JPS5932680B2 - Suction channel of axial flow type fluid machine - Google Patents

Suction channel of axial flow type fluid machine

Info

Publication number
JPS5932680B2
JPS5932680B2 JP1813078A JP1813078A JPS5932680B2 JP S5932680 B2 JPS5932680 B2 JP S5932680B2 JP 1813078 A JP1813078 A JP 1813078A JP 1813078 A JP1813078 A JP 1813078A JP S5932680 B2 JPS5932680 B2 JP S5932680B2
Authority
JP
Japan
Prior art keywords
fan
suction
cross
flow path
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1813078A
Other languages
Japanese (ja)
Other versions
JPS54111109A (en
Inventor
信行 山口
重徳 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1813078A priority Critical patent/JPS5932680B2/en
Publication of JPS54111109A publication Critical patent/JPS54111109A/en
Publication of JPS5932680B2 publication Critical patent/JPS5932680B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は、軸流型流体機機の吸込流路の改良に関する。[Detailed description of the invention] The present invention relates to improvement of a suction flow path for an axial flow type fluid machine.

軸流ファンや軸流ポンプ等の軸流型流体機機の気体吸込
口は、該フナンの入口案内翼あるいはファン動翼の上流
側に設置され、上流ダクト中の比較的遅い流速の気体を
緩やかに加速してファン動翼直前で所要のレベルの均一
な軸方向の流れを形成させることを目的としている。
The gas suction port of an axial flow type fluid machine such as an axial flow fan or an axial flow pump is installed on the upstream side of the inlet guide vane of the fan or the fan rotor blade, and slowly flows the relatively slow gas in the upstream duct. The purpose is to accelerate the fan blades to create a uniform axial flow at the required level just in front of the fan rotor blades.

このため通常の軸流ファンでは、第1図あるいは第2図
に示す如き単純な吸込口形状をなしている。
For this reason, a typical axial fan has a simple suction port shape as shown in FIG. 1 or 2.

すなわち第1図の例では上流ダクト11に接続された吸
込口ケーシング12とファン動翼15の上流側に図示の
如くその軸心がファン軸心と合致するように配設された
吸込口内筒14からなる吸込流路が、また第2図の例で
は、上流ダクト21に接続されたファンケーシング22
と、ファン動翼24の上流側に図示のように配設され吸
込口内筒23とからなる吸込流路が形成されている。
That is, in the example shown in FIG. 1, a suction port inner cylinder 14 is disposed on the upstream side of the suction port casing 12 connected to the upstream duct 11 and the fan rotor blades 15 so that its axis coincides with the fan axis as shown in the figure. In the example of FIG. 2, the fan casing 22 connected to the upstream duct 21
A suction flow path is formed as shown in the figure on the upstream side of the fan rotor blades 24, and includes a suction port inner cylinder 23.

なお第1図において13はファンケーシング、16は仕
出ディフューザ内筒をそれぞれ示し、また第2図におい
て25は仕出ディフューザ内筒を示す。
In FIG. 1, 13 indicates a fan casing, and 16 indicates an inner tube of a dispensing diffuser. In FIG. 2, 25 indicates an inner tube of a dispensing diffuser.

上記のような従来の軸流ファンの吸込流路の形状では、
ダクトを含む気体を扱う軸流ファンの場合、該気体中に
含まれたダストはそのままファン動翼に衝突してファン
動翼の羽根のエロージョンを生じやすく、従ってファン
動翼の羽根の寿命が短かいという欠点があった。
In the shape of the suction passage of the conventional axial fan as shown above,
In the case of an axial fan that handles gas containing a duct, the dust contained in the gas collides directly with the fan rotor blades and tends to cause erosion of the fan rotor blades, thus shortening the life of the fan rotor blades. There was a drawback.

この現象は、軸流ポンプでも同様である。This phenomenon also applies to axial flow pumps.

これは第1図の例の如く上流ダクト11の径が大きい場
合や、第2図の例のように上流ダクト21とファンケー
シング22と同径である場合でも吸込口ケーシング12
と吸込口内筒14あるいはファンケーシング22と吸込
口内筒23で形成される吸込流路は、上流側からファン
動翼直前まで徐々に断面積の大きさを減少し、気流を加
速している。
This is true even when the diameter of the upstream duct 11 is large as in the example shown in FIG. 1, or when the upstream duct 21 and fan casing 22 have the same diameter as in the example shown in FIG.
The suction flow path formed by the suction port inner cylinder 14 or the fan casing 22 and the suction port inner cylinder 23 gradually decreases in cross-sectional area from the upstream side to just before the fan rotor blade, accelerating the airflow.

これらの通常の吸込流路では、気流中にダストが含まれ
ている場合、ファン動翼は先端での著るしいエロージョ
ンを受け、その羽根の寿命が短かくなるのであるが、第
1図および第2図において矢印線で示される如く平均的
な流れの脈打ちが小さく、従って流れに乗ったダクト粒
子には、遠心力が余り作用せず気流につれてそのま〜フ
ァン動翼に入り込むからである。
In these normal suction channels, if dust is included in the airflow, the fan rotor blades will undergo significant erosion at the tips, shortening the life of the blades. This is because the pulsation of the average flow is small, as shown by the arrow line in FIG. 2, and therefore, centrifugal force does not act much on the duct particles riding on the flow, and they directly enter the fan rotor blades along with the airflow.

ファン動翼の摩耗は、ダストの濃度に比例し、かつダス
ト粒子の相対的速度の3〜4乗に比例する。
Wear of the fan rotor blades is proportional to the dust concentration and proportional to the third to fourth power of the relative velocity of the dust particles.

従ってファン動翼の先端から根元まで一様な濃度のダス
トが流入すると、動翼の先端の摩耗が著るしく、これが
軸流ファンの動翼の羽根の寿命を決めるのである。
Therefore, when a uniform concentration of dust flows from the tip to the root of the fan rotor blade, the tip of the rotor blade is significantly worn, and this determines the life of the rotor blade of the axial fan.

本発明は、上記従来の軸流ファンや軸流ポンプ等の吸込
流路の欠点を解消し、しかも軸流ファンの吸込口におけ
る圧力損失が小さく、また気流の一様性を乱すことのな
い吸込流路を実現することを目的として提案されたもの
で、一端開口を上流ダクトに接続され、他端開口をファ
ンケーシングに接続された吸込ケーシングと、ファン動
翼の上流側軸心に軸心をもつように配設された吸込口内
筒からなる軸流型流体機機の吸込流路において、上記吸
込ケーシングのある断面部の流路直径を、ファン動翼先
端直径よりも小さく形成し、該断面部と上流ダクトおよ
びファンケーシングとの接続部近傍とを緩やかに直径の
増大する流路で連結し、かつ上記断面部の吸込流路断面
積の大きさを、ファン動翼の通路断面積の大きさ以上に
設定してなることを特徴とする軸流型流体機機の吸込流
路に係るものである。
The present invention eliminates the drawbacks of the suction flow paths of conventional axial fans and axial pumps, and moreover, the pressure loss at the suction port of the axial fan is small, and the suction flow path does not disturb the uniformity of airflow. This was proposed for the purpose of realizing a flow path, and the suction casing has an opening at one end connected to an upstream duct and an opening at the other end connected to the fan casing, and an axis centered at the upstream axis of the fan rotor blade. In the suction flow path of an axial flow fluid machine consisting of a suction port inner cylinder arranged to have a suction port, the flow path diameter of a certain cross section of the suction casing is formed to be smaller than the tip diameter of the fan rotor blade, and the cross section The section and the upstream duct and the vicinity of the connection section with the fan casing are connected by a flow path whose diameter gradually increases, and the size of the cross-sectional area of the suction flow path of the above-mentioned cross section is set to the size of the cross-sectional area of the passage of the fan rotor blade. The present invention relates to a suction flow path of an axial flow type fluid machine, which is characterized in that the suction flow path is set to be more than 1.

以下第3図乃至第6図を参照しながら本発明につき具体
的に説明する。
The present invention will be specifically explained below with reference to FIGS. 3 to 6.

なお、図示例は本発明を、軸流ファンに適用した例を示
す。
Note that the illustrated example shows an example in which the present invention is applied to an axial fan.

第3図において31は上流ダクト、32は一端開口を該
上流ダクト31の下流側に接続された吸込ケーシングで
、同吸込ケーシング32の他端開口はファンケーシング
35に接続されており、該吸込ケーシング32は、上流
側から下流側に行くにつれて順次その内径が緩やかに小
さくなり、ある断面A点で最小となって吸込流路直径り
In FIG. 3, 31 is an upstream duct, 32 is a suction casing whose one end opening is connected to the downstream side of the upstream duct 31, and the other end opening of the suction casing 32 is connected to a fan casing 35; 32, the inner diameter gradually decreases as it goes from the upstream side to the downstream side, and reaches its minimum at a certain cross-sectional point A, which is the diameter of the suction flow path.

を持つように形成され、該A点から下流側に向ってはそ
の吸込流路直径を次第に緩やかに増大して行ってその下
流端の直径がファン動翼直径Dtよりも僅かに大きく形
成されるように形成される。
The suction flow path diameter gradually increases from point A toward the downstream side, so that the diameter at the downstream end is slightly larger than the fan rotor blade diameter Dt. It is formed like this.

すなわち吸込ケーシング32の断面A点の流路直径Do
はファン動翼35の直径Diよりも小さく設定される。
That is, the flow path diameter Do at point A in the cross section of the suction casing 32
is set smaller than the diameter Di of the fan moving blade 35.

また断面A点の吸込流路断面積は、ファン動翼350通
踏所面積よりも小さくならないように設定される。
Further, the cross-sectional area of the suction flow path at the cross-sectional point A is set so as not to be smaller than the passage area of the fan rotor blades 350.

すなわち、DoくDtで、π π 、Do2≧−;(Dt2−D、”) となるように断
面A点の吸込流路は形成される。
That is, the suction flow path at the cross-sectional point A is formed such that Do×Dt, π π , Do2≧−;(Dt2−D, “).

こ\でDrはファン動翼35の根元直径を示す。Here, Dr indicates the root diameter of the fan moving blade 35.

33は吸込口内筒で、同内筒33は図示の如く上記吸込
ケーシング32の断面A点近傍の下流側に先端が位置す
るように、丸味をもつほぼ円錐状に形成されていて、吸
込ケーシング32の吸込流路の断面積がファン動翼35
に向って順次滑らかに絞られると同時に、気流のファン
中心向き脈打ちを助長するような図示の形状に形成され
る。
Reference numeral 33 denotes a suction port inner cylinder, and the inner cylinder 33 is formed into a rounded, almost conical shape so that its tip is located on the downstream side near the cross-sectional point A of the suction casing 32, as shown in the figure. The cross-sectional area of the suction flow path is the fan rotor blade 35
It is formed into the shape shown in the figure so that the airflow is gradually and smoothly narrowed toward the center of the fan, and at the same time promotes the pulsation of the airflow toward the center of the fan.

34は上記内筒支持翼、36はファンディスク、37は
主軸、38はファンケーシング、39はファン静翼をそ
れぞれ示す。
Reference numeral 34 indicates the inner cylinder support blade, 36 indicates a fan disk, 37 indicates a main shaft, 38 indicates a fan casing, and 39 indicates a fan stationary blade.

本発明の軸流ファンの吸込流路の一実施例は上記のよう
に構成されており、ファン動翼350回転に伴ない、気
体は第3図の矢印Bに示すように、一旦軸流フアンの中
心線Cに向って近づいてから遠ざかるように脈打ち、そ
れから比較的短距離で軸方向に回復した流れとなってフ
ァン動翼35に入る。
One embodiment of the suction channel of the axial fan of the present invention is constructed as described above, and as the fan rotor blades rotate 350 times, the gas flows once into the axial fan as shown by arrow B in FIG. The flow pulsates as it approaches and then moves away from the center line C, and then enters the fan rotor blade 35 as a flow that recovers in the axial direction over a relatively short distance.

これにより第4図に示す如く気体中の粒子(ダスト)4
1は、気体の流れ方向の粘性力Fvと、脈打ち方向に働
らく遠心力Fcを受け、その合力方向である破線矢印の
方向へ向かうことになる。
As a result, as shown in Fig. 4, particles (dust) in the gas 4
1 receives a viscous force Fv in the gas flow direction and a centrifugal force Fc acting in the pulsating direction, and moves in the direction of the dashed arrow, which is the direction of the resultant force.

すなわちダストは全体としてファン動翼35の根元の方
に寄ってしまうことになる。
In other words, the dust as a whole tends toward the root of the fan rotor blade 35.

従って第5図に示す如くファン動翼35直前のダスト濃
度分布Eは、ファン動翼35の先端に比し、根元では著
しく高く、しかも気体の流速分布Fは一様に回復するこ
ととなる。
Therefore, as shown in FIG. 5, the dust concentration distribution E immediately before the fan rotor blade 35 is significantly higher at the root than at the tip of the fan rotor blade 35, and the gas flow velocity distribution F recovers uniformly.

本発明の軸流ファンや軸流ポンプ等の軸流型流体機機の
吸込流路は、上記のような構成、作用を具有するもので
あるから、本発明によれば、ファン動翼35先端は周速
は速いがダスト濃度は低く、一方フアン動翼根元ではダ
スト濃度は高いが周速が低いため、従来に比し、ファン
動翼の高さ方向の摩耗量は均一に近づき、先端部のみが
急速に摩耗されるおそれがなくなり、ファン動翼の羽根
の寿命は著るしく増大する。
Since the suction flow path of the axial flow type fluid machine such as the axial flow fan and the axial flow pump of the present invention has the above-described configuration and function, according to the present invention, the tip of the fan rotor blade 35 The circumferential speed is high but the dust concentration is low, while the dust concentration is high at the root of the fan rotor blade but the circumferential speed is low. The life of the blades of the fan rotor blades is significantly increased, as there is no longer a risk that the blades will be rapidly worn out.

また、ファンの空力性能を阻害するおそれがないという
実用的効果を挙げることができる。
Further, there is a practical effect that there is no risk of impairing the aerodynamic performance of the fan.

なお上記実施例では、吸込口内筒33の形状を丸味を帯
びたほぼ円錐状に形成したが、該内筒は、気体の実質的
な流れの脈打ちを助長し、かつ空力性能を阻害すること
がなければ、たとえば第6図に示すような、通常の砲弾
状のものを用いてもよい。
In the above embodiment, the shape of the suction port inner cylinder 33 is formed into a rounded, almost conical shape, but the inner cylinder promotes pulsation of the substantial flow of gas and may impede aerodynamic performance. If not, a normal cannonball-shaped one as shown in FIG. 6, for example, may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来例の略示的縦断面図、第3図は本
発明の一実施例の概略縦断面図(ただし上半部のみを示
す。 )第4図は本発明の場合のダストの流れ方向の説明図、
第5図は、ファン動翼の高さ方向に対するダスト濃度分
布および気体の流速分布状態を示す図、第6図は吸込口
内筒の変形例の縦断面図である。 第3図乃至第6図において、31:上流ダクト、32シ
吸込ケーシング、33二吸込ロ内筒、35ニフアン動翼
、Do:吸込ケーシングの最小内径、Dt =ファン動
翼先端直径、Dr =ファン動翼根元直径。
1 and 2 are schematic vertical cross-sectional views of a conventional example, FIG. 3 is a schematic vertical cross-sectional view of an embodiment of the present invention (however, only the upper half is shown), and FIG. 4 is a schematic vertical cross-sectional view of an embodiment of the present invention. An explanatory diagram of the direction of dust flow in the case of
FIG. 5 is a diagram showing the dust concentration distribution and gas flow velocity distribution state in the height direction of the fan rotor blade, and FIG. 6 is a longitudinal cross-sectional view of a modified example of the suction port inner cylinder. In Figs. 3 to 6, 31: upstream duct, 32 suction casing, 33 2 suction inner cylinder, 35 Nifuan rotor blade, Do: minimum inner diameter of suction casing, Dt = fan rotor blade tip diameter, Dr = fan Rotor blade root diameter.

Claims (1)

【特許請求の範囲】[Claims] 1 一端開口を上流ダクトに接続され、他端開口をファ
ンケーシングに接続された吸込ケーシングと、ファン動
翼の上流側軸心をもつように配設された吸込口内筒から
なる軸流型流体機機の吸込流路において、上記吸込ケー
シングのある断面部の流路直径を、ファン動翼先端直径
よりも小さく形成し、該断面部と上流ダクトおよびファ
ンケーシングとの接続部近傍とを緩やかに直径の増大す
る流路で連結し、かつ上記断面部の吸込流路断面積の大
きさを、ファン動翼の通路断面積の大きさ以上に設定し
てなることを特徴とする軸流型流体機機の吸込流路。
1. An axial flow fluid machine consisting of a suction casing whose opening at one end is connected to an upstream duct and the opening at the other end is connected to a fan casing, and an inner cylinder of the suction port arranged to have the axis on the upstream side of the fan rotor blades. In the suction flow path of the machine, the diameter of the cross section of the suction casing is smaller than the tip diameter of the fan rotor blade, and the diameter of the cross section and the vicinity of the connection between the upstream duct and the fan casing is gradually reduced. An axial flow type fluid machine, characterized in that the cross-sectional area of the suction flow path of the cross-sectional portion is set to be larger than the cross-sectional area of the passage of the fan rotor blade. Machine suction flow path.
JP1813078A 1978-02-21 1978-02-21 Suction channel of axial flow type fluid machine Expired JPS5932680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1813078A JPS5932680B2 (en) 1978-02-21 1978-02-21 Suction channel of axial flow type fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1813078A JPS5932680B2 (en) 1978-02-21 1978-02-21 Suction channel of axial flow type fluid machine

Publications (2)

Publication Number Publication Date
JPS54111109A JPS54111109A (en) 1979-08-31
JPS5932680B2 true JPS5932680B2 (en) 1984-08-10

Family

ID=11963017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1813078A Expired JPS5932680B2 (en) 1978-02-21 1978-02-21 Suction channel of axial flow type fluid machine

Country Status (1)

Country Link
JP (1) JPS5932680B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589229U (en) * 1992-05-11 1993-12-07 レンゴー株式会社 Packaging box
JPH0636831U (en) * 1992-10-21 1994-05-17 本州製紙株式会社 Corrugated sheet and corrugated container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017299A (en) * 1983-07-11 1985-01-29 Ebara Corp Movable-vane mixed-flow pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589229U (en) * 1992-05-11 1993-12-07 レンゴー株式会社 Packaging box
JPH0636831U (en) * 1992-10-21 1994-05-17 本州製紙株式会社 Corrugated sheet and corrugated container

Also Published As

Publication number Publication date
JPS54111109A (en) 1979-08-31

Similar Documents

Publication Publication Date Title
EP1228317B1 (en) Axial fan
US5228832A (en) Mixed flow compressor
US3868196A (en) Centrifugal compressor with rotating vaneless diffuser powered by leakage flow
EP0425651A1 (en) Compressor shroud air bleed passages
US3781128A (en) Centrifugal compressor diffuser
US7008189B2 (en) Centrifugal fan
US3059833A (en) Fans
KR0180742B1 (en) Vacuum cleaner having an impeller and diffuser
US20210123444A1 (en) Mixed-flow compressor configuration for a refrigeration system
JPH04228807A (en) Turbine stage
JPS5932680B2 (en) Suction channel of axial flow type fluid machine
JPH0613878B2 (en) Centrifugal compressor
JPH08247090A (en) Centrifugal blower
CN212003641U (en) Centrifugal fan
JPH0738641Y2 (en) Multi-stage axial turbine
KR100400472B1 (en) a turbo-fan
US1495873A (en) Fan or impeller
KR970003338Y1 (en) Flow guide device of centrifugal impeller
CN220505410U (en) Fan and cleaning device applying same
JPS60113095A (en) Impeller of blower
JPS6330519B2 (en)
USRE25409E (en) Coester
JPS6210480Y2 (en)
JPS6261800B2 (en)
JPH0615879B2 (en) Diff user of centrifugal fluid machine