JPH01289207A - Voltage-dependent nonlinear resistance element and manufacture thereof - Google Patents

Voltage-dependent nonlinear resistance element and manufacture thereof

Info

Publication number
JPH01289207A
JPH01289207A JP63119516A JP11951688A JPH01289207A JP H01289207 A JPH01289207 A JP H01289207A JP 63119516 A JP63119516 A JP 63119516A JP 11951688 A JP11951688 A JP 11951688A JP H01289207 A JPH01289207 A JP H01289207A
Authority
JP
Japan
Prior art keywords
voltage
lif
added
temperature
promoted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63119516A
Other languages
Japanese (ja)
Inventor
Iwao Ueno
巌 上野
Yasuo Wakahata
康男 若畑
Hideyuki Okinaka
秀行 沖中
Reiko Wada
和田 玲子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63119516A priority Critical patent/JPH01289207A/en
Publication of JPH01289207A publication Critical patent/JPH01289207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To remove noise of a low voltage and the like by a method wherein Sr is contained excessively and at least one or more of Nb2O5 and Ta2O5 are added to SrTiO3 containing Li and F. CONSTITUTION:An SrTiO3 powder is used as a raw material, Sr is added excessively so as to make 1.001<=Sr/Ti<=1.05, then, a lattice defect is increased, a semiconductor property is promoted in addition, when another element, e.g., Nb or Ta, is substituted for Ti, an atomic property is controlled and the semiconductor property is promoted. Then, when LiF is added and this assembly is fired in a reducing atmosphere or in an atmosphere of nitrogen, an SrO-TiO2- LiF-based liquid phase is formed and sintering operation is promoted by a liquid sintering operation. By this setup, it is possible to obtain an element whose varistor voltage is comparatively low, whose alpha and permittivity are large, whose tan delta is small, which can simultaneously satisfy a characteristic of excellent reliability and which can protect a semiconductor and a circuit from a noise and static electricity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器、電気機器で発生する異常高電圧、
ノイズ、パルス、静電気から半導体及び回路を保護する
ところのSrTiO3を主成分とする電圧依存性非直線
抵抗体素子及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to abnormal high voltages generated in electronic equipment and electrical equipment,
The present invention relates to a voltage-dependent nonlinear resistor element mainly composed of SrTiO3 that protects semiconductors and circuits from noise, pulses, and static electricity, and a method for manufacturing the same.

従来の技術 従来、各種電子機器、電気機器で発生する異常高電圧、
ノイズ、パルス、静電気除去のためにバリスク特性を有
するSiCバリスタやZnO系バリスタが使用されてき
た。このようなバリスタの電圧−電流特性は近似的に次
式のように表すことができる。
Conventional technology Conventionally, abnormal high voltages generated in various electronic devices and electrical devices,
SiC varistors and ZnO-based varistors having varisque characteristics have been used to remove noise, pulses, and static electricity. The voltage-current characteristics of such a varistor can be approximately expressed as in the following equation.

1=(V/C)a ここで、Iは電流、Vは電圧、Cはバリスタ固有の定数
であり、αは電圧非直線指数である。
1=(V/C)a Here, I is current, V is voltage, C is a constant specific to the varistor, and α is a voltage nonlinear index.

13i0バリスタの電圧非直線指数αは2〜7程度、Z
nO系バリスタではαが60にも及ぶものがある。
The voltage non-linearity index α of the 13i0 varistor is about 2 to 7, Z
Some nO-based varistors have α as high as 60.

このようなバリスタは、比較的高い電圧の吸収には優れ
た性能を有しているが、誘電率が低く、固有の静電容量
が小さいため、バリスタ電圧以下の低い電圧や周波数の
高いものの吸収に対してはほとんど効果を示さない。ま
た、誘電損失tanδが6〜10%と大きい。
Such varistors have excellent performance in absorbing relatively high voltages, but due to their low dielectric constant and small inherent capacitance, they are difficult to absorb low voltages below the varistor voltage or high frequencies. shows almost no effect on Further, the dielectric loss tan δ is as large as 6 to 10%.

一方、低電圧のノイズなどの除去には、見掛けの誘電率
εが6×1Q 程度で、誘電損失tanδが1%前後の
半導体コンデンサが利用されている。
On the other hand, semiconductor capacitors with an apparent dielectric constant ε of about 6×1Q and a dielectric loss tan δ of about 1% are used to remove low-voltage noise.

しかし、このような半導体コンデンサは、サージなどに
よりある程度以上の電圧、電流が印加されると破壊した
り、コンデンサとしての機能を果たさなくなる。そこで
近年、8rTiO,f主成分とし、バリスタ特性と、コ
ンデンサ特性の両方の機能を有するものが開発されてき
ている。
However, such semiconductor capacitors break down or cease to function as a capacitor when a voltage or current exceeding a certain level is applied due to a surge or the like. Therefore, in recent years, materials have been developed that have 8rTiO,f as the main component and have both varistor and capacitor characteristics.

発明が解決しようとする課題 5rTiO、を主成分とする容量性バリスタは、バリス
タ電圧が高い、電圧非直線指数αが小さい、見掛は誘電
率εが小さい、容量温度特性が良くないと言う問題を有
しており、全ての特性を同時に満足するものは未だに得
られていない。さらに、焼結温度、再酸化温度が高いこ
とから、エネルギー量の消費が多いと言う問題を有して
いる口従って、 5rTiO,を主成分とする容量性バ
リスタにおいて、バリスタ電圧が低い、電圧非直線指数
αが大きい、見掛は誘電率εが大きい、容量温度特性が
良いと言う条件を同時に満たし、さらに焼成温度や再酸
化温度が低温で行える必要がある。
Problem to be Solved by the Invention 5 The capacitive varistor mainly composed of rTiO has the following problems: high varistor voltage, small voltage nonlinearity index α, apparently small dielectric constant ε, and poor capacitance temperature characteristics. However, a product that satisfies all of the characteristics simultaneously has not yet been obtained. Furthermore, since the sintering temperature and reoxidation temperature are high, there is a problem of high energy consumption. It is necessary to simultaneously satisfy the following conditions: a large linear index α, a large apparent dielectric constant ε, and good capacitance-temperature characteristics, and furthermore, the firing temperature and reoxidation temperature must be low.

本発明は、このような点に鑑みてなされたもので、低電
圧のノイズなどの除去が可能な5rTiO。
The present invention has been made in view of these points, and uses 5rTiO that can remove low voltage noise.

を主成分とする電圧依存性非直線抵抗体素子及びその製
造方法を提供することを目的とするものである。
It is an object of the present invention to provide a voltage-dependent nonlinear resistor element having as a main component and a method for manufacturing the same.

課題を解決するための手段 上記のような問題点を解決するために本発明は、Srと
TiO比が1.001≦Sr/Ti≦1.06となるよ
うに過剰のSrを含有し、さらにLiと1を合計でo、
o o y 〜o、s o o wt%含有したSrT
iO3に、Nb、05. Ti2O5のうち少なくとも
一種類以上を0.1〜5.01101%含ませてなる電
圧依存性非直線抵抗体素子を提供するものである。また
、その内部に含まれる水溶性塩が0.050wt%以下
(但し、0Wt%は含まず)とした電圧依存性非直線抵
抗体素子を提供するものである。さらに本発明は、平均
粒径が0.5μm以下のSrTiO3粉末を原料として
’1.001≦Sr/Ti≦1,06となるようにSr
化合物を添加し、さらにLiFを0.7〜7.0110
1%と、Wb206. Ti2O5のうち少なくとも一
種類以上を0.1〜5.0 mo1%添加した混合粉末
を成形し、還元雰囲気または窒素雰囲気中で1000〜
1400″Cの温度範囲で焼成し、その後、600〜9
00℃で焼付は可能な導電性ペーストラ用い、上記焼成
後の素子に500〜900℃で焼付けて電極を形成する
か、または上記焼成後の素子を空気中で500〜100
0′Cの熱処理を行った後にSOO〜900℃で焼付け
て電極を形成し、内部に含まれる水溶性塩が0.Os 
0wt%以下(但し、Qwt%は含まず)とした電圧依
存性非直線抵抗体素子の製造方法を提供するものである
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention contains excess Sr so that the Sr to TiO ratio is 1.001≦Sr/Ti≦1.06, and The sum of Li and 1 is o,
SrT containing o o y ~ o, so o wt%
iO3, Nb, 05. The present invention provides a voltage-dependent nonlinear resistor element containing at least one type of Ti2O5 in an amount of 0.1 to 5.01101%. Another object of the present invention is to provide a voltage-dependent nonlinear resistor element in which the water-soluble salt contained therein is 0.050 wt% or less (excluding 0 wt%). Furthermore, the present invention uses SrTiO3 powder with an average particle size of 0.5 μm or less as a raw material and adjusts SrTiO3 so that '1.001≦Sr/Ti≦1,06.
Add the compound and further add LiF from 0.7 to 7.0110
1% and Wb206. A mixed powder containing 0.1 to 5.0 mo1% of at least one type of Ti2O5 is molded to form a powder of 1000 to 5.0 mo1 in a reducing atmosphere or nitrogen atmosphere.
Calcinate at a temperature range of 1400″C, then 600~9
Using a conductive paste that can be baked at 00°C, the fired element is baked at 500 to 900°C to form an electrode, or the fired element is baked at 500 to 100°C in air.
After heat treatment at 0'C, the electrode is formed by baking at SOO~900°C, and the water-soluble salt contained inside is 0. Os
The present invention provides a method for manufacturing a voltage-dependent non-linear resistor element having a concentration of 0wt% or less (excluding Qwt%).

作用 一般に5rTiO,を半導体化させるには、強制還元す
るか、もしくは半導体化促進剤を添加し還元雰囲気焼成
するかである。しかし、これだけでは半導体化促進剤の
種類によって半導体化が進まない場合がある◇そこで、
 5rTi03を化学量論よりSr過剰、またはTi過
剰にすると、格子欠陥が増加し半導体化が促進される。
Function Generally, 5rTiO can be converted into a semiconductor by forced reduction or by adding a semiconductor conversion accelerator and firing in a reducing atmosphere. However, depending on the type of semiconducting accelerator, semiconducting may not progress with this alone.
When 5rTi03 is made in excess of Sr or Ti in excess of the stoichiometry, lattice defects increase and semiconductor formation is promoted.

さらに、Tiを他の元素、例えばWb 、Taで置換す
ると、原子化制御により半導体化が促進される。
Furthermore, when Ti is replaced with other elements such as Wb or Ta, semiconductor formation is promoted through atomization control.

次に、この時、本発明のようにLi  Fを添加し、還
元雰囲気や窒素雰囲気中で焼成すると、680℃付近で
5rO−TiO2−LiF系の液相を形成し、液相焼結
によシ焼結が促進される。また、この液相を介してSr
TiO3が溶解析出し粒成長が起こる。
Next, at this time, when LiF is added as in the present invention and fired in a reducing atmosphere or nitrogen atmosphere, a 5rO-TiO2-LiF system liquid phase is formed at around 680°C, and liquid phase sintering forms a 5rO-TiO2-LiF system liquid phase. Sintering is promoted. In addition, Sr
TiO3 dissolves and grains grow.

これにより低温焼結が可能な焼結体素子を得ることがで
き、焼結のためのエネルギー量を削減することができる
こととなる。しかし、ここでTi過剰であるとLi2T
ie、  を形成するため、5rTiO。
As a result, it is possible to obtain a sintered body element that can be sintered at a low temperature, and the amount of energy for sintering can be reduced. However, if Ti is excessive here, Li2T
ie, 5rTiO to form .

の′焼結性が抑制される。従って、Sr過剰が望まれる
。しかし、Sr過剰もある限度を超すと、粒成長が抑制
され焼結性が低下することや、焼結体素子に水溶性塩を
過剰に含むため、信頼性や寿命特性に影響を与える。
'sinterability is suppressed. Therefore, excess Sr is desired. However, when excess Sr exceeds a certain limit, grain growth is suppressed and sinterability is reduced, and the sintered element contains an excessive amount of water-soluble salt, which affects reliability and life characteristics.

また、5rTiO,に対するLiFの添加量は焼成温度
と密接に関係しており、低温焼結のためには、ある程度
以上のLiFを添加しなければならない。
Furthermore, the amount of LiF added to 5rTiO is closely related to the sintering temperature, and for low-temperature sintering, a certain amount or more of LiF must be added.

そして、この場合、添加したLiFが焼成中に飛散し、
これによって焼成中のサヤ、炉壁2発熱体などが侵され
たり、信頼性や寿命特性を著しく低下させるという実用
上の問題点を有している。しかし、本発明者らは研究の
結果、後述するようにSrTiO3の原料粒径を微細化
して0.6μm以下の原料を用いることにより、LiF
の添加量を低減しても低温焼結が可能であることを見出
した。従って、これらのことから焼成時のLiFの飛散
、残存の抑制、及び焼結体素子の信頼性や寿命特性を向
上させることが可能である。
In this case, the added LiF scatters during firing,
This poses a practical problem in that it damages the pod during firing, the heating element of the furnace wall 2, etc., and significantly reduces reliability and life characteristics. However, as a result of our research, the present inventors found that LiF
It has been found that low-temperature sintering is possible even if the amount of addition is reduced. Therefore, from these reasons, it is possible to suppress the scattering and remaining of LiF during firing, and to improve the reliability and life characteristics of the sintered element.

次に、雰囲気焼成の温度を1oOo〜14oO℃に規定
したのは、後述するように1ooO℃未満では焼結体素
子に含まれるLlとFの残存量がo、so0wt%より
も多いため、信頼性や電気特性に影響を与えることと、
焼結密度が低いためである。また、1400’Cを超え
ると多孔質となり、焼成密度が低下するためである。
Next, the temperature of the atmosphere firing was specified to be 1oOo to 14oOoC because, as described later, below 1ooOoC, the residual amount of Ll and F contained in the sintered element is greater than o, so0 wt%. affecting the properties and electrical properties,
This is because the sintered density is low. In addition, if the temperature exceeds 1400'C, it becomes porous and the firing density decreases.

従って、Sr過剰の5rTiO,にNb2O5,Ta2
O,、のうち少なくとも一種類以上を添加して得られた
焼結体と、Sr過剰のSrTiO3ニWb205.Ti
2O5のうち少なくとも一種類以上及びLiFを添加し
最終的に得られる焼結体とでは、微細構造、電気特性が
著しく異なり、互いに全く別の組成物であると考えられ
る。
Therefore, in 5rTiO with excess Sr, Nb2O5, Ta2
A sintered body obtained by adding at least one kind of O, , and Sr-excess SrTiO3 and Wb205. Ti
The sintered body finally obtained by adding at least one type of 2O5 and LiF has a significantly different microstructure and electrical properties, and is considered to be a completely different composition from each other.

実施例 以下に本発明について、実施例を挙げて具体的に説明す
る。まず、5rTiO,(平均粒径0.5μm)。
EXAMPLES The present invention will be specifically described below with reference to Examples. First, 5rTiO (average particle size 0.5 μm).

5rCO,、Nb2O5,Ti2O5. Li F t
−下記第1表に示す組成比になるように秤量し、混合し
た。これを乾燥後、自動乳鉢で粉砕した。その後、o、
swt%ポリビニルアルコール溶液のバインダーを添加
し、1時間混合し造粒した。造粒後、1ton/coi
の圧力で12φX 1.0 (w)の円板状に成形し、
次に空気中で400℃%1時間脱バインダーを行った。
5rCO,, Nb2O5, Ti2O5. Li F t
-Weighed and mixed so that the composition ratio shown in Table 1 below was achieved. After drying, this was ground in an automatic mortar. After that, o,
A binder of swt% polyvinyl alcohol solution was added, mixed for 1 hour, and granulated. After granulation, 1 ton/coi
Formed into a disc shape of 12φ x 1.0 (w) at a pressure of
Next, the binder was removed in air at 400°C for 1 hour.

その後、N2: H2=10 : 1の還元雰囲気中で
10oo〜1400℃12時間焼成した。このようにし
て得られた第1図、第2図に示す焼結体1の両面に、外
周を残すようにして五gなどの導電性ペーストをスクリ
ーン印刷し、500〜900’C,10〜60分の条件
で焼付け、焼結体素子の再酸化を行うと同時に電極2.
3を形成した。
Thereafter, it was fired at 100° C. to 1400° C. for 12 hours in a reducing atmosphere of N2:H2=10:1. 5 g of conductive paste was screen printed on both sides of the thus obtained sintered body 1 shown in FIGS. 1 and 2, leaving the outer periphery. Baking was performed for 60 minutes to reoxidize the sintered element and at the same time, the electrode 2.
3 was formed.

このようにして得られた還元雰囲気中で130゜℃12
時間焼成した素子(電極はムgベーストを800℃、1
5分の条件で焼付けて形成)の電気特性、さらに素子内
部に含まれるLlとFの残存量、同じく素子内部に含ま
れるLi、F、Sr原子を含む水溶性塩の含有量及び信
頼性試験の結果を下記第2表に示す。ここで、素子内部
に含まれる水溶性塩の含有量は、次の方法により解析し
た。
130°C12 in the reducing atmosphere thus obtained.
Elements fired for hours (electrodes are made of mug base at 800°C for 1 hour)
The electrical properties of the product (formed by baking under conditions of 5 minutes), the residual amount of Ll and F contained inside the device, the content of water-soluble salts containing Li, F, and Sr atoms also contained within the device, and reliability tests. The results are shown in Table 2 below. Here, the content of water-soluble salt contained inside the element was analyzed by the following method.

まず、焼結した素子を粉砕し、それに水を加え10分間
煮沸し、濾過後、Li 、 Srはフレーム原子吸光、
yはイオン電極法により調べた。さらに、信頼性試験の
評価法としては、焼結した素子を温度90’C,湿度9
0〜96%の耐湿負荷雰囲気中に500時間放置し、素
子を室温中に48時間放置した後、試験前と後での容量
変化率を比較した。
First, the sintered element is crushed, water is added to it, it is boiled for 10 minutes, and after filtration, Li and Sr are determined by flame atomic absorption.
y was investigated by the ion electrode method. Furthermore, as an evaluation method for reliability testing, the sintered element was tested at a temperature of 90'C and a humidity of 90°C.
After leaving the device in a humidity-resistant load atmosphere of 0 to 96% for 500 hours and leaving it at room temperature for 48 hours, the rate of change in capacity before and after the test was compared.

(以下余 白) 〈第1表〉 本部は比較例であり、不発明の1ilI泳郭四外−(の
り・本部は比較例であり、本発明の請求範囲外である。
(The following is a margin) <Table 1> The main part is a comparative example, and the uninvented 1ilI Eikoku Shigai-(The main part is a comparative example and is outside the scope of the claims of the present invention.

傘部は比較例であり、本発明の請求範囲外である。The umbrella part is a comparative example and is outside the scope of the present invention.

本部は比較例であり、本発明の請求範囲外である。This part is a comparative example and is outside the scope of the present invention.

まず、上記第1.第2表について解説すると、試料座1
〜9,16,17,25,26,31.32゜35 、
38 、43〜61 は比較例であり、本発明の請求範
囲外である。これらの焼結体素子では、密度が3.5〜
4.9 f /ad (理論密度の67〜94%)と低
いため、バリスタとしての特性に適していないもの、ま
たは容量変化率が大きく、信頼性や電気特性に影響し、
バリスタとしての特性に適していないものである。これ
に対し、その他の本発明にかかる試料8110〜15.
18〜24.27〜30゜33.34.37〜42では
、焼結体の密度が6.0f/a11以上(理論密度の9
6%以上)と高く、バリスタとしての特性に適している
ものである。さらに、容量変化率が小さく、信頼性や電
気特性に影響せず、バリスタとしての特性に適している
ものである。
First, let's start with the above 1. To explain Table 2, sample locus 1
~9,16,17,25,26,31.32°35,
38 and 43 to 61 are comparative examples and are outside the scope of the claims of the present invention. These sintered elements have a density of 3.5~
Because it is as low as 4.9 f/ad (67 to 94% of the theoretical density), it is not suitable for characteristics as a varistor, or the capacitance change rate is large, affecting reliability and electrical characteristics.
It is not suitable for characteristics as a varistor. In contrast, other samples 8110 to 15 according to the present invention.
18~24.27~30°33.34.37~42, the density of the sintered body is 6.0f/a11 or more (9 of the theoretical density)
6% or more), which is suitable for characteristics as a varistor. Furthermore, the capacitance change rate is small, does not affect reliability or electrical characteristics, and is suitable for characteristics as a varistor.

ここで、第3図はSrTiO5の平均粒径を変え、その
他の組成比、焼成温度などの条件は全て上記試料Ph1
0と同一にした場合において、 SrTiO3の平均粒
径と焼結体素子の焼結密度との関係を示す図であり、5
rTiO、の平均粒径が0.5μm以下の場合には、L
iFの添加量が0.71101%と少なくとも低温焼結
が可能であることを示している。
Here, in FIG. 3, the average grain size of SrTiO5 was changed, and all other conditions such as composition ratio and firing temperature were set to the above sample Ph1.
5 is a diagram showing the relationship between the average grain size of SrTiO3 and the sintered density of the sintered element when the diameter is the same as 5.
When the average particle size of rTiO is 0.5 μm or less, L
The amount of iF added was 0.71101%, which indicates that at least low temperature sintering is possible.

しかし、5rTiO,の平均粒径が0.5μmを超える
と、低温焼結では焼結体素子の焼結密度が低く、バリス
タとしての特性に適していないものである。
However, if the average particle size of 5rTiO exceeds 0.5 μm, the sintered element will have a low sintered density in low-temperature sintering, making it unsuitable for properties as a varistor.

また、Llと1の残存量を規定したのは、LlとFは5
rTiO、と反応し、5rO−TiO2−LiF系の液
相を形成し、液相焼結により焼結性を促進させる効果が
あるが、Liと1の残存量が0.007wt%未満では
、焼結体の密度が向上せず、LiFの添加効果が得られ
ないためである。一方、残存量がo、so0wt%を超
えると素子が多孔質となり、焼結密度が低下することと
、素子内部にLl。
In addition, the remaining amount of Ll and 1 was specified because Ll and F are 5
It reacts with rTiO to form a 5rO-TiO2-LiF system liquid phase, which has the effect of promoting sinterability by liquid phase sintering, but if the remaining amount of Li and 1 is less than 0.007 wt%, sintering This is because the density of the solids does not improve and the effect of adding LiF cannot be obtained. On the other hand, if the residual amount exceeds o, so0 wt%, the element becomes porous, the sintered density decreases, and there is Ll inside the element.

F原子を含む水溶性塩の含有量が増加し、信頼性や電気
特性に影響するためである0 また、言い換えれば製造過程において、添加するLiF
 の添加量もこのLlとFの残存量から自ずと規制され
るものである。すなわち、LiFの添加量は0.7〜7
.0 gmo1%となる。
This is because the content of water-soluble salts containing F atoms increases, which affects reliability and electrical characteristics.0 In other words, LiF added during the manufacturing process
The amount of addition is also naturally regulated based on the remaining amounts of Ll and F. That is, the amount of LiF added is 0.7 to 7
.. 0 gmo1%.

次に、5rTi03のSr/Ti比f:1.001〜1
.05に規定したのは、Sr/Ti比が1.001未満
では試料凪1〜8に示すように焼結体密度が向上しない
ためである。これは焼結過程でLiF と8rTi05
が反応し、Li2Tie、  を形成し、SrTiO3
の焼結性を抑制するためと考えられる。一方、1.05
を超えると試料隘44〜61に示すように焼結体素子の
密度が向上しない。これは、Srの含有量が増え過ぎた
ために粒成長が抑制され、焼結性が低下するためである
。また、この場合は素子内部にSr原子を含む水溶性塩
の含有量が増加し、信頼性や電気特性に影響する。
Next, Sr/Ti ratio f of 5rTi03: 1.001 to 1
.. The reason why it is specified as 05 is that when the Sr/Ti ratio is less than 1.001, the density of the sintered body does not improve as shown in samples Nagi 1 to 8. During the sintering process, LiF and 8rTi05
reacts to form Li2Tie, SrTiO3
This is thought to be due to the suppression of sinterability. On the other hand, 1.05
If it exceeds this, the density of the sintered element will not improve as shown in sample holes 44-61. This is because the Sr content increases too much, which suppresses grain growth and reduces sinterability. Furthermore, in this case, the content of water-soluble salts containing Sr atoms inside the element increases, which affects reliability and electrical characteristics.

また、Nb 205r T !L 20 sの添加量を
規定したのは、Nb 20 s * Ta 20 sは
5rTj−0、中のTiと置換し、原子化制御により半
導体化を促進させるために添加しているが、Nb2O5
,Ta 20 sの少なくとも一種類以上が0.1mo
1%未満では、試料1’h25,26に示すように添加
効果が得られず、半導体化が抑制され、誘電率εが劣化
し、またバリスタ電圧が高いため、高容量、低バリスタ
電圧の特徴を示さないためである。一方、5.0 mo
1%を超えると、試料Fh31,32に示すように半導
体化が抑制されることと、焼結密度が低下するためであ
る。
Also, Nb 205r T! The amount of L 20 s added was determined as follows: Nb 20 s * Ta 20 s is added to replace Ti in 5rTj-0 and promote semiconductor formation by controlling atomization, but Nb2O5
, at least one type of Ta 20 s is 0.1 mo
If it is less than 1%, as shown in samples 1'h25 and 26, the addition effect cannot be obtained, the semiconductor formation is suppressed, the dielectric constant ε deteriorates, and the varistor voltage is high, so the characteristics of high capacity and low varistor voltage are This is because it does not show. On the other hand, 5.0 mo
This is because if it exceeds 1%, semiconductor formation will be suppressed and the sintered density will decrease as shown in samples Fh31 and Fh32.

さらに、素子内部に含まれる水溶性塩の含有量を0.0
50wt%以下と規定したのは、0.050wt%を超
えると第4図に示すように耐湿負荷雰囲気中での容量変
化率が上昇し、信頼性や電気特性に影響を与えるためで
ある。
Furthermore, the content of water-soluble salts contained inside the element was reduced to 0.0.
The reason why it is specified to be 50 wt% or less is because if it exceeds 0.050 wt%, the rate of change in capacity in a humidity-resistant load atmosphere increases as shown in FIG. 4, which affects reliability and electrical characteristics.

次に、焼成温度を1000〜1400’Cに規定したの
は、第6図に示すように1000℃未満では焼結体素子
に含まれるLlとFの残存量がo、6o0wt%よりも
多くなるため、信頼性や電気特性に影響を与えることと
、焼結密度が低いためである。また、1400℃を超え
ると多孔質となり、焼結密度が低下するためである。こ
の第6図は試料凪16をペースとして焼成温度とLi、
Fの残存量との関係を見たものである。
Next, the reason why the firing temperature was specified to be 1000 to 1400'C is because as shown in Figure 6, below 1000°C, the residual amount of Ll and F contained in the sintered element is greater than 0% by weight. This is because the reliability and electrical characteristics are affected, and the sintered density is low. Further, if the temperature exceeds 1400°C, the material becomes porous and the sintered density decreases. This figure 6 shows the firing temperature and Li, using sample Nagi 16 as a pace.
This shows the relationship with the remaining amount of F.

なお、本発明の実施例では、一部の組み合わせについて
示したが、他の組み合わせでも同様の効果があることを
確認した。さらに、本発明の実施例では、Li 、 F
の添加剤としてLiF i用いたが、他のLiとF化合
物を添加し複合反応させたLiFでも同様の効果を得ら
れることは言うまでもない。
In addition, although some combinations were shown in the examples of the present invention, it was confirmed that other combinations had similar effects. Furthermore, in embodiments of the present invention, Li, F
Although LiFi was used as the additive, it goes without saying that the same effect can be obtained with LiF obtained by adding other Li and F compounds and causing a complex reaction.

tた、Sr過剰の5rTiO、を作成するに当たり、5
rCO5を添加したが、酸化物や水酸化物などの形で用
いても良く、さらにはSrを含む各種塩類の形で用いて
も同様の効果を得られることは言うまでもない。
In preparing 5rTiO with excess Sr, 5
Although rCO5 is added, it goes without saying that it may be used in the form of oxides or hydroxides, or even in the form of various salts containing Sr to obtain the same effect.

そして、上記の実施例では、焼成を還元雰囲気・中で行
う場合について説明したが、これは窒素雰囲気中で焼成
を行うようにしても良いものである。
In the above embodiment, the case where the firing is performed in a reducing atmosphere has been described, but the firing may also be performed in a nitrogen atmosphere.

しかし、窒素雰囲気中で焼成を行った場合は、半導体化
が若干しにくい面があるため、還元雰囲気中で焼成を行
う場合よりも若干高温度(130Q〜1400℃)側で
焼成する方が特性上は好ましいものである。
However, when firing in a nitrogen atmosphere, it is somewhat difficult to convert into a semiconductor, so firing at a slightly higher temperature (130Q to 1400°C) is better than firing in a reducing atmosphere. The above is preferred.

さらに、上記の実施例では、焼結体の両面にムgベース
トなどの600〜900℃で焼付は可能な導電性ペース
トを印刷し、SOO〜900 ℃で焼付け、焼結体素子
の再酸化を行うと同時に電極を形成する場合について説
明したが、これは従来−船釣に行われているように、焼
成後の素子を空気中で500〜1 ’OOO″Cの熱処
理を行い、焼結体素子の再酸化を行った後に、上記導電
性ペーストを500−900℃で焼付けて電極を形成す
るようにしても良いものである。
Furthermore, in the above example, a conductive paste such as mug base that can be baked at 600 to 900 °C is printed on both sides of the sintered body, and the paste is baked at SOO to 900 °C to prevent reoxidation of the sintered body element. The case where the electrodes are formed at the same time as the sintered body is formed by heat-treating the fired element in air at 500 to 1'OOO''C, as is conventionally done in boat fishing. After reoxidizing the element, the conductive paste may be baked at 500-900°C to form the electrode.

こむで、本発明において、上記実施例に示すように焼結
体素子の再酸化処理と電極形成が同時に行えることとな
った理由は、一つにはLiFの添加によって低温焼結が
可能になったことにより、再酸化が低温で起こり易いた
めである。また、今一つはFイオンの影響により、焼結
体素子の酸素欠陥が多いために、ムgペーストなどを印
刷し低温で焼付けても再酸化が起こシ易い仁とによるも
のである。
In the present invention, the reoxidation treatment of the sintered element and the electrode formation can be performed at the same time as shown in the above example. One reason is that low-temperature sintering is made possible by the addition of LiF. This is because reoxidation tends to occur at low temperatures. Another reason is that the sintered element has many oxygen defects due to the influence of F ions, so re-oxidation is likely to occur even if a mug paste or the like is printed and baked at a low temperature.

このようにして得られた本発明の素子は、バリスタ電圧
が比較的低く、α、誘電率が大きく、信頼性に優れてい
るといった特性を同時に満足するため、ノイズや静電気
の抑制に有効であり、誘電率が大きいことから、立ち上
がりの鋭い急峻波パルスに対しても優れた応答性を示す
The device of the present invention obtained in this way satisfies the following properties: a relatively low varistor voltage, a large α and dielectric constant, and excellent reliability, and is therefore effective in suppressing noise and static electricity. Due to its large dielectric constant, it exhibits excellent response even to steep wave pulses with a sharp rise.

発明の効果 以上に示したように本発明によれば、バリスタ電圧が比
較的低く、a、誘電率が太き(、tanδが小さく、信
頼性に優れているといった特性を同時に満足することが
できる。
Effects of the Invention As shown above, according to the present invention, it is possible to simultaneously satisfy the characteristics of a relatively low varistor voltage, a large dielectric constant (a, small tan δ, and excellent reliability). .

従来のZnO系バリスタに比べ、バリスタ電圧が比較的
低く、α、誘電率が大きいため、ノイズや静電気といっ
た立ち上がりの鋭い急峻波パルスに対して極めて有効で
ある。
Compared to conventional ZnO-based varistors, the varistor voltage is relatively low and α and dielectric constant are large, so it is extremely effective against steep wave pulses with a sharp rise such as noise and static electricity.

従って、本発明によればノイズ、静電気から半導体及び
回路を保護することのできる素子を得ることができ、そ
の実用上の効果は極めて大きいものである。
Therefore, according to the present invention, an element capable of protecting semiconductors and circuits from noise and static electricity can be obtained, and its practical effects are extremely large.

また、従来のS rTio、系バリスタの焼結温度が1
400’C以上であったのに比べ、本発明では1oOo
〜140.0’Cの比較的低温で焼結が可能となり、焼
結過程のエネルギー量の削減が期待されるものである。
In addition, the sintering temperature of the conventional S rTio system varistor is 1
Compared to 400'C or more, the present invention has a temperature of 1oOo
Sintering can be performed at a relatively low temperature of ~140.0'C, and a reduction in the amount of energy in the sintering process is expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子を示す上面図、第2図は本発
明による素子の断面図、第3図は本発明を説明するため
のSrTiO3の平均粒径と焼結密度との関係を示す図
、第4図は同じく水溶性塩の含有量と容量変化率との関
係を示す図、第5図は同じく焼成温度とLi、Fの残存
量との関係を示す図である。 1・・・・・・焼結体、2,3・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 OOSスθ/、5 − V−土フiン名【  CメL^ノ ー容量)七圭氏に礪)   ′
FIG. 1 is a top view showing a device according to the present invention, FIG. 2 is a cross-sectional view of the device according to the present invention, and FIG. 3 is a diagram showing the relationship between the average grain size and sintered density of SrTiO3 for explaining the present invention. FIG. 4 is a diagram similarly showing the relationship between the water-soluble salt content and the rate of change in capacity, and FIG. 5 is a diagram similarly showing the relationship between the firing temperature and the remaining amounts of Li and F. 1... Sintered body, 2, 3... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3

Claims (1)

【特許請求の範囲】 (1)SrとTiの比が1.001≦Sr/Ti≦1.
06となるように過剰のSrを含有し、さらにLiとF
を合計で0.007〜0.500wt%含有したSrT
iO_3に、Nb_2O_5,Ta_2O_5のうち少
なくとも一種類以上を0.1〜5.0mol%含ませて
なる電圧依存性非直線抵抗体素子。 (2)請求項1記載の電圧依存性非直線抵抗体素子に含
まれる水溶性塩が0.050wt%以下(但し、0Wt
%は含まず)であることを特徴とする電圧依存性非直線
抵抗体素子。 (3)SrTiO_3の平均粒径が0.5μm以下の粉
末を原料として1.001≦Sr/Ti≦1.05とな
るようにSr化合物を添加し、さらにLiFを0.7〜
7.0mol%と、Nb_2O_5,Ti_2O_5の
うち少なくとも一種類以上を0.1〜5.0mol%添
加した混合粉末を成形し、還元雰囲気や窒素雰囲気中で
1000〜1400℃の温度で焼成し、その後、500
〜900℃で焼付け可能な導電性ペーストを用い、上記
焼成後の素子に500〜900℃で焼付けて電極を形成
するか、または上記焼成後の素子を空気中で500〜1
000℃の熱処理を行った後に500〜900℃で焼付
けて電極を形成し、内部に含まれる水溶性塩が 0.050wt%以下(但し、0wt%は含まず)であ
ることを特徴とする電圧依存性非直線抵抗体素子の製造
方法。
[Claims] (1) The ratio of Sr and Ti is 1.001≦Sr/Ti≦1.
06, and further contains Li and F.
SrT containing 0.007 to 0.500 wt% in total
A voltage-dependent nonlinear resistor element comprising iO_3 containing 0.1 to 5.0 mol% of at least one of Nb_2O_5 and Ta_2O_5. (2) The water-soluble salt contained in the voltage-dependent nonlinear resistor element according to claim 1 is 0.050 wt% or less (however, 0 Wt%
%)). (3) Using SrTiO_3 powder with an average particle size of 0.5 μm or less as a raw material, add an Sr compound so that 1.001≦Sr/Ti≦1.05, and further add 0.7 to 0.7 μm of LiF.
A mixed powder containing 7.0 mol% and 0.1 to 5.0 mol% of at least one of Nb_2O_5 and Ti_2O_5 is molded, fired at a temperature of 1000 to 1400°C in a reducing atmosphere or nitrogen atmosphere, and then ,500
Using a conductive paste that can be baked at ~900°C, bake the above fired element at 500~900°C to form an electrode, or heat the fired element in air at 500~100°C.
000°C heat treatment and then baking at 500 to 900°C to form an electrode, and the voltage is characterized in that the water-soluble salt contained inside is 0.050wt% or less (however, 0wt% is not included). A method for manufacturing a dependent nonlinear resistor element.
JP63119516A 1988-05-17 1988-05-17 Voltage-dependent nonlinear resistance element and manufacture thereof Pending JPH01289207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119516A JPH01289207A (en) 1988-05-17 1988-05-17 Voltage-dependent nonlinear resistance element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119516A JPH01289207A (en) 1988-05-17 1988-05-17 Voltage-dependent nonlinear resistance element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01289207A true JPH01289207A (en) 1989-11-21

Family

ID=14763206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119516A Pending JPH01289207A (en) 1988-05-17 1988-05-17 Voltage-dependent nonlinear resistance element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01289207A (en)

Similar Documents

Publication Publication Date Title
JPH01289206A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPH01289207A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPS63312616A (en) Semiconductor porcelain composition
JPH01289205A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JPS606535B2 (en) porcelain composition
JP2808775B2 (en) Varistor manufacturing method
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPH03138905A (en) Voltage dependent non-linear ceramic resistor and its manufacture
JP2725405B2 (en) Voltage-dependent nonlinear resistor porcelain and method of manufacturing the same
JPH01289203A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2808777B2 (en) Varistor manufacturing method
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2990627B2 (en) Varistor manufacturing method
JPS61271802A (en) Voltage non-linear resistor ceramic composition
JPH01289202A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP2555791B2 (en) Porcelain composition and method for producing the same
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JP2638599B2 (en) Voltage non-linear resistor ceramic composition
JPH03138908A (en) Voltage dependent non-linear resistor element and its manufacture
JPH01289204A (en) Voltage-dependent nonlinear resistance element and manufacture thereof
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition