JPH0128813B2 - - Google Patents

Info

Publication number
JPH0128813B2
JPH0128813B2 JP59111750A JP11175084A JPH0128813B2 JP H0128813 B2 JPH0128813 B2 JP H0128813B2 JP 59111750 A JP59111750 A JP 59111750A JP 11175084 A JP11175084 A JP 11175084A JP H0128813 B2 JPH0128813 B2 JP H0128813B2
Authority
JP
Japan
Prior art keywords
hot
hot rolling
temperature
sensitization
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59111750A
Other languages
Japanese (ja)
Other versions
JPS60255921A (en
Inventor
Masao Koike
Toshiaki Mase
Kazutoshi Kunishige
Takeshi Yoshida
Yoshi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11175084A priority Critical patent/JPS60255921A/en
Publication of JPS60255921A publication Critical patent/JPS60255921A/en
Publication of JPH0128813B2 publication Critical patent/JPH0128813B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<技術分野> この発明は、オーステナイト系ステンレス鋼の
熱延鋼帯を製造する方法に係り、特に、熱間圧延
終了後の炭化物析出を抑制し、鋭敏化を防止する
ことで、析出炭化物を溶体化するために通常行わ
れる付加的な溶体化熱処理工程を省略したオース
テナイト系ステンレス鋼熱延鋼帯の製造方法に関
するものである。 <背景技術> オーステナイト系ステンレス鋼の冷延素材に供
される熱延鋼帯は、一般に、熱間圧延時に形成さ
れたスケールを除去するための酸洗を必要とする
が、通常の熱間圧延(熱延終了温度:900℃以上、
熱延後の冷却速度:10℃/sec未満、巻取温
度::800℃前後)で得られた熱延鋼帯は、オー
ステナイト粒界に炭化物が析出した鋭敏状態にあ
り、これを直接そのまま酸洗すると、粒界腐食を
発生して結晶粒の脱落や粒界割れを生じることが
知られている。これら結晶粒の脱落や粒界割れ
は、冷延の際に表面割れやヘゲ疵発生の原因とな
つたり、光沢不良を招いたりするなど、種々の製
品品質不良につながるものであり、極力抑制する
必要のあることはもちろんである。 このようなことから、従来、オーステナイト系
ステンレス鋼熱延鋼帯の製造には、熱間圧延で得
られたホツトコイルを1100℃付近に加熱して短時
間保持後、ガス冷却又は水スプレー冷却による急
冷を行つて炭化物を固溶させると言う、溶体化熱
処理が欠かせなかつた。そのため、 溶体化熱処理費の加算による、熱延鋼帯製造
コストの上昇、 複雑な連続熱処理酸洗ラインを必要とするこ
とによる、設備費の高騰、 溶体化熱処理時における粒界酸化やコイル擦
り掻き疵の発生、 等を余儀無くされていたのである。 <発明の目的> この発明の目的は、酸洗の際に粒界腐食等を生
ずることのないオーステナイト系ステンレス鋼熱
延鋼帯を、前記溶体化処理工程を要しないで製造
し得る新規な方法を提供し、上述のような諸問題
を解消して品質・性状の良好なオーステナイト系
ステンレス鋼熱延鋼帯をコスト安く製造すること
にある。 <発明の構成> この発明は、前記目的を達成すべくなされた、
特に「酸洗時に粒界腐食を生じることのないオー
ステナイト系ステンレス鋼熱延鋼帯を熱間圧延の
みによつて製造するには、熱延中或いは熱延直後
の歪が付与された状態における炭化物析出の動的
挙動、即ち、熱延歪による動的析出や組織変化の
影響を伴う析出を考慮した炭化物析出挙動を的確
に把握し、熱延中及び巻取り工程での炭化物の析
出を極力抑える必要がある」との認識(因に、従
来は、熱延後に実施される溶体化熱処理過程及び
冷却過程における炭化物の析出挙動のみが注目さ
れ、その場合の炭化物析出に伴う鋭敏化曲線が作
成されていたに過ぎなかつた)の下での本発明者
等の研究による、 「オーステナイト系ステンレス鋼の熱間圧延に
おいても、炭化物の析出が抑制されて鋭敏化を生
ずることのない圧延終了温度、冷却速度及び巻取
り温度の絡んだ特定領域が存在する」 と言う新しい知見に基づいて完成されたものであ
り、 オーステナイト系ステンレス鋼の熱延鋼帯を製
造するに際し、熱間圧延を850℃以上で終了する
とともに、該熱間圧延終了後直ちに10℃/sec以
上の冷却速度にて急冷を行い、500℃以下の温度
域で巻取ることにより、熱間圧延のままで、炭化
物の粒界析出が殆んどなくて鋭敏化されていない
オーステナイト系ステンレス鋼熱延鋼帯を得る 点に特徴を有するものである。 なお、この発明の方法の適用対象となるオース
テナイト系ステンレス鋼は、その種類が格別に制
限されるものではなく、JIS規格に規定されてい
るものを含め、いずれの種類のオーステナイト系
ステンレス鋼に本発明方法を適用したとしても所
望の効果が得られることはもちろんである。 次に、この発明の方法において、熱間圧延終了
温度、熱間圧延終了後の冷却速度及び巻取り温度
を上記の如くに限定した理由を説明する。 (a) 熱間圧延終止温度 熱間圧延終止温度が850℃未満では、圧延中、
歪誘起析出によつて炭化物の析出が促進され、鋭
敏化が発生して、酸洗の際に粒界腐食を生ずるよ
うになることから、熱間圧延終止温度を850℃以
上と定めた。 第1図は、オーステナイト系ステンレス鋼の代
表鋼種であるSUS304スラブを1250℃に加熱後、
厚さ:4mmまで6パスで圧延し、 熱延終止温度:1050〜750℃, 熱延後冷却速度:30℃/sec, 巻取り温度:400℃ なる条件で熱延鋼板を製造したときの、熱延終止
温度と鋭敏化判定結果との関係を示すグラフであ
る。なお、鋭敏化判定法は、熱延鋼板から切り出
した試料を硝弗酸水溶液(HF:HNO3:H2O=
3:15:82、液温50℃)に10分間浸漬した後、セ
ロフアンテープ剥離テストを実施し、そのときの
結晶粒脱落程度を観察する方法を採用した。 第1図に示される結果からも、熱間圧延終止温
度を850℃以上とすることで鋭敏化が抑えられる
ことが明らかである。 (b) 熱間圧延後の冷却速度 熱間圧延終了後、巻取り開始までの間の冷却速
度が10℃/secよりも遅いと、やはり冷却中に炭
化物の析出が起つて鋭敏化を生ずるので、熱間圧
延後の冷却速度を10℃/sec以上と定めた。 第2図は、熱延終止温度を900℃とし、熱間圧
延後の冷却速度を種々に変化させたほかは第1図
におけると同様にして製造された熱延鋼板につい
て調べた、冷却速度と鋭敏化判定結果との関係を
示すグラフである。なお、鋭敏化判定法は、第1
図におけると同様の方法を採用した。 第2図に示される結果からも、熱間圧延終了後
の冷却速度が10℃/se以上では問題はないが、該
冷却速度が10℃/secよりも遅くなると鋭敏化を
発生することがわかる。 (c) 巻取り温度 巻取り温度が500℃を越えると、巻取り後の徐
冷中に炭化物の粒界析出が起つて鋭敏化を生ずる
ので、巻取り温度を500℃以下と定めた。 第3図は、熱延終止温度を900℃とし、巻取り
温度を種々に変化させたほかは第1図におけると
同様にして製造された熱延鋼板について調べた、
巻取り温度と鋭敏化判定結果との関係を示すグラ
フである。なお、鋭敏化判定法は、第1図におけ
ると同様の方法を採用した。 第3図に示される結果からも、熱延鋼帯の鋭敏
化に及ぼす巻取り温度の影響は顕著であり、巻取
り温度が600℃程度以上では他の条件が適正であ
つても鋭敏化が発生するのに対して、500℃以下
の低温巻取りを行うと鋭敏化が十分に抑制される
ことがわかる。 なお、巻取り温度の下限は格別に制限されるも
のではないが、200℃よりも低い温度になると鋼
帯の変形強度が著しく高くなり、実用上、巻取り
に大きな困難をともなうようになることから、
200℃以上で巻取ることが好ましい。 次いで、この発明を実施例により比較例と対比
しながら具体的に説明する。 <実施例> まず、連続鋳造法によつて得られたSUS304相
当鋼(重量割合で、C:0.061%,Si0.72%,
Mn:0.87%,P:0.022%,S:0.004%,Ni:
8.31%,Cr:18.66%、残部Fe)及びSUS301相当
鋼(重量割合で、C:0.065%,Si:0.60%,
Mn:0.99%,P:0.027%,S:0.001%,Ni:
7.10%,Cr:17.00%、雑部Fe)のスラブを1250
℃に加熱した後、第1表に示される如き熱延・巻
取り条件にて、厚さ:4mmの熱延鋼帯を製造し
た。 続いて、これを熱処理することなく酸洗した
後、厚さ:0.4mmにまで冷間圧延した。このとき
の酸洗条件は、 酸洗液組成…… HF:3重量%, HNO3:15重量%, H2O:82重量%, 液 温……50℃, 浸漬時間……30sec
<Technical Field> The present invention relates to a method for manufacturing a hot-rolled steel strip of austenitic stainless steel, and in particular, suppresses carbide precipitation after hot rolling and prevents sensitization to dissolve precipitated carbides. The present invention relates to a method for producing hot-rolled austenitic stainless steel strip that omits an additional solution heat treatment step that is normally carried out to improve the temperature of the austenitic stainless steel. <Background Art> Hot-rolled steel strips used as austenitic stainless steel cold-rolled materials generally require pickling to remove scale formed during hot rolling, but conventional hot rolling (Hot rolling end temperature: 900℃ or more,
The hot-rolled steel strip obtained at a cooling rate of less than 10℃/sec and a coiling temperature of around 800℃ is in a sensitive state with carbides precipitated at the austenite grain boundaries, and these are directly exposed to acid. It is known that washing causes intergranular corrosion, resulting in shedding of crystal grains and intergranular cracking. These drop-offs of crystal grains and grain boundary cracks lead to various product quality defects, such as surface cracks and bald spots during cold rolling, and poor gloss, and should be suppressed as much as possible. Of course it is necessary to do so. For this reason, conventionally, in the production of austenitic stainless steel hot-rolled steel strip, a hot coil obtained by hot rolling is heated to around 1100°C, held for a short time, and then rapidly cooled by gas cooling or water spray cooling. Solution heat treatment, in which carbides are dissolved into a solid solution, was essential. As a result, the manufacturing cost of hot-rolled steel strips increases due to the addition of solution heat treatment costs, equipment costs soar due to the need for a complicated continuous heat treatment pickling line, and problems such as grain boundary oxidation and coil scratching during solution heat treatment. This resulted in the occurrence of defects, etc. <Object of the invention> The object of the invention is to provide a novel method for producing hot-rolled austenitic stainless steel strip that does not cause intergranular corrosion during pickling without requiring the solution treatment step. The object of the present invention is to solve the above-mentioned problems and to produce an austenitic stainless steel hot-rolled steel strip with good quality and properties at a low cost. <Structure of the Invention> The present invention has been made to achieve the above object.
In particular, ``In order to produce hot-rolled austenitic stainless steel strips that do not cause intergranular corrosion during pickling, only by hot rolling, it is necessary to Accurately understand the dynamic behavior of precipitation, that is, carbide precipitation behavior that takes into account dynamic precipitation due to hot rolling strain and precipitation accompanied by the influence of microstructural changes, and minimize carbide precipitation during hot rolling and coiling processes. (Incidentally, conventionally, only the precipitation behavior of carbides during the solution heat treatment process and cooling process performed after hot rolling was focused on, and the sensitization curve associated with carbide precipitation in that case was not created. According to the research conducted by the present inventors under the following conditions, ``Even in hot rolling of austenitic stainless steel, the rolling end temperature and cooling temperature at which the precipitation of carbides is suppressed and sensitization does not occur. This was completed based on the new knowledge that ``there exists a specific range where the speed and coiling temperature are related.'' When manufacturing hot rolled austenitic stainless steel strips, hot rolling should be carried out at temperatures above 850℃. Immediately after the hot rolling is completed, rapid cooling is performed at a cooling rate of 10°C/sec or higher, and coiling is performed at a temperature of 500°C or lower to prevent grain boundary precipitation of carbides while remaining hot rolled. The present invention is characterized in that an austenitic stainless steel hot-rolled steel strip with almost no sensitization is obtained. The type of austenitic stainless steel to which the method of this invention is applied is not particularly limited, and any type of austenitic stainless steel, including those specified in JIS standards, Of course, even if the invention method is applied, the desired effect can be obtained. Next, in the method of the present invention, the reason why the hot rolling end temperature, the cooling rate after hot rolling, and the winding temperature are limited as described above will be explained. (a) Hot rolling end temperature If the hot rolling end temperature is less than 850℃, during rolling,
Since strain-induced precipitation accelerates the precipitation of carbides, sensitization occurs, and intergranular corrosion occurs during pickling, the hot rolling end temperature was set at 850°C or higher. Figure 1 shows the SUS304 slab, which is a representative type of austenitic stainless steel, after being heated to 1250℃.
When a hot-rolled steel sheet is manufactured under the following conditions: rolling in 6 passes to a thickness of 4 mm, hot rolling end temperature: 1050 to 750°C, cooling rate after hot rolling: 30°C/sec, coiling temperature: 400°C, It is a graph showing the relationship between hot rolling end temperature and sensitization determination results. In addition, the sensitization determination method uses a sample cut from a hot-rolled steel sheet in a nitric-fluoric acid aqueous solution (HF: HNO3 : H2O =
After immersion for 10 minutes at 3:15:82 (liquid temperature: 50°C), a cellophane tape peeling test was conducted and the extent to which crystal grains fell off at that time was observed. It is clear from the results shown in FIG. 1 that sensitization can be suppressed by setting the hot rolling end temperature to 850° C. or higher. (b) Cooling rate after hot rolling If the cooling rate between the end of hot rolling and the start of coiling is slower than 10°C/sec, precipitation of carbides will occur during cooling, resulting in sensitization. The cooling rate after hot rolling was set at 10°C/sec or more. Figure 2 shows the cooling rate and temperature of hot rolled steel sheets manufactured in the same manner as in Figure 1 except that the hot rolling end temperature was 900°C and the cooling rate after hot rolling was varied. It is a graph showing the relationship with the sensitization determination result. Note that the sensitization determination method is the first
The same method as in the figure was adopted. From the results shown in Figure 2, it can be seen that there is no problem when the cooling rate after hot rolling is over 10℃/sec, but when the cooling rate is slower than 10℃/sec, sensitization occurs. . (c) Winding temperature If the winding temperature exceeds 500°C, grain boundary precipitation of carbides occurs during slow cooling after winding, resulting in sensitization, so the winding temperature was set at 500°C or less. Figure 3 shows hot-rolled steel sheets produced in the same manner as in Figure 1 except that the hot-rolling end temperature was 900°C and the coiling temperature was varied.
It is a graph which shows the relationship between winding temperature and a sensitization determination result. Note that the same method as in FIG. 1 was adopted as the sensitization determination method. The results shown in Figure 3 also show that the effect of the coiling temperature on the sensitization of hot rolled steel strip is remarkable, and when the coiling temperature is about 600℃ or higher, sensitization does not occur even if other conditions are appropriate. However, it can be seen that sensitization is sufficiently suppressed when winding is performed at a low temperature of 500°C or less. Although the lower limit of the winding temperature is not particularly limited, if the temperature is lower than 200°C, the deformation strength of the steel strip increases significantly, making winding difficult in practice. from,
It is preferable to wind up at 200°C or higher. Next, the present invention will be specifically explained using examples and comparing with comparative examples. <Example> First, steel equivalent to SUS304 obtained by continuous casting method (weight ratio: C: 0.061%, Si: 0.72%,
Mn: 0.87%, P: 0.022%, S: 0.004%, Ni:
8.31%, Cr: 18.66%, balance Fe) and SUS301 equivalent steel (weight percentage: C: 0.065%, Si: 0.60%,
Mn: 0.99%, P: 0.027%, S: 0.001%, Ni:
7.10%, Cr: 17.00%, Miscellaneous Fe) slab 1250
After heating to .degree. C., a hot-rolled steel strip with a thickness of 4 mm was produced under the hot-rolling and winding conditions shown in Table 1. Subsequently, this was pickled without heat treatment, and then cold rolled to a thickness of 0.4 mm. The pickling conditions at this time are: Pickling liquid composition: HF: 3% by weight, HNO 3 : 15% by weight, H 2 O: 82% by weight, Liquid temperature: 50°C, Immersion time: 30 seconds

【表】 (注) *印は、本発明の条件から外れているこ
とを示す。
であつた。 このようにして得られた冷延鋼板について、耳
割れの発生状況及び表面光沢を観察し、その結果
を第1表に併せて示した。 第1表に示される結果からも、本発明の条件を
満足する方法で得られた熱延鋼帯からの冷延鋼板
は、耳割れや光沢不良を発生しておらず(これ
は、熱延鋼帯が鋭敏化しておらず、酸洗による粒
界腐食を生じなかつたことを意味する)、従来工
程品(溶体化熱処理工程を経て酸洗がなされたも
の)と遜色のないものであることが明白である。 これに対して、熱間圧延終止温度、熱間圧延後
の冷却速度及び巻取り温度が本発明の条件から外
れている比較法で得られた熱延鋼帯からの冷延鋼
は、耳割れや光沢不良を発生しており、熱延鋼帯
が鋭敏化して酸洗による粒界腐食を生じていたこ
とが明らかであつた。 なお、この実施例では、SUS304及びSUS301
における例のみを示したが、その他のオーステナ
イト系ステンレス鋼においても同様の傾向が現わ
れることも確認された。 <総括的な効果> 上述のように、この発明によれば、熱間圧延後
の熱処理工程を要することなく、酸洗時の粒界腐
食を生じないオーステナイト系ステンレス熱延鋼
帯を安定して製造することができ、品質の良いオ
ーステナイト系ステンレス鋼冷延鋼板を低コスト
で提供することが可能となるなど、工業上有用な
効果がもたらされるのである。
[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.
It was hot. Regarding the cold-rolled steel sheets thus obtained, the occurrence of edge cracking and surface gloss were observed, and the results are also shown in Table 1. From the results shown in Table 1, the cold-rolled steel sheets obtained from the hot-rolled steel strips obtained by the method satisfying the conditions of the present invention do not have edge cracks or gloss defects (this is because the hot-rolled (This means that the steel strip has not become sensitized, meaning that intergranular corrosion did not occur due to pickling), and is comparable to conventional process products (those that have been pickled through a solution heat treatment process). is obvious. On the other hand, cold-rolled steel from hot-rolled steel strip obtained by a comparative method in which hot-rolling end temperature, cooling rate after hot rolling, and coiling temperature are outside the conditions of the present invention has cracked edges. It was clear that the hot-rolled steel strip had become sensitized and suffered intergranular corrosion due to pickling. In addition, in this example, SUS304 and SUS301
Although only the example of 1 was shown, it was also confirmed that a similar tendency appeared in other austenitic stainless steels. <Overall Effects> As described above, according to the present invention, it is possible to stably produce an austenitic stainless steel hot rolled steel strip that does not cause intergranular corrosion during pickling without requiring a heat treatment process after hot rolling. Industrially useful effects are brought about, such as making it possible to produce high-quality cold-rolled austenitic stainless steel sheets at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、熱延終止温度と熱延鋼帯の鋭敏化度
との関係を示すグラフ、第2図は、熱延後の冷却
速度と熱延鋼帯の鋭敏化度との関係を示すグラ
フ、第3図は、巻取温度と熱延鋼帯の鋭敏化度と
の関係を示すグラフである。
Figure 1 is a graph showing the relationship between hot rolling end temperature and the degree of sensitization of the hot rolled steel strip, and Figure 2 is a graph showing the relationship between the cooling rate after hot rolling and the degree of sensitization of the hot rolled steel strip. The graph, FIG. 3, is a graph showing the relationship between the coiling temperature and the degree of sensitization of the hot rolled steel strip.

Claims (1)

【特許請求の範囲】[Claims] 1 オーステナイト系ステンレス鋼の熱延鋼帯を
製造するに際し、熱間圧延を850℃以上で終了す
るとともに、該熱間圧延終了後直ちに10℃/sec
以上の冷却速度にて急冷を行い、500℃以下の温
度域で巻取ることを特徴とするオーステナイト系
ステンレス鋼熱延鋼帯の製造方法。
1. When producing hot-rolled steel strips of austenitic stainless steel, hot rolling is completed at 850°C or higher, and immediately after the hot rolling is completed, the rolling speed is reduced to 10°C/sec.
A method for producing an austenitic stainless steel hot-rolled steel strip, characterized by performing rapid cooling at a cooling rate of at least 500°C and coiling at a temperature of 500°C or less.
JP11175084A 1984-05-31 1984-05-31 Manufacture of hot rolled austenitic stainless steel strip Granted JPS60255921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11175084A JPS60255921A (en) 1984-05-31 1984-05-31 Manufacture of hot rolled austenitic stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11175084A JPS60255921A (en) 1984-05-31 1984-05-31 Manufacture of hot rolled austenitic stainless steel strip

Publications (2)

Publication Number Publication Date
JPS60255921A JPS60255921A (en) 1985-12-17
JPH0128813B2 true JPH0128813B2 (en) 1989-06-06

Family

ID=14569235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11175084A Granted JPS60255921A (en) 1984-05-31 1984-05-31 Manufacture of hot rolled austenitic stainless steel strip

Country Status (1)

Country Link
JP (1) JPS60255921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105345A (en) * 2003-09-30 2005-04-21 Nippon Steel Corp Method for producing austenitic stainless steel sheet excellent in uniformity of surface

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730406B2 (en) * 1988-07-08 1995-04-05 新日本製鐵株式会社 Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
JPH0730407B2 (en) * 1988-07-08 1995-04-05 新日本製鐵株式会社 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0796684B2 (en) * 1989-04-05 1995-10-18 新日本製鐵株式会社 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
EP2112237B1 (en) * 2008-04-21 2017-09-13 Secretary, Department Of Atomic Energy Development of a very high resistance to sensitization in austenitic stainless steel through special heat treatment resulting in grain boundary microstructural modification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570404A (en) * 1978-11-24 1980-05-27 Nisshin Steel Co Ltd Manufacture of hot coil of austenitic stainless steel
JPS55107729A (en) * 1979-02-13 1980-08-19 Sumitomo Metal Ind Ltd Solution-treating method for austenitic stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570404A (en) * 1978-11-24 1980-05-27 Nisshin Steel Co Ltd Manufacture of hot coil of austenitic stainless steel
JPS55107729A (en) * 1979-02-13 1980-08-19 Sumitomo Metal Ind Ltd Solution-treating method for austenitic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105345A (en) * 2003-09-30 2005-04-21 Nippon Steel Corp Method for producing austenitic stainless steel sheet excellent in uniformity of surface

Also Published As

Publication number Publication date
JPS60255921A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
JPS62202024A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
US3776784A (en) Method of processing stainless steel strips or sheets
JPH0128813B2 (en)
JPS6149706A (en) Manufacture of thin austenite stainless-steel sheet
JPS5856734B2 (en) Manufacturing method of ferritic stainless steel sheet
JP2001026826A (en) Production of stainless hot rolled steel strip
JPS6234802B2 (en)
JPS6216251B2 (en)
JPH037729B2 (en)
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JPH0841546A (en) Production of high chromium cold rolled steel strip excellent in ridging resistance and workability and production of hot rolled steel strip for the same stock
JPS6119688B2 (en)
JPH0160531B2 (en)
JPH02419B2 (en)
JPH0593222A (en) Production of austenitic stainless steel sheet and austenitic stainless steel sheet
JPS58104124A (en) Production of cold-rolled steel plate for working by continuous annealing
JPH0312132B2 (en)
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JPS60103131A (en) Manufacture of medium plate and thick plate of low thermal expansion fe-ni alloy
CN114369701A (en) Method for improving pickling quality of Cr-containing hot forming steel
JPS6326177B2 (en)
JPH04198421A (en) Manufacture of austenitic stainless stell strip
JPH02170923A (en) Manufacture of cold rolled sheet of chromium stainless steel excellent in ridging resistance and press formability
JPS6320889B2 (en)
JPS59163003A (en) Manufacture of stainless steel strip excellent in surface property