JPH0128815B2 - - Google Patents

Info

Publication number
JPH0128815B2
JPH0128815B2 JP59123992A JP12399284A JPH0128815B2 JP H0128815 B2 JPH0128815 B2 JP H0128815B2 JP 59123992 A JP59123992 A JP 59123992A JP 12399284 A JP12399284 A JP 12399284A JP H0128815 B2 JPH0128815 B2 JP H0128815B2
Authority
JP
Japan
Prior art keywords
temperature
treatment
strength
hot
solution treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59123992A
Other languages
Japanese (ja)
Other versions
JPS613832A (en
Inventor
Terutaka Tsumura
Yasutaka Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59123992A priority Critical patent/JPS613832A/en
Publication of JPS613832A publication Critical patent/JPS613832A/en
Publication of JPH0128815B2 publication Critical patent/JPH0128815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明はCu,Ni,Cr,Moを含有するオース
テナイト系材料、特にオーステナイト系油井管材
料の製造方法に関し、耐食性、就中耐応力腐食割
れ性にすぐれた油井管用オーステナイト系材料の
製造方法に関するものである。 (背景技術) 近年、油井及び天然ガス井は深井戸化の傾向が
著しく、そのため高強度の油井管が要求され、加
えて産出油やガス中には湿潤な硫化水素(H2S)
をはじめ、炭酸ガス(CO2)や塩素イオン(Cl-
などの腐食性物質が含まれることが多くなつてき
ている。このような傾向とともに油井管の使用条
件が苛酷となり、安定操業上、その腐食対策がよ
り一層重要なこととなつている。 油井管の腐食対策としては腐食抑制剤(インヒ
ビター)を投入するのが最も一般的な方法である
が、この方法は海上油井、ガス井のときなどの場
合には有効に活用できないことが多く、また十分
な成果も期待できないことが多い。このほか、管
の保護コーテイングなどの手段も用いられている
が、これも十分な成果は期待できない状況であ
る。 このような事情に鑑み、最近では、より高級な
耐食性材料が用いられる傾向にあり、オーステナ
イト系ステンレス鋼やインコロイやハステロイ
(いずれも商品名)といつた高合金材料が採用さ
れ出している。 然しながら、これらの材料はオーステナイト系
のステンレス鋼又は合金であるため通常の製造方
法である溶体化処理のまゝでは強度、特に降伏強
さ(0.2%耐力)が低く、深井戸用油井管として
の強度を満足し得ないものである。 従つてこれらの材料にNbやTiなどの析出強化
元素を多量に添加したり、固溶強化のためにNを
殊更に添加したり、冷間加工を施したりして深井
戸用油井管に要求される高強度を具備させること
が行なわれているのが現状である。 然るに本発明者らの実験、研究によればH2S−
CO2−Cl-の油井、ガス井環境下における腐食の
主たるものは応力腐食割れ(SCC)であるが、こ
の場合のSCCはオーステナイト系ステンレス鋼に
おける一般的なそれとは挙動を全く異にするもの
である。即ち、一般のSCCがCl-の存在と深く関
連するものであるのに対し、上記の油井、ガス井
環境下におけるものではCl-もさることながらそ
れ以上にH2Sの影響が大きいという事実が明らか
になつたのである。 一方、油井管として実用に供される鋼管に対
し、強度上の必要から析出強化元素であるNbや
Tiを多量に添加した場合、これらの元素によつ
て熱間加工性が害なわれることがある。また冷間
加工を施して強化する場合は大きな加工量(圧下
量)が必要となり、設備上の制約が生ずる場合が
あるばかりでなく、こうした強冷間加工は上記
SCCに対する抵抗性をも著しく減少させる場合も
生ずる。又固溶強化のためにNを多量に添加する
場合には、溶製、造塊が困難となるという問題が
ある。 このような現状に鑑み、本発明者らはNbや
Ti、又Nといつた元素を殊更に添加することな
く而もSCC抵抗性に悪影響を及ぼす冷間加工量を
できるだけ低減して極めて腐食性の強いH2S−
CO2−Cl-の油井、ガス井環境下でもすぐれた耐
久性を発揮するとともに深井戸に適する高強度の
油井管の提供を目的として検討を行なつた結果、
下記に示すような知見を得たのである。 (a) Cu,Ni,Cr,Moを含有するオーステナイ
ト系のステンレス鋼や高合金は熱間加工後、直
ちに急冷する処理(直接溶体化処理)を行なつ
た後、時効処理を行なえば凍結された熱間加工
歪とCuの析出との重畳作用で強度が大巾に向
上し、しかもH2S−CO2−Cl-の油井、ガス井
環境下での耐SCC性は良好であること。 (b) 耐SCC性向上のためには材料のC量を0.1重
量%未満とすることが好ましいが、そうした低
C材でも上記直接溶体化処理とその後に時効処
理を行なうことを組合せた処理による強化作用
は十分に大きいこと。 (c) 直接溶体化処理温度が800℃以上の場合に、
特に良好な耐SCC性が得られること。 (d) さらに上記直接溶体化処理とそれにつづく時
効処理との間で、冷間加工を施せば小さな加工
量(圧下量)で、より大きな強度が得られ耐
SCC性も従来法によるものと比較して良好なこ
と。 (e) あるいは上記直接溶体化処理と、それにつづ
く時効処理を行なつた後に冷間加工を施して
も、小さな加工量で大きな強度が得られ、耐
SCC性も従来法によるものと比較して良好なこ
と。 さて、鋼の加工熱処理のうちには、上記の溶体
化処理と類似したものとして直接焼入れ処理やオ
ースフオーミングが知られている。然しながら、
それらは上記溶体化処理と次の点において全く異
なつている。即ち、 (1) 直接焼入れ処理は鋼を安定オーステナイト範
囲で熱間加工した後、直ちに焼入れを行ない、
マルテンサイト変態を起させる処理であり、そ
の後焼戻しをして使用される場合が多いが熱間
加工後、直ちに焼入れすることによつて再加熱
焼入れする場合よりもオーステナイト粒が大き
いため、鋼の硬化能が著しく上昇して、即ち焼
きが入り易くなり、そのために強度が上昇す
る。然るに本発明処理による強化はこの変態に
よる強化を利用するものではない。 (2) オースフオーミングはオーステナイト化した
鋼を等温変態線図の入江の温度まで急冷し、オ
ーステナイトのまゝの組織のものにその温度で
適当な塑性変形を与えてから、焼入れしてマル
テンサイト変態を起させ、然る後に焼戻しを行
なう処理であつて、一定温度での加工及び変態
を生じさせるという点で、本発明のオーステナ
イト系材料の強化処理とは大いに異なつてい
る。而もオースフオーミングによつて顕著な強
化を起すためには、ほゞ0.1重量%以上のC量
が必要であるが、本発明のオーステナイト系材
料の直接溶体化処理による場合は0.1重量%未
満の低C材でも後述の実施例において示すよう
に大きな強化効果が得られる。 (発明の概要) 本発明は上記知見に基づいてなされたものであ
つて、Cu,Ni,Cr,Moを含有するオーステナ
イト系材料、例えばSUS316J1などのオーステナ
イト系のステンレス鋼やインコロイやハステロイ
(いずれも商品名)などのNi基合金などのような
高合金を1000℃以上の温度に加熱して熱間加工を
行ない、該熱間加工を800℃以上の温度域で終了
して後直ちに急冷する直接溶体化処理を施しさら
に時効処理を施すか、あるいは上記の急冷処理と
時効処理の間または時効処理の後に、さらに冷間
加工を施して耐SCC性にすぐれた高強度油井管用
オーステナイト系材料を強化することにその特徴
を有するものである。 (詳細な説明) 本発明者らはCu,Ni,Cr,Moを含有するオ
ーステナイト系材料を高温に加熱して炭化物や析
出物などをオーステナイト中に固溶せしめた後熱
間で加工を行ない、熱間加工後直ちに急冷する直
接溶体化処理を施し、さらに粗大な炭化物やシグ
マ相の析出をみることのないように適正な時効処
理を行なえば、凍結された熱間加工歪とCuの析
出との重畳作用で強度が大巾に上昇し、さらによ
り大きな強度を付与するために冷間加工すると
き、その加工量が大巾に低減でき、SCC抵抗性の
劣化を防止できるばかりか、設備的にパワーの小
さいミルでも強化が可能となることを知見した。
こゝで上記冷間加工を直接溶体化処理に続けて行
なえば最終の時効処理の際に、凍結された熱間加
工歪及び冷間加工歪がCuの析出と重畳して大き
な強度が得られ、又時効処理の後に冷間加工を施
せば、熱間加工歪及びCuの析出による強度上昇
に、冷間加工による強化が重畳して強度が大きく
向上する。 又、従来の溶体化処理は熱間加工後一旦常温ま
で大気中冷却したものを高温に再加熱して急冷す
るというのであるが、本発明による直接溶体化処
理はこの溶体化温度への加熱と保持の熱エネルギ
ーを節約できるという副次的効果をも有するもの
である。 次に本発明において、オーステナイト系材料を
熱間加工するための加熱下限温度を1000℃とした
のは、この温度を下廻る低温域での加熱では材料
の変形抵抗が大きくなつて熱間加工が困難となる
ほか、炭化物や析出物などのオーステナイト中へ
の固溶が不十分となつて熱間加工性が劣化し、加
えて直接溶体化処理の利用では所望のミクロ組織
が得られず耐SCC性の劣化を招くことゝなるから
である。この加熱の上限温度は特定されるもので
はなく、材料加工時に高温での脆性を生じない温
度とすればよく、グリーブル試験機を用いた高温
引張り試験での絞り値が50%以上となるような温
度(例えば1200〜1250℃)を選べばよい。 一方、熱間加工後直ちに急冷する処理、即ち直
接溶体化処理の下限温度を800℃としたのは、こ
の温度以下に徐冷すると耐SCC性が劣化するの
で、これを防止するためである。 また時効処理は500〜700℃の温度域で行なうの
が好ましい。これは500℃を下廻る温度での時効
処理ではCuの析出が十分でなく、また700℃を越
える温度での時効処理では析出したCuが粗大化
することに加えて熱間加工歪や冷間加工歪が解放
されるために、強化に有効でなくなるからであ
り、さらに700℃を越えて長時間時効処理を行な
えば粗大な炭化物やシグマ相の析出が生じて耐
SCC性が劣化するので、これを防ぐために500〜
700℃での時効処理が好ましいのである。 またより大きな強度を付与する必要があるとき
は時効処理の前又は後に冷間加工を施すが、この
ときの冷間加工量は従来の再加熱溶体化処理した
ものに冷間加工を施して同一強度レベルを得る場
合に比べて著しく小さくすることができる。一
方、前述したように強冷間加工は耐SCC性を劣化
させるので、冷間加工量は断面圧縮率で30%以下
とすることが好ましい。こゝにおいて、断面圧縮
率(RA)は次式によつて定義されるものであ
る。 RA(%)=S0−S1/S0×100 但し RA:断面圧縮率 S0:主加工方向に対して直角をなす断
面の冷間加工前の面積 Si:主加工方向に対して直角をなす断
面の冷間加工後の面積 さらに直接溶体化処理によつて炭化物などの固
溶を十分に行なわせて大きな耐SCC性を得るため
には該処理をC含有量が0.1重量%未満、好まし
くは0.03重量%以下の材料に対して適用するのが
よい。 一方、Cuは強度、耐食性を向上させるために、
0.2%以上を含有させることが好ましく、他方熱
間加工性を劣化させないために3.0%以下とする
ことが好ましい。 (実施例) 次に、本発明の実施例について説明する。 実施例 1 通常の方法によつて第1表に示す成分組成を有
するCu,Cr,Ni,Moを含有するオーステナイ
ト系材料を溶製した。 次にこれらの鋼片(合金片)を1180℃に均熱し
た後、熱間圧延を行ない、その後直接溶体化処理
又は通常の再加熱溶体化処理を施した後、次いで
それぞれについて時効処理及び冷間加工処理を行
なつて、降伏強さ(0.2%耐力)を測定した。第
2表に熱間圧延後の各種処理の条件とともに降伏
強さの測定結果を示す。
(Technical Field) The present invention relates to an austenitic material containing Cu, Ni, Cr, and Mo, particularly a method for manufacturing an austenitic oil country tubular material, and a method for producing an austenitic material for oil country tubular goods that has excellent corrosion resistance, especially stress corrosion cracking resistance. This relates to a manufacturing method. (Background technology) In recent years, there has been a marked trend toward deeper oil and natural gas wells, which requires high-strength oil country tubular goods, and in addition, produced oil and gas contain wet hydrogen sulfide (H 2 S).
including carbon dioxide gas (CO 2 ) and chloride ions (Cl - ).
Increasingly, corrosive substances such as Along with this trend, the operating conditions for oil country tubular goods have become harsher, and countermeasures against corrosion have become even more important for stable operation. The most common method to prevent corrosion of oil country tubular goods is to add corrosion inhibitors, but this method is often not effective in offshore oil and gas wells. Furthermore, it is often not possible to expect sufficient results. Other measures such as protective coatings on the pipes have also been used, but these measures are not expected to yield sufficient results. In view of these circumstances, there has been a recent trend toward the use of higher-grade corrosion-resistant materials, and high-alloy materials such as austenitic stainless steel and Incoloy and Hastelloy (all trade names) are being adopted. However, since these materials are austenitic stainless steels or alloys, their strength, especially yield strength (0.2% yield strength), is low when subjected to solution treatment, which is the usual manufacturing method, and they are not suitable for use as oil country tubular goods for deep wells. The strength cannot be satisfied. Therefore, by adding large amounts of precipitation-strengthening elements such as Nb and Ti to these materials, adding N in particular for solid solution strengthening, or subjecting them to cold working, these materials meet the requirements for OCTG for deep wells. Currently, efforts are being made to provide high strength. However, according to the experiments and research of the present inventors, H 2 S−
The main type of corrosion in CO 2 −Cl oil and gas well environments is stress corrosion cracking (SCC), but the behavior of SCC in this case is completely different from that of general austenitic stainless steel. It is. In other words, while general SCC is deeply related to the presence of Cl - , in the oil and gas well environments mentioned above, the influence of H 2 S is greater than that of Cl - . It became clear. On the other hand, for steel pipes used for practical use as oil country tubular goods, Nb, a precipitation-strengthening element, and
When a large amount of Ti is added, these elements may impair hot workability. In addition, when applying cold working to strengthen, a large amount of processing (reduction amount) is required, which not only may cause restrictions on equipment, but also the strong cold working described above
In some cases, resistance to SCC is also significantly reduced. Furthermore, when a large amount of N is added for solid solution strengthening, there is a problem that melting and ingot making become difficult. In view of this current situation, the present inventors have developed Nb and
The highly corrosive H 2 S-
As a result of our research, we aimed to provide high-strength OCTG that is suitable for deep wells and exhibits excellent durability even in CO 2 -Cl - oil and gas well environments.
They obtained the following knowledge. (a) Austenitic stainless steels and high alloys containing Cu, Ni, Cr, and Mo will freeze if they are rapidly cooled (direct solution treatment) immediately after hot working and then subjected to aging treatment. The strength is greatly improved by the superposition of hot working strain and Cu precipitation, and the SCC resistance is good in H 2 S−CO 2 −Cl oil and gas well environments. (b) In order to improve SCC resistance, it is preferable to reduce the C content of the material to less than 0.1% by weight, but even such low C materials can be treated by a combination of the above direct solution treatment and subsequent aging treatment. The reinforcing effect must be sufficiently large. (c) When the direct solution treatment temperature is 800℃ or higher,
Particularly good SCC resistance can be obtained. (d) Furthermore, if cold working is performed between the above direct solution treatment and the subsequent aging treatment, greater strength and durability can be obtained with a small amount of processing (reduction amount).
The SCC properties are also better than those using conventional methods. (e) Alternatively, even if cold working is performed after the above direct solution treatment and subsequent aging treatment, high strength and durability can be obtained with a small amount of work.
The SCC properties are also better than those using conventional methods. Now, among the processing heat treatments for steel, direct quenching treatment and ausforming are known as similar to the above-mentioned solution treatment. However,
They are completely different from the solution treatment described above in the following points. In other words, (1) direct quenching is a process in which steel is hot-worked to a stable austenite range and then quenched immediately;
This is a treatment that causes martensitic transformation, and is often used after tempering. However, by quenching immediately after hot working, the austenite grains are larger than when reheating and quenching, so the steel is hardened. The strength is significantly increased, that is, it becomes easier to burn, and therefore the strength increases. However, the reinforcement by the treatment of the present invention does not utilize the reinforcement by this transformation. (2) Ausforming involves rapidly cooling the austenitized steel to the temperature at the inlet of the isothermal transformation diagram, applying appropriate plastic deformation to the austenitic structure at that temperature, and then quenching it to martensite. It is a process of causing transformation and then tempering, and is very different from the austenitic material strengthening process of the present invention in that it involves processing and transformation at a constant temperature. Furthermore, in order to cause significant strengthening by ausforming, a C content of approximately 0.1% by weight or more is required, but in the case of the direct solution treatment of the austenitic material of the present invention, the amount of C is less than 0.1% by weight. Even with a low C material, a large strengthening effect can be obtained as shown in the examples described later. (Summary of the Invention) The present invention has been made based on the above findings, and uses austenitic materials containing Cu, Ni, Cr, and Mo, such as austenitic stainless steels such as SUS316J1, Incoloy, and Hastelloy (both A direct method in which high alloys such as Ni-based alloys (product name) are heated to a temperature of 1000°C or higher, hot worked, and immediately quenched after the hot working is finished at a temperature range of 800°C or higher. Strengthen the austenitic material for high-strength oil country tubular goods with excellent SCC resistance by applying solution treatment and further aging treatment, or by performing further cold working between or after the above quenching treatment and aging treatment. It is characterized by the fact that it does. (Detailed Description) The present inventors heated an austenitic material containing Cu, Ni, Cr, and Mo to a high temperature to dissolve carbides and precipitates into the austenite, and then hot-processed the material. If direct solution treatment is performed to rapidly cool the material immediately after hot working, and then an appropriate aging treatment is performed to prevent the precipitation of coarse carbides and sigma phase, frozen hot working strain and Cu precipitation can be eliminated. The strength increases significantly due to the superimposed action of It was discovered that even a mill with low power can be strengthened.
If the above-mentioned cold working is performed directly after the direct solution treatment, the frozen hot working strain and cold working strain will overlap with the Cu precipitation during the final aging treatment, and a large strength will be obtained. Furthermore, if cold working is performed after aging treatment, the strength increases due to hot working strain and Cu precipitation, and the strengthening due to cold working is superimposed, resulting in a significant improvement in strength. In addition, in conventional solution treatment, after hot working, the product is cooled in the air to room temperature, then reheated to a high temperature and then rapidly cooled, but the direct solution treatment according to the present invention involves heating to this solution temperature. This also has the secondary effect of saving thermal energy for holding. Next, in the present invention, the lower limit heating temperature for hot working an austenitic material is set at 1000°C because heating in a low temperature range below this temperature increases the deformation resistance of the material and makes hot working impossible. In addition to this, hot workability deteriorates due to insufficient solid solution of carbides and precipitates into austenite, and in addition, the desired microstructure cannot be obtained with direct solution treatment, resulting in poor SCC resistance. This is because it will lead to sexual deterioration. The upper limit temperature for this heating is not specified, and it may be set to a temperature that does not cause brittleness at high temperatures during material processing, and a temperature at which the reduction of area is 50% or more in a high-temperature tensile test using a Greeble tester. All you have to do is choose the temperature (for example, 1200 to 1250°C). On the other hand, the lower limit temperature of the process of rapid cooling immediately after hot working, that is, the direct solution treatment, was set at 800°C in order to prevent SCC resistance from deteriorating if the material was slowly cooled below this temperature. Further, the aging treatment is preferably carried out at a temperature range of 500 to 700°C. This is because aging treatment at temperatures below 500°C does not sufficiently precipitate Cu, and aging treatment at temperatures over 700°C causes the precipitated Cu to become coarse, as well as hot work distortion and cold stress. This is because the processing strain is released, making it no longer effective for strengthening, and furthermore, if aging treatment is performed at temperatures exceeding 700°C for a long time, coarse carbides and sigma phase will precipitate, which will reduce the resistance.
Since the SCC property deteriorates, to prevent this, the
Aging treatment at 700°C is preferable. In addition, when it is necessary to impart greater strength, cold working is performed before or after aging treatment, but the amount of cold working at this time is the same as that of conventional reheating solution treatment. The intensity level can be significantly reduced compared to the case where the intensity level is obtained. On the other hand, as described above, intense cold working deteriorates the SCC resistance, so the amount of cold working is preferably 30% or less in terms of cross-sectional compressibility. Here, the sectional compressibility (RA) is defined by the following equation. RA (%) = S 0 - S 1 /S 0 ×100 where RA: Sectional compressibility S 0 : Area before cold working of the cross section perpendicular to the main processing direction Si: Perpendicular to the main processing direction The area after cold working of the cross-section of Preferably, it is applied to materials of 0.03% by weight or less. On the other hand, Cu is used to improve strength and corrosion resistance.
It is preferable to contain 0.2% or more, and on the other hand, it is preferable to contain 3.0% or less in order not to deteriorate hot workability. (Example) Next, an example of the present invention will be described. Example 1 An austenitic material containing Cu, Cr, Ni, and Mo having the composition shown in Table 1 was produced by a conventional method. Next, these steel pieces (alloy pieces) are soaked at 1180℃, hot rolled, and then subjected to direct solution treatment or ordinary reheating solution treatment, and then subjected to aging treatment and cooling. The yield strength (0.2% yield strength) was measured after performing a temporary processing treatment. Table 2 shows the conditions of various treatments after hot rolling as well as the measurement results of yield strength.

【表】【table】

【表】 第2表の結果から、本発明による処理によつて
大きな強化ができ、又小さな冷間加工量で通常の
再加熱溶体化処理材に大きな冷間加工を施したも
のに匹敵する高強度が得られることが明らかであ
る。 実施例 2 前記第1表の合金3を1150℃に均熱した後、熱
間圧延を行ない、その後第3表に示す条件にて直
接溶体化処理又は再加熱による溶体化処理を行な
い、次いでそれぞれについて及び冷間加工処理を
行なつて降伏強さ(0.2%耐力)を測定し、その
結果を併せて第3表に示す。
[Table] From the results in Table 2, it is clear that the treatment according to the present invention can significantly strengthen the material, and that even with a small amount of cold working, it can achieve a high strength comparable to that of a conventional reheated solution-treated material subjected to a large amount of cold working. It is clear that strength is obtained. Example 2 Alloy 3 in Table 1 above was soaked at 1150°C, then hot rolled, and then subjected to direct solution treatment or reheating solution treatment under the conditions shown in Table 3, and then each The yield strength (0.2% yield strength) was measured after cold working and the results are shown in Table 3.

【表】 (注) * 直接溶体化処理した温度
** 溶体化のために再加熱した温度(急冷法
はいずれも水冷)
この第3表からも本発明処理によつて容易に強
化が可能なことが明らかである。 実施例 3 前記第1表中の合金1を1080℃又は1200℃に均
熱した後、熱間圧延を行ないその後直接溶体化処
理又は通常の再加熱溶体化処理を施した後、次い
でそれぞれについて時効処理及び冷間加工処理を
行ない、得られた板材から圧延方向と直角に2mm
厚さ×10mm巾×75mm長さの試験片を採取してSCC
試験を実施した。こゝにおけるSCC試験は添付図
面に示す3点にて支持4している3点支持ビーム
治具2を用いて、上記の試験片1に降伏強さ
(0.2%耐力)に相当する応力を付加し、8気圧
H2S、10気圧CO2でH2S,CO2を飽和させた10%
NaCl溶液(温度175℃)中に150時間浸漬し、割
れ発生の有無を観察する方法によつた。第4表に
熱間圧延後の各種処理の条件とともに降伏強さ、
SCC試験結果をまとめて示す。
[Table] (Note) * Temperature of direct solution treatment ** Temperature of reheating for solution treatment (all quenching methods are water-cooled)
It is clear from this Table 3 that reinforcement can be easily achieved by the treatment of the present invention. Example 3 Alloy 1 in Table 1 above was soaked at 1080°C or 1200°C, then hot rolled, then subjected to direct solution treatment or ordinary reheating solution treatment, and then aged for each. 2 mm perpendicular to the rolling direction from the obtained plate material after treatment and cold working treatment.
Collect a specimen of thickness x 10mm width x 75mm length and perform SCC
A test was conducted. In this SCC test, a stress equivalent to the yield strength (0.2% yield strength) is applied to the above test piece 1 using a three-point support beam jig 2 that is supported at three points as shown in the attached drawing. 8 atm
H2S , 10% saturated with H2S , CO2 at 10 atm CO2
A method was used in which the samples were immersed in a NaCl solution (temperature 175°C) for 150 hours and the presence or absence of cracks was observed. Table 4 shows the conditions of various treatments after hot rolling, as well as yield strength,
The SCC test results are summarized below.

【表】【table】

【表】 第4表によれば本発明処理を施したものは大き
な強度を有し800℃を下廻る低温域から直接溶体
化処理した後時効処理と冷間加工を施したものに
比べ耐SCC性がすぐれ、又同一強度レベルの従来
の再加熱溶体化処理+強冷間加工処理材に比べて
も耐SCC性が良好なことが明らかである。 以上説明したように本発明の効果は頗る大き
く、その工業的価値は高いものである。
[Table] According to Table 4, the products treated with the present invention have greater strength and are more resistant to SCC than those treated with direct solution treatment in the low temperature range below 800°C, followed by aging treatment and cold working. It is also clear that the SCC resistance is excellent compared to conventional reheat solution treatment + intense cold working materials at the same strength level. As explained above, the effects of the present invention are extremely large, and its industrial value is high.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は板状試験片用SCC試験治具を示す。 図中、1……試験片、2……治具、3……ネジ
押え、4……支持点。
The attached drawing shows the SCC test jig for plate-shaped specimens. In the figure, 1...test piece, 2...jig, 3...screw holder, 4...support point.

Claims (1)

【特許請求の範囲】 1 Cu,Ni,Cr,Moを含有するオーステナイ
ト系材料を1000℃以上の温度に加熱してから熱間
加工を行ない、該熱間加工を800℃以上の温度域
で終了した後直ちに急冷する直接溶体化処理を施
し、次いで時効処理することを特徴とする耐食性
のすぐれた高強度油井管用オーステナイト系材料
の製造方法。 2 Cu,Ni,Cr,Moを含有するオーステナイ
ト系材料を1000℃以上の温度に加熱してから熱間
加工を行ない、該熱間加工を800℃以上の温度域
で終了した後直ちに急冷する直接溶体化処理を施
し、その後冷間加工を施し、次いで時効処理する
ことを特徴とする耐食性のすぐれた高強度油井管
用オーステナイト系材料の製造方法。 3 Cu,Ni,Cr,Moを含有するオーステナイ
ト系材料を1000℃以上の温度に加熱してから熱間
加工を行ない、該熱間加工を800℃以上の温度域
で終了した後直ちに急冷する直接溶体化処理を施
し、次いで時効処理し、その後冷間加工を施すこ
とを特徴とする耐食性のすぐれた高強度油井管用
オーステナイト系材料の製造方法。
[Claims] 1. Hot working is performed after heating an austenitic material containing Cu, Ni, Cr, and Mo to a temperature of 1000°C or higher, and the hot working is finished in a temperature range of 800°C or higher. A method for producing a high-strength austenitic material for oil country tubular goods having excellent corrosion resistance, which comprises performing a direct solution treatment by immediately quenching the material, followed by an aging treatment. 2. Direct heating in which an austenitic material containing Cu, Ni, Cr, and Mo is heated to a temperature of 1000°C or higher, then hot worked, and immediately quenched after the hot working is completed at a temperature of 800°C or higher. A method for producing a high-strength austenitic material for oil country tubular goods having excellent corrosion resistance, which comprises performing solution treatment, followed by cold working, and then aging treatment. 3. Direct heating in which an austenitic material containing Cu, Ni, Cr, and Mo is heated to a temperature of 1000°C or higher, then hot worked, and immediately quenched after the hot working is completed at a temperature of 800°C or higher. A method for producing a high-strength austenitic material for oil country tubular goods having excellent corrosion resistance, which comprises performing solution treatment, followed by aging treatment, and then cold working.
JP59123992A 1984-06-16 1984-06-16 Manufacture of austenitic material Granted JPS613832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123992A JPS613832A (en) 1984-06-16 1984-06-16 Manufacture of austenitic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123992A JPS613832A (en) 1984-06-16 1984-06-16 Manufacture of austenitic material

Publications (2)

Publication Number Publication Date
JPS613832A JPS613832A (en) 1986-01-09
JPH0128815B2 true JPH0128815B2 (en) 1989-06-06

Family

ID=14874356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123992A Granted JPS613832A (en) 1984-06-16 1984-06-16 Manufacture of austenitic material

Country Status (1)

Country Link
JP (1) JPS613832A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548798Y2 (en) * 1991-07-12 1997-09-24 ヤンマー農機株式会社 Weight mounting structure for riding rice transplanter
BR112013023620B1 (en) * 2011-03-24 2019-03-26 Nippon Steel & Sumitomo Metal Corporation AUSTENIC ALLOY PIPE AND METHOD FOR PRODUCING IT
CN113637830A (en) * 2021-07-21 2021-11-12 广州大学 Method for accelerating sigma phase nucleation and growth of high-carbon austenitic heat-resistant steel

Also Published As

Publication number Publication date
JPS613832A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
NO343350B1 (en) Seamless steel tube for oil wells with excellent resistance to sulphide stress cracking and method for producing seamless steel tubes for oil wells
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JPH03229839A (en) Manufacture of duplex stainless steel and its steel material
JP3241263B2 (en) Manufacturing method of high strength duplex stainless steel pipe
JPS5848024B2 (en) Oil country tubular steel with excellent corrosion resistance
Totten et al. Quenchants and Quenching Technology
JPH0545651B2 (en)
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
NO321782B1 (en) Process for preparing martensitic stainless steel rods and using them in an oil or natural gas well.
JPH0128815B2 (en)
US4353755A (en) Method of making high strength duplex stainless steels
JPH07207337A (en) Production of high-strength two-phase stainless steel
JPS586927A (en) Production of high-strength oil well pipe of high stress corrosion cracking resistance
US2914401A (en) Alloy steel
JP2814528B2 (en) Martensitic stainless steel for oil well and its production method
JPH0375336A (en) Martensitic stainless steel having excellent corrosion resistance and its manufacture
Offor et al. Effects of Various Quenching Media on the Mechanical Properties of Intercritically Annealed 0.15 wt% C–0.43 wt% Mn Steel
JPS6123713A (en) Production of high-strength two phase stainless steel
JPH06136442A (en) Production of high strength and high corrosion resistant austenitic wire rod
JP7260838B2 (en) Steel wire for spring, spring and method for producing them
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPS61227129A (en) Manufacture of high strength steel having superior resistance to sulfide stress corrosion cracking
JP3873306B2 (en) Quenching method to prevent quench cracking of medium and high carbon content steel pipes
Hoenie et al. New developments in high-strength stainless steels