JPH0128503B2 - - Google Patents
Info
- Publication number
- JPH0128503B2 JPH0128503B2 JP56040312A JP4031281A JPH0128503B2 JP H0128503 B2 JPH0128503 B2 JP H0128503B2 JP 56040312 A JP56040312 A JP 56040312A JP 4031281 A JP4031281 A JP 4031281A JP H0128503 B2 JPH0128503 B2 JP H0128503B2
- Authority
- JP
- Japan
- Prior art keywords
- stage
- wafer
- alignment
- origin
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 8
- 235000012431 wafers Nutrition 0.000 description 39
- 238000012937 correction Methods 0.000 description 22
- 230000003287 optical effect Effects 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】
本発明は位置合せ方法、たとえばマスクアライ
メントに適用される位置合せ方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alignment method, for example an alignment method applied to mask alignment.
半導体装置の製造における半導体ウエハ(以下
単にウエハと称す。)の処理工程においては、ウ
エハにパターン焼付け等を行なうために、ウエハ
を顕微鏡下のXYステージに自動搬送し、ウエハ
に設けたターゲツトと、マスクの位置合せを行な
う必要がある。一般に、この機構は第1図に示す
ように、ウエハ1をカートリツジ2からエアーあ
るいはベルト等によつて、一旦プリアライメント
テーブル3に移送し、このプリアライメントテー
ブル3でウエハ1を回転させてプリアライメント
を行なつた後、再び真空吸着工具によつて顕微鏡
下のXYステージ4に搬送する2段機構が採用さ
れている。上記プリアライメントにあつては、ウ
エハ1にはあらかじめ一部を直線状に切り欠いて
オリエンテーシヨンフラツト(識別面)5が設け
られていることから、曲線状に位置する3個の回
転するローラ(1個は逆回転)6でウエハ1を回
転させることによつて、識別面5をローラ6に接
触させる(中央の1個のローラは識別面5には接
触しない。)ようにして揃える。 In the process of processing semiconductor wafers (hereinafter simply referred to as wafers) in the manufacture of semiconductor devices, in order to perform pattern printing on the wafer, the wafer is automatically transferred to an XY stage under a microscope, and a target provided on the wafer is placed on the wafer. It is necessary to align the mask. Generally, as shown in FIG. 1, this mechanism first transfers a wafer 1 from a cartridge 2 to a pre-alignment table 3 using air or a belt, and then rotates the wafer 1 on this pre-alignment table 3 for pre-alignment. After performing this, a two-stage mechanism is adopted in which the sample is transported to the XY stage 4 under the microscope again by a vacuum suction tool. In the above pre-alignment, since the wafer 1 is provided with an orientation flat (identification surface) 5 by cutting out a part of the wafer 1 in a straight line in advance, three rotating By rotating the wafer 1 with rollers (one rotating in the opposite direction) 6, align the identification surface 5 so that it comes into contact with the roller 6 (the one roller in the center does not contact the identification surface 5). .
ところで、上記プリアライメントの位置合せ精
度は比較的高精度(たとえば±50μm)に合せる
ことができるが、XYステージ4上に搬送されて
きた時の光学的な視野中心に対するウエハ1の位
置ズレは極めて大きく、ウエハ1に設けたターゲ
ツトが光学視野(たとえば±250μm)から逸脱し
てその後の位置合せが困難となつたり、あるいは
ずれが大きいため、XYステージの移動修正量が
大きく修正時間が長くなる等の不都合が生じる。
前記の大幅なずれは、真空吸着工具を支持するア
ーム軸の機械的変形や摩耗、プリアライメントテ
ーブルとXYステージの相対位置関係の変化、タ
ーゲツトの識別面に対する位置ずれ等が総合され
て起こると考えられる。 By the way, although the positioning accuracy of the above pre-alignment can be adjusted to a relatively high precision (for example, ±50 μm), the positional deviation of the wafer 1 with respect to the optical field center when it is transferred onto the XY stage 4 is extremely large. If the target on the wafer 1 deviates from the optical field of view (for example, ±250 μm) and subsequent alignment becomes difficult, or if the deviation is large, the amount of movement correction of the XY stage is large and the correction time becomes long. This will cause some inconvenience.
It is believed that the above-mentioned large deviation is caused by a combination of mechanical deformation and wear of the arm shaft that supports the vacuum suction tool, changes in the relative positional relationship between the pre-alignment table and the XY stage, and positional deviation of the target with respect to the identification surface. It will be done.
ところで、XYステージにおいて、光学視野中
心にウエハのターゲツトを移動させる操作は、と
りもなおさず、XYステージとプリアライメント
テーブル間における相対ずれ量および識別面とタ
ーゲツトのずれを補正していることにほかならな
い。 By the way, the operation of moving the wafer target to the center of the optical field on the XY stage is not only to correct the relative misalignment between the XY stage and the pre-alignment table, but also the misalignment between the identification plane and the target. It won't happen.
そこで、本発明者は、ウエハの精密位置合せを
行なう毎に、XYステージの最初の搬送位置から
最終目的位置までの移動量を記憶しておき、2n枚
ウエハの操作毎に移動量の平均値を求め、それを
補正量としてXYステージにウエハが搬送された
後、XYステージを自動的に移動させ、それを
XYテーブルの修正原点とすることで、常にター
ゲツトを光学視野内に位置させるとともに、光学
視野中心からのターゲツトのずれも少なくできる
ことに気が付き本発明を成した。 Therefore, the present inventor memorized the amount of movement of the XY stage from the initial transfer position to the final destination position each time precision alignment of wafers was performed, and calculated the average amount of movement for each operation of 2n wafers. After the wafer is transferred to the XY stage, the XY stage is automatically moved and
The inventors realized that by using the XY table as a correction origin, the target can always be located within the optical field of view and the deviation of the target from the center of the optical field can be reduced.
したがつて、本発明の目的は、試料のターゲツ
ト合せ操作時には、ターゲツトは光学視野内に位
置するとともに、ターゲツトの位置ずれ量は小さ
くなつているようにすることによつて、作業能率
の向上を図ることにある。 Therefore, an object of the present invention is to improve work efficiency by ensuring that the target is located within the optical field of view and that the amount of positional deviation of the target is small during the target alignment operation of the sample. It's about trying.
このような目的を達成するために本発明は、位
置検出用ターゲツトを有する試料を順次中心を有
する特定範囲の視野内に位置させるための位置合
せ方法において、
a 試料の姿勢を定められた方向に整える工程、
b XYステージを機械原点に位置させる工程、
c 上記工程aの試料を上記工程bのXYステー
ジに載置する工程、
d 上記工程cのXYステージを上記機械原点か
ら修正原点に移動して、上記位置検出用ターゲ
ツトを上記特定範囲に視野内に位置させる工
程、
e 上記位置検出用ターゲツトを上記視野の中心
に位置させるべく工程dのXYステージを移動
させる工程、
f 上記工程eの移動量を各試料毎に累積加算す
る工程、
を少くとも含み、上記工程dの修正原点は上記累
積加算の平均値を参照することでその原点位置が
補正されるようにした位置合せ方法であつて、以
下実施例により本発明を説明する。 In order to achieve such an object, the present invention provides an alignment method for sequentially positioning a sample having a position detection target within a specific range of field of view having a center, which includes: a) positioning the sample in a predetermined direction; a step of aligning, b a step of positioning the XY stage at the machine origin, c a step of placing the sample in step a above on the XY stage of step b above, d a step of moving the XY stage of step c above from the machine origin to the correction origin. a step of positioning the target for position detection within the field of view within the specific range; e a step of moving the XY stage in step d to position the target for position detection in the center of the field of view; f moving the target in step e. The corrected origin position in step d is an alignment method that includes at least the step of cumulatively adding the amount for each sample, and the corrected origin position in step d is corrected by referring to the average value of the cumulative addition. The present invention will be explained below with reference to Examples.
第2図は本発明の位置合せ方法の一実施例を適
用したマスクアライメント装置の概要を示す概略
図、第3図は同じく動作を示すフローチヤートで
ある。 FIG. 2 is a schematic diagram showing an outline of a mask alignment apparatus to which an embodiment of the alignment method of the present invention is applied, and FIG. 3 is a flowchart showing the same operation.
この装置では、カートリツジ2に収容されたウ
エハ1はベルトコンベア(搬送機構)7によつて
プリアライメントテーブル3に1枚ずつ搬送され
る。このプリアライメントテーブル3ではウエハ
1は既に説明した3個のローラ6およびストツパ
8によつて回転修正されて位置決め(プリアライ
メント)される(第4図b参照)。また、プリア
ライメントされたウエハ1はアーム9の先端に取
り付けられた真空吸着工具10によつて真空吸着
保持されて顕微鏡下のXYステージ4上に搬送さ
れる。アーム9はその支持部を中心に左右回動し
てXYステージ4とプリアライメントテーブル3
との間を往復動して、ウエハ1の搬送を行なう。
XYステージ4はパルスモータからなるX用モー
タ11でX方向の移動をし、Y用モータ12でY
方向の移動をする。 In this apparatus, wafers 1 housed in a cartridge 2 are transported one by one to a pre-alignment table 3 by a belt conveyor (transport mechanism) 7. On this pre-alignment table 3, the wafer 1 is rotationally corrected and positioned (pre-aligned) by the three rollers 6 and the stopper 8 described above (see FIG. 4b). Further, the pre-aligned wafer 1 is held by vacuum suction by a vacuum suction tool 10 attached to the tip of the arm 9, and is transferred onto the XY stage 4 under the microscope. The arm 9 rotates left and right around its support part and connects the XY stage 4 and pre-alignment table 3.
The wafer 1 is transported by reciprocating between the two.
The XY stage 4 moves in the X direction with an X motor 11 consisting of a pulse motor, and moves in the Y direction with a Y motor 12.
Move in direction.
一方、この装置にはステージ修正回路13が設
けられている。このステージ修正回路13にはス
テージ移動量検出部14が設けられている。ステ
ージ移動量検出部14にはXYステージ4上のウ
エハ1を観察する顕微鏡(顕微鏡カメラ)15か
ら情報が送られてくる。この情報は光学情報から
電気情報に変換される。ステージ移動量検出部1
4の出力は加算部16および移動量累積加算部1
7に入力される。移動量累積加算部17の出力は
2n回の累積値を2nで除して移動平均値を算出する
平均値化部18に入力される。平均値化部18の
出力は補正量減算部19に送られ、原点補正部2
0で原点補正が行なわれ、加算部16に送られ
る。加算部16ではこの結果に応じてX・Y用モ
ータ11,12をXYステージ4にウエハ1が載
置された後に移動させるようになつている。 On the other hand, this device is provided with a stage correction circuit 13. This stage correction circuit 13 is provided with a stage movement amount detection section 14 . Information is sent to the stage movement amount detection unit 14 from a microscope (microscope camera) 15 that observes the wafer 1 on the XY stage 4. This information is converted from optical information to electrical information. Stage movement amount detection section 1
The output of 4 is sent to the adder 16 and the movement amount cumulative adder 1.
7 is input. The output of the movement amount cumulative addition section 17 is
It is input to the averaging unit 18 which calculates a moving average value by dividing the cumulative value of 2 n times by 2 n . The output of the averaging section 18 is sent to the correction amount subtracting section 19, and the origin correction section 2
Origin correction is performed at 0, and the signal is sent to the addition section 16. In accordance with this result, the adding section 16 moves the X/Y motors 11 and 12 after the wafer 1 is placed on the XY stage 4.
つぎに動作フローを参照しながら、アライメン
ト動作の説明を行なう。ウエハ1はプリアライメ
ントテーブル3で±50μm以内の精度で位置合せ
される。そこで、真空吸着工具(搬送機構)10
でウエハ1を機械的原点に復帰させてあるXYス
テージ4上に運ぶ。真空吸着工具10の搬送部で
の遊び、ウエハ吸着、解放時での微動等によつ
て、XYステージ4上のウエハ1の位置合せ精度
はプリアライメントでの±50μの精度よりも低く
なつていることが多い。そこで、ウエハ面の図示
しないターゲツトを顕微鏡で観察しながら、ター
ゲツトを所望の位置、すなわち、マスクのターゲ
ツトの位置に合す。この移動量は記憶されかつ移
動量累積加算部17で加算処理される。マスクア
ライメントが終了した、露光作業が完了すると、
XYステージ4のウエハ1は自動的にXYステー
ジ4から搬出される。そして、次の新たなウエハ
が再び前記手順によつてXYステージ4に運び込
まれる。ここでも、XYステージ4を操作してマ
スクアライメントする。このマスクアライメント
によるXYステージ4の修正移動量は記憶されか
つ累積加算処理される。また、ウエハのマスクア
ライメント回数が2n回目であるか否かが自問され
る。現段階は2回目のマスクアライメントである
ことから、2回の移動量の平均値化が図られ、移
動平均値が算出される。この移動平均値によつ
て、XYステージ4の修正原点が求められる。す
なわち、この修正原点は次の3回目から6回目ま
でのマスクアライメント時に、原点(機械的)に
復帰したXYステージ4上にウエハ1が載置され
ると、XYステージ4は前記移動平均値に対応し
ただけ移動して修正原点に位置する。そこで、顕
微鏡で観察を行ないながらマスクアライメントを
行なう。このようにすれば、1回および2回の
XYステージの移動修正を参考にして、マスクア
ライメント前にあらかじめ移動修正を予想して
XYステージ4を自動的に修正原点に復帰させる
ことから、第4図dで示すようにウエハ1のター
ゲツト21は狭い顕微鏡視野(光学視野)22内
にほぼ確実に入り、かつその精度も高いものとな
る。このため、マスクアライメントの修正時間
(XYステージの修正移動距離の単縮による修正
時間)が短かくなり、作業時間の短縮(高速)化
が図れる。修正原点は6回目のマスクアライメン
トまで一定であるが、6回目のマスクアライメン
トが終了すると、補正量出力後22に該当すること
から、3〜6回目までの移動平均値と、前の修正
原点(1回目および2回目による)との補正量減
算によつて次の7回目から15回目(7+23)まで
の間の修正原点が修正されてマスクアライメント
が行なえる。すなわち、修正原点は2n回毎に行な
う。また、ある回数にまで進んだらクリアーし
て、再び最初から行なうようにしてもよい。 Next, the alignment operation will be explained with reference to the operation flow. The wafer 1 is aligned on a pre-alignment table 3 with an accuracy of within ±50 μm. Therefore, the vacuum suction tool (transport mechanism) 10
The wafer 1 is then transported onto the XY stage 4, which has been returned to its mechanical origin. Due to play in the transfer section of the vacuum suction tool 10, slight movement during wafer suction and release, etc., the alignment accuracy of the wafer 1 on the XY stage 4 is lower than the ±50μ accuracy in pre-alignment. There are many things. Therefore, while observing a target (not shown) on the wafer surface with a microscope, the target is aligned at a desired position, that is, the position of the target on the mask. This amount of movement is stored and added by the amount of movement cumulative addition section 17. When mask alignment is completed and exposure work is completed,
The wafer 1 on the XY stage 4 is automatically carried out from the XY stage 4. Then, the next new wafer is carried to the XY stage 4 again by the above procedure. Here too, mask alignment is performed by operating the XY stage 4. The corrected movement amount of the XY stage 4 due to this mask alignment is stored and cumulatively added. Also, it is asked whether or not the number of mask alignments for the wafer is the 2nth time. Since this is the second mask alignment at this stage, the two movement amounts are averaged and a moving average value is calculated. The corrected origin of the XY stage 4 is determined from this moving average value. In other words, when the wafer 1 is placed on the XY stage 4 which has returned to the origin (mechanically) during the next third to sixth mask alignment, the corrected origin will be adjusted to the moving average value. Move by the corresponding amount and position at the correction origin. Therefore, mask alignment is performed while observing with a microscope. In this way, once and twice
Anticipate the movement correction before mask alignment by referring to the movement correction of the XY stage.
Since the XY stage 4 is automatically returned to the corrected origin, the target 21 of the wafer 1 almost certainly falls within the narrow microscope field of view (optical field of view) 22, as shown in Fig. 4d, and its precision is high. becomes. Therefore, the time required to correct the mask alignment (the time required for correction by shortening the correction movement distance of the XY stage) is shortened, and the work time can be shortened (speeded up). The correction origin remains constant until the 6th mask alignment, but when the 6th mask alignment is completed, since it corresponds to 2 2 after the correction amount is output, the moving average value from 3rd to 6th times and the previous correction origin By subtracting the correction amount from (from the first and second times), the correction origin from the next 7th time to the 15th time (7+2 3 ) is corrected, and mask alignment can be performed. In other words, the modified origin is performed every 2 n times. Alternatively, after completing a certain number of times, it may be cleared and the process may be started again from the beginning.
このような補正によれば、誤差は収束すると考
えられる。 According to such correction, it is thought that the error converges.
ここでずれについて第4図a〜dを参考にして
考えてみる。XYステージに搬送されてきたウエ
ーハを顕微鏡で見た時の視野中心からのずれR
は、次式となる。 Here, let's consider the deviation with reference to FIGS. 4a to 4d. Displacement R from the center of the field of view when viewing the wafer transferred to the XY stage with a microscope
is the following formula.
R=Rα+Rβ+Rγ+RP …(1)
Rα:一次焼付における目視パターンと、識別
面のウエーハ間のずれ
Rβ:プリアライメント機構において、設定不
良、機械的摩耗による方向性を持つたずれ
Rγ:アーム搬送におけるずれ
Rq:X,Yステージと視野中心の調整不良に
よる方向性を持つたずれ
Rp:偶発的なずれ
(1)式におけるRα+Rβ+Rγは、かなりの長時
間にわたつてゆつくり変化していく値と考えら
れ、短時間ではほぼ一定の値を取る。その値は、
ほぼ
o-1=o-1
〓i=1
Ri/n−1(n−1回の平均値)
と考えられ、Ro−o-1=Rp…(2)、となり、補正
量としてi=1/Ro-1を減算することでズレを偶発的
なものだけに低減できる。 R=Rα+Rβ+Rγ+R P …(1) Rα: Misalignment between the visual pattern during primary printing and the identification surface of the wafer Rβ: Directional misalignment due to poor settings or mechanical wear in the pre-alignment mechanism Rγ: Misalignment during arm transfer R q : Directional deviation due to poor adjustment of the X, Y stage and the center of the field of view R p : Accidental deviation Rα + Rβ + Rγ in equation (1) is a value that slowly changes over a considerable period of time. It is possible that the value is almost constant over a short period of time. Its value is
almost
It is considered that o-1 = o-1 〓 i=1 R i /n-1 (average value of n-1 times), R o − o-1 = R p ...(2), and the correction amount is i By subtracting =1/R o-1 , the deviation can be reduced to only an accidental one.
なお、本発明は前記実施例に限定されない。す
なわち、位置合せの際のターゲツトは2箇所とす
ることによつて、XY方向のみならず、回転方向
(θ方向)の位置修正も行なうことができる。 Note that the present invention is not limited to the above embodiments. That is, by using two targets for alignment, the position can be corrected not only in the XY directions but also in the rotational direction (θ direction).
また、本発明の位置合せ方法はマスクアライメ
ント装置のみならず、目視あるいは自動認識装置
を用いてX,Y,θテーブル上の物体(試料)を
決められた視野中心に移動する必要がある装置、
たとえばパターン焼付装置、ワイヤボンダ、ウエ
ハスクライバ等広範囲に適用できる。 Furthermore, the alignment method of the present invention is applicable not only to mask alignment devices, but also to devices that require moving an object (sample) on an X, Y, θ table to a predetermined center of field of view using visual inspection or an automatic recognition device.
For example, it can be applied to a wide range of applications such as pattern printing equipment, wire bonders, wafer scribers, etc.
以上のように、本発明の位置合せ方法によれ
ば、微調整前に自動的に粗移動調整が行なわれる
ため、作業時間の短縮、高速化が図れる。 As described above, according to the positioning method of the present invention, the rough movement adjustment is automatically performed before the fine adjustment, so that the working time can be shortened and the working speed can be increased.
第1図は従来のマスクアライナにおけるウエハ
のアライメント機構の概要を示す説明図、第2図
は本発明の位置合せ方法の一実施例を適用したマ
スクアライメント装置を示す概要図、第3図は同
じくフローチヤート、第4図a〜dはウエハの各
位置でのずれの状態を示す説明図である。
1……ウエハ、3……プリアライメントテーブ
ル、4……XYステージ、5……識別面、10…
…真空吸着工具、13……ステージ修正回路。
FIG. 1 is an explanatory diagram showing an overview of a wafer alignment mechanism in a conventional mask aligner, FIG. 2 is a schematic diagram showing a mask alignment apparatus to which an embodiment of the alignment method of the present invention is applied, and FIG. 3 is a similar diagram. The flow chart and FIGS. 4A to 4D are explanatory diagrams showing the state of deviation at each position of the wafer. 1...Wafer, 3...Pre-alignment table, 4...XY stage, 5...Identification surface, 10...
...Vacuum suction tool, 13...Stage correction circuit.
Claims (1)
心を有する特定範囲の視野内に位置させるための
位置合せ方法において、 a 試料の姿勢を定められた方向に整える工程、 b XYステージを機械原点に位置させる工程、 c 上記工程aの試料を上記工程bのXYステー
ジに載置する工程、 d 上記工程cのXYステージを上記機械原点か
ら修正原点に移動して、上記位置検出用ターゲ
ツトを上記特定範囲の視野内に位置させる工
程、 e 上記位置検出用ターゲツトを上記視野の中心
に位置させるべく工程dのXYステージを移動
させる工程、 f 上記工程eの移動量を各試料毎に累積加算す
る工程、 を少くとも含み、上記工程dの修正原点は上記累
積加算の平均値を参照することでその原点位置が
補正されることを特徴とする位置合せ方法。[Claims] 1. A positioning method for sequentially positioning a sample having a position detection target within a field of view of a specific range having a center, which includes: a) adjusting the attitude of the sample in a predetermined direction; b) an XY stage; c) placing the sample in the above step a on the XY stage in the above step b; d moving the XY stage in the above step c from the machine origin to the modified origin to detect the position a step of positioning the target within the field of view in the specific range, e a step of moving the XY stage in step d to position the target for position detection at the center of the field of view, f adjusting the amount of movement in the above step e for each sample. An alignment method comprising at least the step of cumulatively adding the corrected origin in step d, the origin position being corrected by referring to the average value of the cumulatively adding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56040312A JPS57155730A (en) | 1981-03-23 | 1981-03-23 | Alignment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56040312A JPS57155730A (en) | 1981-03-23 | 1981-03-23 | Alignment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57155730A JPS57155730A (en) | 1982-09-25 |
JPH0128503B2 true JPH0128503B2 (en) | 1989-06-02 |
Family
ID=12577092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56040312A Granted JPS57155730A (en) | 1981-03-23 | 1981-03-23 | Alignment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57155730A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201440A (en) * | 1985-03-04 | 1986-09-06 | Hitachi Electronics Eng Co Ltd | Apparatus for wafer alignment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5160410A (en) * | 1974-11-25 | 1976-05-26 | Hitachi Ltd | KOTONARUICHINISONZAISURUFUKUSUNO ZAHYONO GENTENITSUCHIHO |
-
1981
- 1981-03-23 JP JP56040312A patent/JPS57155730A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5160410A (en) * | 1974-11-25 | 1976-05-26 | Hitachi Ltd | KOTONARUICHINISONZAISURUFUKUSUNO ZAHYONO GENTENITSUCHIHO |
Also Published As
Publication number | Publication date |
---|---|
JPS57155730A (en) | 1982-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4980971A (en) | Method and apparatus for chip placement | |
US4345836A (en) | Two-stage wafer prealignment system for an optical alignment and exposure machine | |
JP2007173801A (en) | Method of fitting flip chip to substrate | |
KR101971824B1 (en) | Robot, Robot system, Manufacturing apparatus of device, Manufacturing method of device and Method for adjusting teaching positions | |
JP4963469B2 (en) | Position correction device and position correction method | |
JPS6085536A (en) | Wafer positioning device | |
JPH08130230A (en) | Mounting equipment of flip chip | |
JPH0128503B2 (en) | ||
JP3276477B2 (en) | Substrate processing equipment | |
JP2003110004A (en) | Position correcting method in conveying wafer | |
JP4026904B2 (en) | Substrate transport apparatus and exposure apparatus | |
US20240058952A1 (en) | Controller for substrate transfer robot and control method for joint motor | |
JP2000252303A (en) | Pellet bonding method | |
JP2699883B2 (en) | Exposure equipment | |
JPH0282510A (en) | Alignment | |
JP2001044093A (en) | Alignment method and device thereof | |
JPH1058286A (en) | Locating method and device for work to be processed | |
US6139251A (en) | Stepper alignment method and apparatus | |
KR102003659B1 (en) | Robot system, manufacturing apparatus of device, manufacturing method of device, method for adjusting teaching positions, and computer-readable recording medium | |
JP2541552B2 (en) | Wafer alignment device | |
JPH0626260U (en) | Pre-alignment mechanism with position correction function and auto-handler using it | |
JPS5821824A (en) | Wafer alignment method | |
JPH01129435A (en) | Manufacture of semiconductor | |
JPH10177942A (en) | Aligner and method for delivering photosensitive substrate in aligner | |
JP3538211B2 (en) | Electronic component mounting apparatus and electronic component mounting method |