D S i O2膜を用い、第
2の絶縁膜にCVSi3N4膜を用いることにより、こ
の様な効果が期待できる。
According to the second method, the second insulating film is deposited after forming the first insulating film, which becomes an interlayer insulating film, and before forming the contact hole. Even if a pinhole is formed in the second insulating film, it is filled with the second insulating film, thereby preventing a short-circuit accident between the capacitor electrode and the gate electrode of the MOS transistor. In particular, if the first insulating film and the second insulating film are made of different materials, etching of the first insulating film can be effectively prevented by dilute hydrofluoric acid treatment after forming the contact hole. For example, such an effect can be expected by using a CV D Si O2 film as the first insulating film and a CVSi3N4 film as the second insulating film.

(実施例) 以下1本発明の実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)(b)は9本発明の一実施例のDRAMセ
ル構造を示す平面図とそのA−A’断面図である。第2
図(a)〜(f)は、この構造を得る第1の方法による
DRAMセル製造工程を示す断面図である。このDRA
Mセルを製造工程に従って説明すると、第2図(a)に
示すように。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line AA' of the DRAM cell structure according to an embodiment of the present invention. Second
Figures (a) to (f) are cross-sectional views showing the DRAM cell manufacturing process according to the first method for obtaining this structure. This DRA
The M cell will be explained according to the manufacturing process as shown in FIG. 2(a).

p型シリコン基板1に例えば選択酸化法により素子分離
酸化膜2を形成する。次いで、第2図(b)に示すよう
に、熱酸化によるゲート酸化膜3を150人程変形成し
、第1層多結晶シリコン膜の堆積、バターニングにより
ゲート電極4(4,。
An element isolation oxide film 2 is formed on a p-type silicon substrate 1 by, for example, selective oxidation. Next, as shown in FIG. 2(b), a gate oxide film 3 is thermally oxidized to form a gate oxide film 3 of about 150 layers, and a first layer polycrystalline silicon film is deposited and patterned to form a gate electrode 4 (4).

4□)を形成し、不純物のイオン注入によりソース、ド
レイン拡散層であるn型i5+、52を形成する。これ
により、メモリセルのMoSトランジスタが得られる。
4□) is formed, and n-type i5+, 52, which is a source and drain diffusion layer, is formed by ion implantation of impurities. Thereby, a MoS transistor of the memory cell is obtained.

ゲート電極4は、第2図に示したようにメモリセル配列
の一方向に連続的に配設されて、ワード線となる。この
後第2図(C)に示すように、WJ:1間絶縁膜となる
(VDSi02S(第1の絶縁膜)6を全面に堆積し1
次いで全面に下部キャパシタ電極の一部となる第1の導
体膜として第2層多結晶シリコン膜71を3000人程
度堆積する。その後第2図(d)に示すように、キャパ
シタ電極をn型層5、にコンタクトさせるためのコンタ
クト孔を開口し、希フッ酸処理を行って下部キャパシタ
電極の残部となる第2の導体膜として第3層多結晶シリ
コン膜72を全面に堆積する。そしてこれらの多結晶シ
リコン膜7、.72の積層膜をバターニングして、第2
図(e)に示すように下部キャパシタ電極7を形成する
。その後第2図(f)に示すように、熱酸化により下部
キャパシタ電極7表面にキャパシタ絶縁膜8を形成し、
キャパシタを構成するための第3の導体膜としての第4
層多結晶シリコン膜を堆積し、これをパターニングして
下部キャパシタ電極7を覆うように上部キャパシタ電極
9を形成する。最後に全面をCV D S i 02膜
10(第2の絶縁膜)で覆い、これにコンタクト孔を開
けて希フッ酸処理を行い、n型層52にコンタクトする
ビット線11を形成して完成する。
As shown in FIG. 2, the gate electrodes 4 are continuously arranged in one direction of the memory cell array and serve as word lines. After this, as shown in FIG. 2(C), a VDSi02S (first insulating film) 6, which will become an insulating film between WJ:1, is deposited on the entire surface.
Next, a second layer polycrystalline silicon film 71 is deposited on the entire surface as a first conductive film to become a part of the lower capacitor electrode by about 3,000 layers. Thereafter, as shown in FIG. 2(d), a contact hole is opened to bring the capacitor electrode into contact with the n-type layer 5, and a dilute hydrofluoric acid treatment is performed to form the second conductive film that will become the remainder of the lower capacitor electrode. Then, a third layer polycrystalline silicon film 72 is deposited over the entire surface. And these polycrystalline silicon films 7, . 72 laminated films are buttered and the second
As shown in Figure (e), a lower capacitor electrode 7 is formed. Thereafter, as shown in FIG. 2(f), a capacitor insulating film 8 is formed on the surface of the lower capacitor electrode 7 by thermal oxidation.
A fourth conductor film as a third conductor film for forming a capacitor.
A layered polycrystalline silicon film is deposited and patterned to form an upper capacitor electrode 9 so as to cover the lower capacitor electrode 7. Finally, the entire surface is covered with a CV D Si 02 film 10 (second insulating film), a contact hole is made in this, and a dilute hydrofluoric acid treatment is performed to form a bit line 11 in contact with the n-type layer 52. do.

この実施例によれば、MOS)ランジスタが形成された
基板上の層間絶縁膜であるCVD5 i 02膜6にコ
ンタクト孔を開口する前に、キャパシタ電極の一部とな
る多結晶シリコン膜71を予め形成している。従ってコ
ンタクト孔開口後の希フッ酸処理の際にこの多結晶シリ
コン膜7、がマスクとなってCVDSiO2膜6のエツ
チングが防止され、ピンホールの発生が防止される。こ
の結果信頼性の高いDRAMが得られる。
According to this embodiment, before opening a contact hole in the CVD5 i 02 film 6, which is an interlayer insulating film on a substrate on which a MOS transistor is formed, a polycrystalline silicon film 71, which will become a part of a capacitor electrode, is formed in advance. is forming. Therefore, during the dilute hydrofluoric acid treatment after opening the contact hole, this polycrystalline silicon film 7 serves as a mask to prevent etching of the CVDSiO2 film 6, thereby preventing the generation of pinholes. As a result, a highly reliable DRAM can be obtained.

また下部キャパシタ電極には二層の多結晶シリコン膜7
.,72の積層膜を用いているがら、その厚みによりこ
れをパターン形成した時の側面のキャパシタ面積を稼ぐ
ことができ、大きいキャパシタ容量を得ることができる
。例えば二層の多結晶シリコン膜の厚みを等しいとすれ
ば、側面の面積を単層の場合の2倍にすることができ、
全体としてセル容量を1,3〜1.4倍程度にすること
ができる。
In addition, a two-layer polycrystalline silicon film 7 is formed on the lower capacitor electrode.
.. , 72 laminated films are used, but due to their thickness, the area of the capacitor on the side surface can be increased when patterned, and a large capacitor capacity can be obtained. For example, if the thickness of two layers of polycrystalline silicon films is the same, the side surface area can be twice that of a single layer.
Overall, the cell capacity can be increased by about 1.3 to 1.4 times.

第3図(a)〜(f)は、第2の方法による実施例のD
RAMセルの製造工程を示す断面図である。第3図(a
)に示すように、p型シリコン基板21に素子分離酸化
膜22を形成し1次いで第3図(b)に示すようにゲー
ト絶縁膜23を介してゲート電極24を形成し、不純物
のイオン注入によりソース、ドレイン拡散層であるn型
層25を形成する。その後第3図(c)に示すように全
面にCVD5i02膜(第1の絶縁膜)26を堆積する
。モして200gガス雰囲気中で熱処理し、緩衝フッ酸
液で1分程度エツチングしてCVSiO2膜26の表面
を僅かにエツチングして1表面を滑らかにする。次いで
第3図(d)に示すように全面にCVD5 t3N4膜
(第2の絶縁膜)27を200人程変形積する。その後
5i02膜26とSi3N4膜27の積層膜を選択エツ
チングして、第3図(e)に示すようにn型層251に
対するコンタクト孔を形成する。そして希フッ酸処理を
行った後、第3図(f)に示すように、第2層多結晶シ
リコン膜による下部キャパシタ電極28を形成し、熱酸
化によるキャパシタ絶縁膜29を形成した後第3層多結
晶シリコン膜による上部キャパシタ電極30を形成する
FIGS. 3(a) to 3(f) show D of the embodiment according to the second method.
FIG. 3 is a cross-sectional view showing the manufacturing process of a RAM cell. Figure 3 (a
), an element isolation oxide film 22 is formed on a p-type silicon substrate 21, a gate electrode 24 is formed via a gate insulating film 23 as shown in FIG. 3(b), and impurity ions are implanted. An n-type layer 25, which is a source and drain diffusion layer, is formed by the following steps. Thereafter, as shown in FIG. 3(c), a CVD5i02 film (first insulating film) 26 is deposited on the entire surface. The CVSiO2 film 26 is then heat treated in a 200 g gas atmosphere and etched for about 1 minute with a buffered hydrofluoric acid solution to slightly etch the surface of the CVSiO2 film 26 and make one surface smooth. Next, as shown in FIG. 3(d), a CVD5 t3N4 film (second insulating film) 27 is deposited over the entire surface by about 200 people. Thereafter, the laminated film of the 5i02 film 26 and the Si3N4 film 27 is selectively etched to form a contact hole for the n-type layer 251 as shown in FIG. 3(e). After performing dilute hydrofluoric acid treatment, as shown in FIG. 3(f), a lower capacitor electrode 28 is formed using a second layer polycrystalline silicon film, and a capacitor insulating film 29 is formed using thermal oxidation. An upper capacitor electrode 30 is formed using a layered polycrystalline silicon film.

最後に全面をCV D S i O2膜(第3の絶縁膜
)31で覆い、コンタクト孔を開けてビット線32を配
設する。
Finally, the entire surface is covered with a CV D Si O2 film (third insulating film) 31, contact holes are made, and bit lines 32 are provided.

この実施例によれば、MOSトランジスタが形成された
基板上を覆う層間絶縁膜としてのCVD5i02膜26
にコンタクト孔を形成する前に、その表面を更にCVD
5 i3 N4膜27で覆っている。従って平坦化処理
やコンタクト孔形成後のフッ酸処理による層間絶縁膜で
のピンホール発生を防止することができ、信頼性および
歩留りの高い積層キャパシタ・セル構造のDRAMを得
ることができる。
According to this embodiment, the CVD5i02 film 26 serves as an interlayer insulating film covering the substrate on which the MOS transistor is formed.
The surface is further CVDed before forming contact holes in the
5 i3 Covered with N4 film 27. Therefore, it is possible to prevent the generation of pinholes in the interlayer insulating film due to planarization treatment or hydrofluoric acid treatment after contact hole formation, and it is possible to obtain a DRAM having a stacked capacitor cell structure with high reliability and high yield.

なお第3図の実施例では、第1の絶縁膜をCVD5i0
2膜とし、これを保護するための第2の絶縁膜をCVD
5 i3 N4膜としたが、これはエツチング特性の異
なる異種材料の組合わせにより効果的に層間絶縁膜の不
要なエツチングを防止できるためである。他の絶縁膜材
料の組合わせを適当に選ぶこともできる。またこれら第
1.第2の絶縁膜に同種の材料を用いた場合にも1本発
明の効果が得られる。即ち第1の絶縁膜に対して平坦化
処理を施してピンホールが形成されたとしても、コンタ
クト孔形成前に更に同じ材料からなる第2の絶縁膜を堆
積することによって、ピンホールに起因する短絡事故や
リーク電流増大を防止することができるからである。
In the embodiment shown in FIG. 3, the first insulating film is CVD5i0
2 films, and the second insulating film to protect it is CVD.
The reason for using the 5i3N4 film is that unnecessary etching of the interlayer insulating film can be effectively prevented by combining different materials with different etching characteristics. Combinations of other insulating film materials can also be appropriately selected. Also, these first. The effects of the present invention can also be obtained when the same type of material is used for the second insulating film. In other words, even if pinholes are formed by flattening the first insulating film, by depositing a second insulating film made of the same material before forming the contact hole, the problem caused by the pinholes can be eliminated. This is because short circuit accidents and increases in leakage current can be prevented.

[発明の効果] 以上述べたように本発明によれば、MOSトランジスタ
のゲート電極とこの上に積層され条キャパシタ電極との
間の短絡事故やリーク電流増大を効果的に防止して、信
頼性および歩留り向上を図った積層型キャパシタ構造の
DRAMを得ることができる。また、下部キャパシタ電
極下に設ける下地膜として導体膜を用いてこれを下部キ
ャパシタ電極と同じにパターン形成すれば、ピンホール
の影響を防止できるのみならず、キャパシタ容量を効果
的に増大させることができ、有用である。
[Effects of the Invention] As described above, according to the present invention, short-circuit accidents and increases in leakage current between the gate electrode of a MOS transistor and the strip capacitor electrode laminated thereon can be effectively prevented, thereby improving reliability. In addition, a DRAM having a stacked capacitor structure with improved yield can be obtained. Furthermore, if a conductor film is used as the base film provided under the lower capacitor electrode and is patterned in the same manner as the lower capacitor electrode, it is possible to not only prevent the effects of pinholes but also effectively increase the capacitor capacitance. possible and useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は1本発明の一実施例のDRAM構
造を示す平面図とそのA−A’断面図。 第2図(a)〜(f)は、そのメモリセル製造工程を示
す断面図、第3図(a)〜(f)は第2の方法による実
施例のメモリセル製造工程を示す断面図である。 1・・・p型シヘリコン基板、2・・・素子分離酸化膜
、3・・・ゲート絶縁膜、4・・・ゲート電極。 5・・・n型層(ソース、ドレイン拡散層)。 6・・・CV D S i O2膜(第1の絶縁膜)。 71・・・第1の導体膜(第2層多結晶シリコン膜)。 73・・・第2の導体膜(第3層多結晶シリコン膜)。 7・・・下部キャパシタ電極、8・・・キャパシタ絶縁
膜。 9・・・上部キャパシタ電極(第3の導体膜、第4層多
結晶シリコン膜)、10・・・CVD5i02膜(第2
の絶縁膜)、11・・・ビット線、21・・・p型シリ
コン基板、22・・・素子分離酸化膜。 23・・・ゲート絶縁膜、24・・・ゲート電極。 25・・・n型層(ソース、ドレイン拡散層)。 26・・・CVD5i02膜(第1の絶縁膜)。 27−CV D S i 3 N 4膜(第2の絶1!
膜)。 28・・・下部キャパシタ電極(第2層多結晶シリコン
膜)、29・・・キャパシタ絶縁膜、30・・・上部キ
ャパシタ電極(第3層多結晶シリコン膜)。 31−CV D S i O2膜(第3の絶縁1)。 32・・・ビット線。 出願人代理人 弁理士 鈴江武彦
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line AA' of the DRAM structure according to an embodiment of the present invention. FIGS. 2(a) to (f) are cross-sectional views showing the memory cell manufacturing process, and FIGS. 3(a) to (f) are cross-sectional views showing the memory cell manufacturing process of the example according to the second method. be. DESCRIPTION OF SYMBOLS 1... P-type silicon helicon substrate, 2... Element isolation oxide film, 3... Gate insulating film, 4... Gate electrode. 5...n-type layer (source, drain diffusion layer). 6...CV D Si O2 film (first insulating film). 71...First conductor film (second layer polycrystalline silicon film). 73...Second conductor film (third layer polycrystalline silicon film). 7... Lower capacitor electrode, 8... Capacitor insulating film. 9... Upper capacitor electrode (third conductor film, fourth layer polycrystalline silicon film), 10... CVD5i02 film (second layer)
(insulating film), 11...bit line, 21...p-type silicon substrate, 22... element isolation oxide film. 23... Gate insulating film, 24... Gate electrode. 25...n-type layer (source, drain diffusion layer). 26...CVD5i02 film (first insulating film). 27-CV D Si 3 N 4 film (Second Destruction 1!
film). 28... Lower capacitor electrode (second layer polycrystalline silicon film), 29... Capacitor insulating film, 30... Upper capacitor electrode (third layer polycrystalline silicon film). 31-CV D Si O2 film (third insulation 1). 32...Bit line. Applicant's agent Patent attorney Takehiko Suzue

Claims (6)

【特許請求の範囲】[Claims] (1)半導体基板に形成されたMOSトランジスタと、
このMOSトランジスタが形成された基板上に絶縁膜を
介して積層され、絶縁膜に開けたコンタクト孔を介して
下部キャパシタ電極がMOSトランジスタのソースまた
はドレイン拡散層にコンタクトするキャパシタとからな
るメモリセルを有する半導体記憶装置において、前記下
部キャパシタ電極下の絶縁膜上の前記コンタクト孔の外
側に下地膜を有することを特徴とする半導体記憶装置。
(1) A MOS transistor formed on a semiconductor substrate,
A memory cell is constructed of a capacitor stacked on a substrate on which this MOS transistor is formed via an insulating film, and a lower capacitor electrode contacts the source or drain diffusion layer of the MOS transistor through a contact hole formed in the insulating film. 1. A semiconductor memory device comprising: a base film on the outside of the contact hole on the insulating film under the lower capacitor electrode.
(2)前記下地膜が導体膜であり、下部キャパシタ電極
と同時にパターン形成されて下部キャパシタ電極の一部
となる請求項1記載の半導体記憶装置。
(2) The semiconductor memory device according to claim 1, wherein the base film is a conductive film, and is patterned simultaneously with the lower capacitor electrode to become a part of the lower capacitor electrode.
(3)前記下地膜が前記絶縁膜とは異種材料の絶縁膜で
ある請求項1記載の半導体記憶装置。
(3) The semiconductor memory device according to claim 1, wherein the base film is an insulating film made of a different material from the insulating film.
(4)MOSトランジスタとキャパシタによりメモリセ
ルを構成する半導体記憶装置の製造方法であって、素子
分離領域が形成された半導体基板にMOSトランジスタ
を形成する工程と、MOSトランジスタが形成された基
板上を第1の絶縁膜で覆い、続いて下部キャパシタ電極
の一部となる第1の導体膜を積層形成する工程と、これ
ら第1の絶縁膜と第1の導体膜の積層膜にコンタクト孔
を開けて、MOSトランジスタのソースまたはドレイン
拡散層にコンタクトして下部キャパシタ電極の残部とな
る第2の導体膜を堆積する工程と、第1および第2の導
体膜を同時にパターン形成して下部キャパシタ電極を形
成する工程と、形成された下部キャパシタ電極表面にキ
ャパシタ絶縁膜を介して第3の導体膜からなる上部キャ
パシタ電極を形成する工程と、上部キャパシタ電極が形
成された基板上を第2の絶縁膜で覆い、これにコンタク
ト孔を開けてMOSトランジスタのドレインまたはソー
ス拡散層にコンタクトするビット線を形成する工程とを
有することを特徴とする半導体記憶装置の製造方法。
(4) A method for manufacturing a semiconductor memory device in which a memory cell is configured by a MOS transistor and a capacitor, which includes a step of forming a MOS transistor on a semiconductor substrate on which an element isolation region is formed, and a step of forming a MOS transistor on the substrate on which the MOS transistor is formed. A process of covering with a first insulating film and then laminating a first conductive film that will become a part of the lower capacitor electrode, and forming a contact hole in the laminated film of the first insulating film and the first conductive film. Then, a step of depositing a second conductor film that contacts the source or drain diffusion layer of the MOS transistor and becomes the remainder of the lower capacitor electrode, and simultaneously patterning the first and second conductor films to form the lower capacitor electrode. forming an upper capacitor electrode made of a third conductive film on the surface of the formed lower capacitor electrode via a capacitor insulating film; and forming a second insulating film on the substrate on which the upper capacitor electrode is formed. 1. A method of manufacturing a semiconductor memory device, comprising the steps of: covering the semiconductor memory device with a MOS transistor and forming a contact hole therein to form a bit line in contact with a drain or source diffusion layer of a MOS transistor.
(5)MOSトランジスタとキャパシタによりメモリセ
ルを構成する半導体記憶装置の製造方法であって、素子
分離領域が形成された半導体基板にMOSトランジスタ
を形成する工程と、MOSトランジスタが形成された基
板上を第1の絶縁膜で覆い、続いて第2の絶縁膜を積層
形成する工程と、これら第1および第2の絶縁膜の積層
膜にコンタクト孔を開けてMOSトランジスタのソース
またはドレイン拡散層にコンタクトする下部キャパシタ
電極を形成する工程と、形成された下部キャパシタ電極
表面にキャパシタ絶縁膜を介して上部キャパシタ電極を
形成する工程と、上部キャパシタ電極が形成された基板
上を第3の絶縁膜で覆い、これにコンタクト孔を開けて
MOSトランジスタのドレインまたはソース拡散層にコ
ンタクトするビット線を形成する工程とを有することを
特徴とする半導体記憶装置の製造方法。
(5) A method for manufacturing a semiconductor memory device in which a memory cell is configured by a MOS transistor and a capacitor, which includes the steps of forming a MOS transistor on a semiconductor substrate on which an element isolation region is formed, and forming a semiconductor memory device on the substrate on which the MOS transistor is formed. A process of covering with a first insulating film and then laminating a second insulating film, and forming a contact hole in the laminated film of the first and second insulating films to contact the source or drain diffusion layer of the MOS transistor. forming a lower capacitor electrode on the surface of the formed lower capacitor electrode via a capacitor insulating film; and covering the substrate on which the upper capacitor electrode is formed with a third insulating film. A method of manufacturing a semiconductor memory device, comprising the steps of: forming a contact hole therein to form a bit line in contact with a drain or source diffusion layer of a MOS transistor.
(6)第2の絶縁膜は第1の絶縁膜とは異種材料からな
る請求項5記載の半導体記憶装置の製造方法。
(6) The method of manufacturing a semiconductor memory device according to claim 5, wherein the second insulating film is made of a material different from that of the first insulating film.
JP63119201A 1988-05-18 1988-05-18 Semiconductor memory and manufacture thereof Pending JPH01290255A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63119201A JPH01290255A (en) 1988-05-18 1988-05-18 Semiconductor memory and manufacture thereof
KR1019890006619A KR900019227A (en) 1988-05-18 1989-05-18 Semiconductor memory device with stacked capacitor and manufacturing method thereof
US07/353,765 US4951175A (en) 1988-05-18 1989-05-18 Semiconductor memory device with stacked capacitor structure and the manufacturing method thereof
DE3916228A DE3916228C2 (en) 1988-05-18 1989-05-18 Semiconductor memory device with stacked capacitor cell structure and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119201A JPH01290255A (en) 1988-05-18 1988-05-18 Semiconductor memory and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01290255A true JPH01290255A (en) 1989-11-22

Family

ID=14755430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119201A Pending JPH01290255A (en) 1988-05-18 1988-05-18 Semiconductor memory and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01290255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326267A (en) * 1993-04-14 1994-11-25 Hyundai Electron Ind Co Ltd Stack capacitor and preparation thereof
US6104055A (en) * 1997-03-27 2000-08-15 Nec Corporation Semiconductor device with memory cell having a storage capacitor with a plurality of concentric storage electrodes formed in an insulating layer and fabrication method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276606A (en) * 1987-05-16 1987-12-01 Fanuc Ltd Feed speed command device
JPH01130556A (en) * 1987-11-17 1989-05-23 Fujitsu Ltd Semiconductor memory and manufacture thereof
JPH01262658A (en) * 1988-04-13 1989-10-19 Nec Corp Dynamic random access memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276606A (en) * 1987-05-16 1987-12-01 Fanuc Ltd Feed speed command device
JPH01130556A (en) * 1987-11-17 1989-05-23 Fujitsu Ltd Semiconductor memory and manufacture thereof
JPH01262658A (en) * 1988-04-13 1989-10-19 Nec Corp Dynamic random access memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326267A (en) * 1993-04-14 1994-11-25 Hyundai Electron Ind Co Ltd Stack capacitor and preparation thereof
US6104055A (en) * 1997-03-27 2000-08-15 Nec Corporation Semiconductor device with memory cell having a storage capacitor with a plurality of concentric storage electrodes formed in an insulating layer and fabrication method thereof

Similar Documents

Publication Publication Date Title
US5061651A (en) Method of making dram cell with stacked capacitor
JP2761685B2 (en) Method for manufacturing semiconductor device
JP2875588B2 (en) Method for manufacturing semiconductor device
JPH02312269A (en) Semiconductor memory device and manufacture thereof
JPH0316171A (en) Manufacture of semiconductor device
JPH0645552A (en) Semiconductor device and its manufacture
JP2894740B2 (en) MOS type semiconductor device
JP2680376B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0260162A (en) Semiconductor memory
JPH0279462A (en) Semiconductor memory
JPH0321062A (en) Semiconductor storage device
JPH01290255A (en) Semiconductor memory and manufacture thereof
JP2772375B2 (en) Semiconductor storage device
JPH09260605A (en) Transistor and its manufacture
JPH0426162A (en) Floating gate semiconductor memory and manufacture thereof
JPH03148860A (en) Semiconductor memory and manufacture thereof
JPS63197368A (en) Semiconductor device and its manufacture
JP2721167B2 (en) Semiconductor storage device
JPH0269975A (en) Semiconductor memory and manufacture of the same
JPH01201940A (en) Formation of electrode wiring of semiconductor device
JPH01290256A (en) Dynamic type semiconductor memory and manufacture thereof
JP2931612B2 (en) Semiconductor storage device
JPS63188966A (en) Manufacture of semiconductor device
JP3398056B2 (en) Semiconductor device and manufacturing method thereof
JPH02257671A (en) Semiconductor storage device and manufacture thereof