JPH01285700A - Impeller for turbo machine - Google Patents

Impeller for turbo machine

Info

Publication number
JPH01285700A
JPH01285700A JP11055788A JP11055788A JPH01285700A JP H01285700 A JPH01285700 A JP H01285700A JP 11055788 A JP11055788 A JP 11055788A JP 11055788 A JP11055788 A JP 11055788A JP H01285700 A JPH01285700 A JP H01285700A
Authority
JP
Japan
Prior art keywords
blade
impeller
flow
side plate
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11055788A
Other languages
Japanese (ja)
Other versions
JPH0788831B2 (en
Inventor
Akira Goto
彰 後藤
Tatsuyoshi Katsumata
辰善 勝俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP63110557A priority Critical patent/JPH0788831B2/en
Publication of JPH01285700A publication Critical patent/JPH01285700A/en
Publication of JPH0788831B2 publication Critical patent/JPH0788831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the flow loss inside an impeller flow passage by providing a clearance for passing through from a blade surface toward a rear surface, on the part of a connecting part for connecting the blade end part of an impeller with a side plate and a side plate or a main board. CONSTITUTION:When an impeller with a side plate is rotated, the part of a fluid for flowing inside an impeller flow passage passes through the clearance 20 formed on the top end part of a blade 2 connecting to a side plate 1, so that leakage flow 21 is generated from a blade surface 2c toward a blade rear surface 2d. In the impeller flow passage, since flow passage eddies 6, 7 corresponding to the secondary flow for flowing from the surface 2c toward the rear surface 2d are respectively generated on a main plate 3 side and the side plate 1 side, a flow passage eddy 7 is opposed to the leakage flow 21 so as to weak the power. The high loss region 8 of fluid on the rear surface 2d or on the corner between the rear surface 2d and side plate 1, is carried to the spot apart from the corner part by the flow passage eddies 6, 7, and it is caused by changing the leakage flow 21 and the flow passage eddy 7, while energy is supplied by the leakage flow 21 at the same time. As the result, large pealing is prevented in the impeller with the clearance, so that the loss of flow is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遠心型又は斜流型等のポンプ及び送風機を含
むターボ型流体機械(以下略してターボ機械という、)
に関し、特に側板(シェラウド)付羽根車の流路内の流
れ損失を低減するための装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a turbo fluid machine (hereinafter simply referred to as a turbo machine) including a centrifugal type or mixed flow type pump and blower.
In particular, the present invention relates to a device for reducing flow loss in a flow path of an impeller with a shroud.

(従来の技術) 従来、ターボ機械の側板付羽根車は、第7図(a)及び
同図(a)の■−■線断面図である同図(b)に示すよ
うに、側板1が羽根2を介して主板3に一体に取付けら
れて羽根車を構成しており、該羽根車は、図示しないケ
ーシング内に収納され、主板3に取付けられた主軸によ
って、矢印4の方向に回転されるようになっている。
(Prior Art) Conventionally, an impeller with a side plate for a turbomachine has a side plate 1, as shown in FIG. 7(a) and FIG. It is integrally attached to the main plate 3 via the blades 2 to constitute an impeller, and the impeller is housed in a casing (not shown) and is rotated in the direction of the arrow 4 by a main shaft attached to the main plate 3. It has become so.

運転時、流体は羽根車人口2aより、矢印5の方向に吸
い込まれ、隣接した羽根2と側板1及び主板3とによっ
て形成された羽根車流路内を通過する間にエネルギを支
えられて、羽根車出口2bより図示しないケーシング(
ポリュート室或いはガイドケーシング)に吐出される。
During operation, fluid is sucked in from the impeller 2a in the direction of the arrow 5, and while passing through the impeller flow path formed by the adjacent blades 2, side plate 1, and main plate 3, the fluid is supported by energy, and the fluid flows through the impeller 2a. A casing (not shown) from the vehicle exit 2b (
discharged into the porlute chamber or guide casing).

上記羽根車流路内では、側板1の内面に沿って境界層が
生じ、また人口2aより出口2bに向かって流れる矢印
5方向の主流の外、主流に直交する断面内で渦流状態と
なって流れる二次流れが生じている。
In the impeller flow path, a boundary layer is formed along the inner surface of the side plate 1, and the flow flows in a vortex state outside the main flow in the direction of arrow 5 flowing from the population 2a toward the outlet 2b and within a cross section perpendicular to the main flow. A secondary flow is occurring.

(発明が解決しようとする課題) 上記したように、従来のターボ機械の側板付羽根車にお
いては、運転時、羽根車流路内には、境界層と二次流れ
が 生じており、該二次流れは、第7図(b)に示すよ
うに、主板3側において羽根表面2Cから羽根裏面2d
に向かって生じる流路渦6と、側板1側において同様に
羽根表面2Cから羽根裏面2dに向かって生じる流路渦
7の2種類からなり、通常、主板3側の流路渦6が側板
1側の流路渦7より大きい。
(Problems to be Solved by the Invention) As described above, in the conventional impeller with side plates of a turbomachine, a boundary layer and a secondary flow occur in the impeller flow path during operation, and the secondary flow occurs in the impeller flow path. As shown in FIG. 7(b), the flow is from the blade surface 2C to the blade back surface 2d on the main plate 3 side.
There are two types of flow path vortices: a flow path vortex 6 that occurs toward the side plate 1, and a flow path vortex 7 that similarly occurs from the blade surface 2C toward the blade back surface 2d on the side plate 1 side.Normally, the flow path vortex 6 on the main plate 3 side It is larger than the side channel vortex 7.

この結果、羽根裏面(負圧面)2d、或いは該羽根裏面
2dと側板1との間のコーナ一部に、損失の多い流体が
集積する領域8が形成されるにのよ一ナー領域8では、
流れの減速が元来大きく、このため、従来の側板付き羽
根車では、上記した境界層の発達と相俟って該領域8で
大幹な流れの剥離と、これに起因する損失急増を招き易
いという難点があった。
As a result, a region 8 in which high-loss fluid accumulates is formed on the blade back surface (negative pressure surface) 2d or in a part of the corner between the blade back surface 2d and the side plate 1.
The deceleration of the flow is originally large, and for this reason, in the conventional impeller with side plates, together with the development of the boundary layer described above, this causes major flow separation in the region 8 and a sharp increase in loss due to this. The problem was that it was easy.

上記難点のため、羽根車内の損失が増大し、部分流量域
において、羽根車の失速を生じ、ひいては、第4図の性
能曲線(揚程曲線)において当該ターボ機械の安定運転
上著しく不都合となる破線9の右上り不安定特性を示す
という問題点があった。
Due to the above-mentioned drawbacks, the loss inside the impeller increases, causing the impeller to stall in the partial flow range, and as a result, the broken line in the performance curve (head curve) in Figure 4 is extremely inconvenient for stable operation of the turbomachine. There was a problem in that it exhibited the upward instability characteristic of 9.

本発明は、上記した従来技術の問題点を解決し、羽根車
流路内の流れ損失を減少させるようにした側板付羽根車
を提供することを目的としている。
An object of the present invention is to solve the problems of the prior art described above and to provide an impeller with side plates that reduces flow loss in the impeller flow path.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、側板付き羽根
車の羽根端部と側板又は主板との接続部の一部に、羽根
表面から同裏面に貫通する隙間を設けたことを特徴とし
ている。
In order to achieve the above object, the present invention is characterized in that a gap penetrating from the front surface of the blade to the back surface thereof is provided in a part of the connecting portion between the blade end and the side plate or the main plate of an impeller with a side plate. There is.

上記隙間は、側板と接続する羽根の先端部、又は該羽根
と接続する側板の内面に設けることが望ましく、また、
主板と接続する羽根の基部又は、該羽根と接続する主板
の表面に設けることも可能である。
The above-mentioned gap is preferably provided at the tip of the blade that connects to the side plate, or on the inner surface of the side plate that connects to the blade, and
It is also possible to provide it at the base of the blade that connects to the main plate or on the surface of the main plate that connects to the blade.

〔作 用〕[For production]

本発明は上記のように構成されているので、ターボ機械
の運転時、当該側板付き羽根車が回転すると、該羽根車
の流路内を流れる流体の一部が、羽根端部と側板又は主
板との接続部の一部に設けられた隙間を通って、羽根表
面(圧力面)から羽根裏面(負圧面)に向かって漏れる
濶れ流れが生じる。
Since the present invention is configured as described above, when the impeller with the side plate rotates during operation of the turbomachine, a part of the fluid flowing in the flow path of the impeller flows between the blade end portion and the side plate or the main plate. A flow leaks from the blade surface (pressure surface) toward the blade back surface (negative pressure surface) through a gap provided in a part of the connecting portion with the blade.

一方、羽根車流路内では、前記した従来例(第7図)と
同様に、主板側と側板側においてそれぞれ羽根表面から
羽根裏面へ向かフで流れる二次流れに相当する流路渦が
生じている。そのため、上記爛れ流れを導く隙間が、側
板と接続する羽根の先端部に設けられている場合、上記
流路渦のうち側板側の流路渦が該漏れ流れに対向してい
てその強さが弱められ、上記二つの涜路渦によって羽根
裏面或いは該羽根裏面と側板との間のコーナ一部に形成
される流体の高損失領域は、上記漏れ流れと流路渦の変
化とによって羽根裏面から離れた所に運ばれると同時に
、漏れ流れによりエネルギが供給される。この結果、当
該隙間付き羽根車では大きな剥離が防止され、羽根車の
部分流量運転時の流れの損失が低減される。
On the other hand, in the impeller flow path, similar to the conventional example described above (Fig. 7), flow path vortices corresponding to secondary flows flowing from the blade surface to the blade back surface are generated on the main plate side and the side plate side, respectively. ing. Therefore, if a gap that guides the leakage flow is provided at the tip of the blade that connects to the side plate, the flow path vortex on the side plate side among the flow path vortices faces the leakage flow, and its strength increases. The high loss region of the fluid that is weakened and formed on the back surface of the blade or a part of the corner between the back surface of the blade and the side plate by the two above-mentioned side-path vortices is caused by the leakage flow and changes in the flow path vortices. As it is transported to a remote location, energy is supplied by the leakage flow. As a result, large separation is prevented in the gapped impeller, and flow losses during partial flow operation of the impeller are reduced.

また、羽根と接続する側板の内面に隙間を設けた場合も
、上記と同様の作用が行われる。
Further, when a gap is provided on the inner surface of the side plate connected to the blade, the same effect as described above is performed.

また、主板と接続する羽根の基部側に羽根表面から裏面
に貫通する隙間を設けた場合には、前記した従来例(第
7図)で示された主板側の流路渦6が、上記隙間から漏
れる漏れ流れと対向することになフて、その強さが弱め
られるので、二つの流路渦6.7によって形成される高
損失領域8は、隙間を羽根先端側に設けた前記の場合と
比べて羽根裏面中央に集まる傾向を生じるが、上記の漏
れ流れによって該高損失領域はコーナ一部から離れた所
へ運ばれることにより剥離が防止されることに本買的な
変りはない。
In addition, if a gap is provided on the base side of the blade that connects to the main plate, penetrating from the front surface of the blade to the back surface, the flow path vortex 6 on the main plate side shown in the conventional example (FIG. 7) described above The high loss region 8 formed by the two flow path vortices 6 and 7 is weak in the case of the above-mentioned case where the gap is provided on the blade tip side. Although there is a tendency for the blades to gather at the center of the back surface of the blade compared to the above, there is no major change in the fact that the leakage flow causes the high loss area to be carried away from a part of the corner, thereby preventing separation.

〔実施例〕〔Example〕

次に、本発明の実施例を図面と共に説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)は、本発明の第1実施例を示す側板付き羽
根車の側断面図、同図(b)は、同図(a)の1−1線
断面図、同図(c)は作用説明図であって、図中、第7
図(a)及び(b)に記載した符号と同一の符号は同一
ないし同類部分を示すものとする。
FIG. 1(a) is a side sectional view of an impeller with a side plate showing a first embodiment of the present invention, FIG. 1(b) is a sectional view taken along line 1-1 in FIG. 1(a), and FIG. ) is an action explanatory diagram, and the seventh
The same reference numerals as those shown in FIGS. (a) and (b) indicate the same or similar parts.

図において、側板1が羽根2を介して主板3に一体に取
付けられて羽根車を構成しており、運転時、主板3に取
付けられた主軸によって矢印4の方向に回転され、流体
を羽根車人口2aより、矢印5の方向に吸い込んで隣接
した羽根2と側板1及び主板3とによって形成された羽
根車流路内を通過する間にエネルギを与えて、羽根車出
口2bより図示しないケーシング(ポリエート室或いは
ガイドケーシング)に吐出するようになっていることは
、従来のもの(第7図(a))と変りはない。
In the figure, a side plate 1 is integrally attached to a main plate 3 via blades 2 to form an impeller. During operation, the main shaft attached to the main plate 3 rotates in the direction of arrow 4, and the fluid is transferred to the impeller. From the impeller outlet 2b, energy is applied while suction is sucked in the direction of the arrow 5 and passes through the impeller flow path formed by the adjacent blades 2, the side plate 1, and the main plate 3. The fact that it is discharged into a chamber or a guide casing is the same as in the conventional one (FIG. 7(a)).

しかし本実施例では、側板1と接続する羽根2の先端部
に、羽根表面から羽根裏面に貫通する隙間20が設けら
れている。
However, in this embodiment, a gap 20 is provided at the tip of the blade 2 that connects to the side plate 1, penetrating from the front surface of the blade to the back surface of the blade.

上記のように構成されているので、ターボ機械の運転時
、当該側板付き羽根車が回転すると、該羽根車流路内を
流れる流体の一部が、側板1と接続する羽根2の先端部
に設けられた隙間2oを通フで、第1図(c)に示すよ
うに、羽根表面(圧力面) 2cから羽根裏面(負圧面
)2dに向かう漏れ流れ21が生じる。
With the configuration described above, when the impeller with the side plate rotates during operation of the turbomachine, a part of the fluid flowing in the impeller flow path is disposed at the tip of the blade 2 connected to the side plate 1. As shown in FIG. 1(c), a leakage flow 21 is generated from the blade surface (pressure surface) 2c toward the blade back surface (negative pressure surface) 2d through the gap 2o.

一方、羽根車流路内では、前記した従来例(第7図(b
))と同様に、主板3側と側板f1側においてそれぞれ
羽根表面2cから羽根裏面2dへ向かう二次流れに相当
する流路機6と7とが生じているため、上記流路機のう
ち側板1側の流路機7が該爛れ流れ21に対向してその
強さが弱められ、上記二つの流路機6,7によって羽根
裏面2d或いは該羽根裏面2dと側板1との間のコーナ
一部に形成される流体の高損失領域8は、上記渭れ流れ
21と流路機7の変化とによフて、コーナ一部から離れ
た所に運ばれると同時に、該漏れ流れ21によってエネ
ルギが供給される。この結果、当該隙間付き羽根車では
大きな剥離が防止され、羽根車の部分流量運転時の流れ
の損失が低減される。
On the other hand, in the impeller flow path, the conventional example described above (Fig. 7(b)
)), flow path machines 6 and 7 corresponding to the secondary flow directed from the blade surface 2c to the blade back surface 2d are generated on the main plate 3 side and the side plate f1 side, respectively. The flow path device 7 on the first side faces the swollen flow 21 and its strength is weakened, and the two flow path devices 6 and 7 close the corner between the blade back surface 2d or the blade back surface 2d and the side plate 1. The high loss region 8 of the fluid formed at the corner is carried away from a part of the corner by the above-mentioned diversion flow 21 and the change in the flow path machine 7, and at the same time, energy is absorbed by the leakage flow 21. is supplied. As a result, large separation is prevented in the gapped impeller, and flow losses during partial flow operation of the impeller are reduced.

従りて、この実施例によれば、上記のように流れの損失
を低減することができるので、第4図に示す揚程(H)
−流量(Q)特性線図において、部分流量域で生じる揚
程曲線上の右上り不安定特性9を解消ζ或いは該揚程曲
線10で示すように、右上り不安定特性が生じ始まる限
界流量q、を低流量側のq2へ移行させ、当該ターボ機
械が安定い1転できる流量範囲を拡大して、該ターボ機
械の性能特性を改善することができる。
Therefore, according to this embodiment, since the flow loss can be reduced as described above, the head (H) shown in FIG.
- In the flow rate (Q) characteristic diagram, the upward-sloping unstable characteristic 9 on the head curve that occurs in the partial flow rate region is eliminated ζ, or the critical flow rate q at which the upward-sloping unstable characteristic begins to occur as shown in the head curve 10, It is possible to shift the flow rate to q2 on the low flow rate side, expand the flow rate range in which the turbomachine can make one stable turn, and improve the performance characteristics of the turbomachine.

382図は、本発明の第2実施例を示す側断面図であっ
て、図中、第1図(a)に記載した符号と同一の符号は
同一部分を示すものとする。
FIG. 382 is a side sectional view showing the second embodiment of the present invention, and in the figure, the same reference numerals as those shown in FIG. 1(a) indicate the same parts.

この実施例では、羽根表面から同裏面に貫通する隙間3
Gが、羽根2と接続する側板1の内面に形成されている
点で、第1実施例(第1図)と相違している。
In this embodiment, a gap 3 penetrating from the front surface of the blade to the back surface of the blade is
This embodiment differs from the first embodiment (FIG. 1) in that G is formed on the inner surface of the side plate 1 that connects to the blade 2.

この実施例によれば、濡れ流れは羽根先端部を跨ぐよう
にして側板1の内面に設けられた隙間(通路)30を経
て、羽根表面(圧力面)から羽根裏面(負圧面)へ向か
って(迂回するようにして)流れるため、羽根2の先端
に隙間14を直接設けるようにした第1実施例(第1図
)のものに比べて、濶れ流れ2!が羽根裏面2dに沿う
傾向が見られるが、流路機によりて形成される高損失領
域が該漏れ流れと流路機の変化によって羽根裏面から離
れた所に運ばれると同時に、濶れ渣れによりエネルギ供
給を受けて剥離が防止されるという前記した第1実施例
とほぼ同様の効果が奥される。
According to this embodiment, the wet flow passes through the gap (passage) 30 provided on the inner surface of the side plate 1 so as to straddle the tip of the blade, and flows from the blade surface (pressure surface) to the blade back surface (negative pressure surface). Because of the flow (in a detour), compared to the first embodiment (FIG. 1) in which a gap 14 is provided directly at the tip of the blade 2, the flow is 2! However, the high-loss region formed by the flow path machine is carried away from the blade back surface by the leakage flow and changes in the flow path machine, and at the same time, the sludge is Almost the same effect as in the first embodiment described above, in which peeling is prevented by receiving energy supply, is achieved.

第3図は、本発明における羽根表面から羽根裏面に貫通
する隙間を、羽根基部側に設けた第3実施例を示す側断
面図であって、図中、第1図(a)に記載した符号と同
一の符号は同一部分を示すものとする。
FIG. 3 is a side sectional view showing a third embodiment of the present invention in which a gap penetrating from the surface of the blade to the back surface of the blade is provided on the blade base side. The same reference numeral indicates the same part.

この実施例では、主板1と接続する羽根2の基部に、羽
根表面から羽根裏面に貫通する隙間4oが設けられてい
る。
In this embodiment, a gap 4o penetrating from the front surface of the blade to the back surface of the blade is provided at the base of the blade 2 connected to the main plate 1.

また、上記隙間40は、同図の2点鎖線で示すように、
羽根2と接続する主板3の表面に、羽根表面から同裏面
に貫通するようにして設けてもよい。
In addition, the gap 40 is, as shown by the two-dot chain line in the same figure,
It may be provided on the surface of the main plate 3 connected to the blade 2 so as to penetrate from the front surface of the blade to the back surface thereof.

これらの実施例によれば、′s1実施例の第1図(e)
に示された主板3側の流路機6が、羽根2の基部側に設
けられた隙間40又は50からの漏れ流れと対向するこ
とになって、その強さが弱められるので、二つの流路機
6,7によって形成される高損失領域8は、前記第1及
び第2の再実施例のように隙間を羽根先端側に設けたも
のに比べて、羽根裏面2d部に集まる傾向が生じるが、
上記の漏れ流れによって該高損失領域はコーナ一部から
離れた所へ運ばれ剥離が防止されることに、本貫的な変
りはない。
According to these embodiments, FIG. 1(e) of the 's1 embodiment
The flow path device 6 on the main plate 3 side shown in 2 faces the leakage flow from the gap 40 or 50 provided on the base side of the blade 2, and its strength is weakened. The high loss region 8 formed by the road machines 6 and 7 tends to gather on the back surface 2d of the blade, compared to the case where a gap is provided on the blade tip side as in the first and second embodiments. but,
There is no essential change in the fact that the leakage flow moves the high loss region away from the corner portion and prevents separation.

なお、本発明の羽根表面から同裏面へ貫通する隙間を設
けて羽根流路内の損失を低減するという技術を、ターボ
機械の羽根車の吐出側に設けられるデイフユーザに通用
することも可能である。この場合、第5図(a)及びV
−V線の断面図である同図(b)に示すように、外側ケ
ーシング11とデイフユーザ羽根12を介して内側ケー
シング13とが一体になって羽根車主板3の後流側に配
設され、羽根車より吐出された流体を軸方向に整流しな
がら速度エネルギを圧力エネルギに変換して当該ターボ
機械の吐出口より吐出されるようになっている上記デイ
フユーザ羽根12の外側ケーシング11と接続する先端
部に、デイフユーザ羽根表面から同裏面に貫通する隙間
14が設けられている。
Note that the technology of the present invention, which reduces loss in the blade flow path by providing a gap penetrating from the front surface of the blade to the back surface thereof, can also be applied to a differential user installed on the discharge side of the impeller of a turbomachine. . In this case, Fig. 5(a) and V
As shown in FIG. 3(b), which is a cross-sectional view taken along the -V line, the outer casing 11 and the inner casing 13 are integrally disposed via the diffuser blade 12 on the downstream side of the impeller main plate 3, A tip connected to the outer casing 11 of the differential user vane 12, which converts velocity energy into pressure energy while rectifying the fluid discharged from the impeller in the axial direction, and is discharged from the discharge port of the turbomachine. A gap 14 penetrating from the front surface of the diffuser blade to the back surface thereof is provided in the portion.

そのため、羽根車回転時、羽根車の矢印4方向の回転に
伴って、デイフユーザ羽根12の圧力面12c側から負
圧面12d側へ向かフて隙間14から吹き出す羽根先端
漏れ流れにより、隣接するデイフユーザ羽根12と内外
両ケーシング11及び13とによって囲まれた第5図(
b)に示すデイフユーザ羽根流路内に、羽根車の回転方
向4と同一方向に旋回する二次流れ15が生じる。
Therefore, when the impeller rotates, as the impeller rotates in the direction of the arrow 4, the leakage flow from the tip of the blade blows out from the gap 14 from the pressure surface 12c side of the differential user blade 12 toward the negative pressure surface 12d side causes the adjacent differential user to FIG. 5 (
A secondary flow 15 swirling in the same direction as the rotation direction 4 of the impeller is generated in the diffuser vane flow path shown in b).

これにより、上記隙間を設けない従来のデイフユーザ羽
根において羽根流路内の二次流れや境界層によって生じ
ていた同図(b)の破線で示すような大きな剥離域18
aが、実線で示すように小さな剥離域16になる。この
ようにして、デイフユーザ羽根部での漬れの剥離を抑制
し、流れの損失を低減させることができる。
This eliminates the large separation area 18 shown by the broken line in FIG.
a becomes a small peeled area 16 as shown by the solid line. In this way, it is possible to suppress separation of soaked particles at the diffuser blade portion and reduce flow loss.

上記したデイフユーザ羽根先端部の隙間14を、第6図
に示すように、デイフユーザ羽根と接続する外側ケーシ
ング11の内面に、羽根表面から同裏面へ貫通する隙間
24を設けることも可能である。
As shown in FIG. 6, the above-mentioned gap 14 at the tip of the differential user blade can be replaced with a gap 24 penetrating from the front surface of the blade to the back surface of the outer casing 11 connected to the differential user blade.

この場合も、上記第5図のものとほぼ同様の効果が奥さ
れる。
In this case as well, substantially the same effect as that shown in FIG. 5 above can be achieved.

〔発明の効果) 以上説明したように、本発明によれば、側板付き羽根車
の羽根端部と側板又は主板との接続部の一部に、羽根表
面から同裏面に貫通する隙間を設けたことにより、羽根
車の部分流量運転時の流れ損失を低減し、羽根車の失速
を防止することができる。従って、揚程−流量特性線図
において、部分流量域で生じる右上り不安定特性を解消
し、或いは、該不安定特性が生じ始まる限界流量を低流
量側へ移行させることができ、当該ターボ機械が安定し
て運転できる流量範囲を拡大することがで幹る。
[Effects of the Invention] As explained above, according to the present invention, a gap penetrating from the front surface of the blade to the back surface thereof is provided in a part of the connecting portion between the blade end of the impeller with a side plate and the side plate or the main plate. By doing so, flow loss during partial flow operation of the impeller can be reduced and stalling of the impeller can be prevented. Therefore, in the head-flow characteristic diagram, it is possible to eliminate the upward-sloping unstable characteristic that occurs in the partial flow rate region, or to shift the critical flow rate at which the unstable characteristic begins to occur to the low flow rate side, and the turbomachine is The key is to expand the range of flow rates that can be operated stably.

上記効果は、羽根表面から同裏面へ貫通する隙間を、羽
根の先端部に設は又は該先端部と接続する側板の内面に
設け、或いは、羽根の基部又は該基部に接続する主板の
表面に設けたものについて、はぼ同様に奏される。
The above effect can be achieved by providing a gap penetrating from the front surface of the blade to the back surface of the blade at the tip of the blade, or on the inner surface of the side plate connected to the tip, or at the base of the blade or the surface of the main plate connected to the base. For those provided, it is played in the same way as Habo.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)及び(C)は本発明の第1実施例
を示す側板付幹羽根車の側断面図、I−I線断面図及び
作用説明図、第2図及び第3図は本発明の第2及び′s
3実施例を示す側断面図、第4図は揚程−流量特性線図
、第5図(a) (b)及び第6図はデイフユーザの側
断面図、V−V線断面図及び同側断面図、第7図(a)
及び(b)は従来例を示す側断面図及び■−■線断面の
作用説明図である。 1・・・側板、2・・・羽根、3・・・主板、6,7・
・・流路機、20,30.40,50…陣間、21・・
・爛れ流れ。 第1図 (b) (C) 第2図      第3図 第4図 限界1雷 第5図 第7図 (α) (b)
FIGS. 1(a), (b), and (C) are a side sectional view, an I-I line sectional view, and an action explanatory diagram of a main impeller with a side plate showing a first embodiment of the present invention, and FIGS. 2 and 3. The figure shows the second and 's of the present invention.
4 is a head-flow characteristic diagram, and FIGS. 5(a), (b), and 6 are side sectional views of the differential user, a V-V line sectional view, and the same side sectional view. Figure, Figure 7(a)
and (b) is a side cross-sectional view and a cross-sectional view taken along the line ■-■ showing the conventional example. 1...Side plate, 2...Blade, 3...Main plate, 6,7.
... Channel machine, 20, 30. 40, 50... Jinma, 21...
・Flowing flow. Figure 1 (b) (C) Figure 2 Figure 3 Figure 4 Limit 1 Lightning Figure 5 Figure 7 (α) (b)

Claims (1)

【特許請求の範囲】 1、ターボ機械において、側板付き羽根車の羽根端部と
側板又は主板との接続部の一部に、羽根表面から同裏面
に貫通する隙間を設け、羽根車流路内の流れ損失を減少
するようにしたことを特徴とするターボ機械の羽根車。 2、側板と接続する羽根の先端部に、羽根表面から同裏
面に貫通する隙間を設けたことを特徴とする請求項1記
載のターボ機械の羽根車。 3、羽根と接続する側板の内面に、羽根表面から同裏面
に貫通する隙間を設けたことを特徴とする請求項1記載
のターボ機械の羽根車。 4、主板と接続する羽根の基部に、羽根表面から同裏面
に貫通する隙間を設けたことを特徴とするターボ機械の
羽根車。 5、羽根と接続する主板の表面に、羽根表面から同裏面
に貫通する隙間を設けたことを特徴とするターボ機械の
羽根車。
[Claims] 1. In a turbomachine, a gap is provided in a part of the connection between the blade end of the impeller with a side plate and the side plate or the main plate, penetrating from the front surface of the blade to the back surface of the blade, and An impeller for a turbomachine characterized by reducing flow loss. 2. The impeller for a turbomachine according to claim 1, wherein a gap is provided at the tip of the blade connected to the side plate, penetrating from the front surface of the blade to the back surface thereof. 3. The impeller for a turbomachine according to claim 1, wherein the inner surface of the side plate connected to the blade is provided with a gap penetrating from the front surface of the blade to the back surface thereof. 4. An impeller for a turbomachine, characterized in that a gap is provided at the base of the blade connected to the main plate, penetrating from the front surface of the blade to the back surface thereof. 5. An impeller for a turbomachine, characterized in that a gap is provided on the surface of the main plate connected to the blade, penetrating from the front surface of the blade to the back surface thereof.
JP63110557A 1988-05-09 1988-05-09 Turbomachine impeller Expired - Lifetime JPH0788831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110557A JPH0788831B2 (en) 1988-05-09 1988-05-09 Turbomachine impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110557A JPH0788831B2 (en) 1988-05-09 1988-05-09 Turbomachine impeller

Publications (2)

Publication Number Publication Date
JPH01285700A true JPH01285700A (en) 1989-11-16
JPH0788831B2 JPH0788831B2 (en) 1995-09-27

Family

ID=14538847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110557A Expired - Lifetime JPH0788831B2 (en) 1988-05-09 1988-05-09 Turbomachine impeller

Country Status (1)

Country Link
JP (1) JPH0788831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008840A (en) * 2015-06-24 2017-01-12 株式会社荏原製作所 Impeller of turbomachinery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128997A (en) * 1983-12-16 1985-07-10 Hitachi Ltd Runner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128997A (en) * 1983-12-16 1985-07-10 Hitachi Ltd Runner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008840A (en) * 2015-06-24 2017-01-12 株式会社荏原製作所 Impeller of turbomachinery

Also Published As

Publication number Publication date
JPH0788831B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US20050129500A1 (en) Inducer tip vortex suppressor
EP1404975A1 (en) Flow stabilizing device
EP0425651A1 (en) Compressor shroud air bleed passages
JPS5848796A (en) Centrifugal impeller
JPS6114500A (en) Inducer with vortex preventing shround
JP2009133267A (en) Impeller of compressor
JPS6081498A (en) Compressor housing
JPH01285700A (en) Impeller for turbo machine
JP3350934B2 (en) Centrifugal fluid machine
JPS6147999B2 (en)
JP2000064848A (en) Turbo-charger
JPH09100797A (en) Impeller of centrifugal compressor
JPH01318790A (en) Flashing vane of multistage pump
JPS60166799A (en) Centrifugal compressor
JPH09264296A (en) Impeller for eccentric fluid machinery
JP3771794B2 (en) Centrifugal pump
JPS64399A (en) Diffuser of high speed centrifugal compressor
JPH02181097A (en) Radius flow type impeller for centrifugal pump
JPH0368235B2 (en)
JPH0251080B2 (en)
JPS5932680B2 (en) Suction channel of axial flow type fluid machine
JP2002332988A (en) Vortex blower
JP2004044409A (en) Water turbine and runner therefor
JPH0544697A (en) Thin type mixed flow fan
JPS6261800B2 (en)