JPH0128224B2 - - Google Patents

Info

Publication number
JPH0128224B2
JPH0128224B2 JP57146102A JP14610282A JPH0128224B2 JP H0128224 B2 JPH0128224 B2 JP H0128224B2 JP 57146102 A JP57146102 A JP 57146102A JP 14610282 A JP14610282 A JP 14610282A JP H0128224 B2 JPH0128224 B2 JP H0128224B2
Authority
JP
Japan
Prior art keywords
pump
turbine
runner
water turbine
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57146102A
Other languages
Japanese (ja)
Other versions
JPS5937276A (en
Inventor
Toshiaki Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57146102A priority Critical patent/JPS5937276A/en
Publication of JPS5937276A publication Critical patent/JPS5937276A/en
Publication of JPH0128224B2 publication Critical patent/JPH0128224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は揚水発電所等に適用するポンプ水車に
係り、特にランナ設計に寸法条件を課し、水車お
よびポンプ運転時の効率向上を図つたポンプ水車
に関する。 一般に、ポンプ及び水車の運転特性はランナ損
失の影響によつて互いに異なる。例えば第1図に
示すように、同一のランナで水車とポンプの両方
の運転を行う場合、水車としての最高効率点
ηTnax、とポンプとしての最高効率ηPnaxとは夫々
異つた回転数n1域(ηPnax>ηTnax)とならざるを
得ない。一方、従来の発電電動機は実用的な構成
とするために同期機として、回転速度を一定にし
ており、回転速度の調整によるn1の値の変更はで
きないのが普通である。実際の運転では、水路の
損失の関係でポンプ揚程HPが水車落差HTよりも
大きくなり、またHPにおけるN1よりもHTにおけ
るN1が大きくなる。従つて、ポンプ水車の場合、
ポンプ及び水車としての各効率、即ちポンプ効率
ηP、水車効率ηTは最高効率点よりも低い領域で運
転せざるを得ない。 第2図は従来のポンプ水車用ランナの断面形状
を示す。ポンプ運転時における揚水は、ランナの
遠心作用によつて可能となるものであり、ランナ
径D1はポンプ作用を付与するための重要な寸法
であるから大きくせざるを得ないが、これにより
ランナまわりの摩擦損失が増大し、効率が低下す
る。即ち、従来のポンプ水車では、このような効
率低下要因のため、ポンプ水車の効率は一般に低
いものとなつている。 なお、このような欠点を除去するため、ポンプ
及び水車を別個のランナとするタンデム式揚水発
電所或いは回転速度をポンプと水車別々とする2
速度機を用いた例などがあるが、機器或いは建設
コストが高くなる欠点があつた。 なお、第3図は水車専用ランナを示す。この場
合は、ランナ径D1が小さいため、水車運転のみ
可能であり、ポンプ運転には使用できないもので
ある。 本発明はこのような事情に基づいてなされたも
ので、発電電動機の技術進歩に合せ、ランナの羽
根入出口径の比を最適化し、ポンプおよび水車両
運転が高効率特性で運転できるポンプ水車を提供
することを目的とする。 このような目的を達成するため、本発明は、同
一ランナを可逆的に使用するポンプ水車におい
て、ランナ羽根入口径をD1、ランナ羽根出口を
D2、回転速度をN(rpm)、水車出力をP(kw)、
水車専用とした場合の基準落差又はポンプ水車と
した場合の最高落差をH(m)、水車比速度をnS
(=N√/H1.25)としたとき、 f3=0.6+93/nS として、上記ランナ羽根の出入口寸法比(D1
D2)を 0.95f3D1/D21.07f3 の範囲に設定したものである。 即ち、比速度nSとランナ入出の径比D1/D2
の関係を水車専用とポンプ水車とについて考察す
ると、第4図に示すように、 f1=0.4+93/nS(水車専用の場合) f2=0.9+93/nS(ポンプ水車の場合) の関係にある。 ここで、
The present invention relates to a pump-turbine used in pumped storage power plants, etc., and particularly to a pump-turbine that imposes dimensional conditions on runner design to improve efficiency during operation of the water turbine and pump. Generally, the operating characteristics of pumps and water turbines differ from each other due to the influence of runner losses. For example, as shown in Fig. 1, when the same runner operates both a water turbine and a pump, the maximum efficiency point η Tnax for the water turbine and the maximum efficiency η Pnax for the pump are at different rotational speeds n 1 respectively. (η Pnax > η Tnax ). On the other hand, conventional generator motors are synchronous machines with a constant rotational speed in order to have a practical configuration, and the value of n 1 cannot usually be changed by adjusting the rotational speed. In actual operation, the pump head H P is larger than the turbine head H T due to waterway losses, and N 1 at H T is larger than N 1 at H P. Therefore, in the case of a pump-turbine,
Each efficiency of the pump and the water turbine, that is, the pump efficiency η P and the water turbine efficiency η T , must be operated in a region lower than the maximum efficiency point. FIG. 2 shows the cross-sectional shape of a conventional runner for a pump-turbine. Pumping water during pump operation is made possible by the centrifugal action of the runner, and the runner diameter D1 is an important dimension for providing pumping action, so it has to be made large. Frictional losses around it increase and efficiency decreases. That is, in the conventional pump-turbine, the efficiency of the pump-turbine is generally low due to such factors that reduce efficiency. In order to eliminate these drawbacks, a tandem pumped storage power plant with separate runners for the pump and the water turbine, or a tandem type pumped storage power plant with separate runners for the pump and the water turbine, or 2.
There are examples using speed machines, but they have the disadvantage of increasing equipment and construction costs. Note that Figure 3 shows a runner exclusively for water turbines. In this case, since the runner diameter D1 is small, it can only be used for water turbine operation and cannot be used for pump operation. The present invention has been made based on these circumstances, and provides a pump-turbine that optimizes the ratio of the runner's blade inlet and outlet diameters in accordance with technological advances in generator motors, and allows the pump and water vehicle to operate with high efficiency characteristics. The purpose is to In order to achieve such an object, the present invention provides a pump-turbine that reversibly uses the same runner, with a runner blade inlet diameter of D 1 and a runner blade outlet diameter of D 1 .
D 2 , rotation speed is N (rpm), water turbine output is P (kw),
The standard head when the water turbine is used exclusively or the maximum head when the pump water turbine is used is H (m), and the specific speed of the water turbine is n S.
(=N√/H 1.25 ), f 3 = 0.6 + 93/n S , the runner blade inlet/outlet dimensional ratio (D 1 /
D 2 ) is set within the range of 0.95f 3 D 1 /D 2 1.07f 3 . That is, if we consider the relationship between the specific speed n S and the diameter ratio D 1 /D 2 of the runner inlet and outlet for a dedicated water turbine and a pump water turbine, as shown in Fig. 4, f 1 =0.4 + 93/ n (in case of pump-turbine) f 2 = 0.9 + 93/n S (in case of pump-turbine). here,

【式】 N…(rpm)、P…水車出力(kw) H…落差(m)・(水車専用の場合の基準落差又
はポンプ水車の場合の最高落差 水車専用の場合、効率特性等のバランスをはか
るため、従来実績のD1/D2はほぼ0.95f1〜1.05f1
にある。一方、ポンプ水車の場合は、ポンプと水
車両方の特性を有することもありほぼ0.95f2
1.10f2にある。一般的にはランナ径D1においてポ
ンプ水車用は水車専用に対し約30%程度大であり
両者は全く別々の設計諸元となつている。 これに対して、近年、半導体等の技術の進歩が
大であり、小容量のポンプ等で用いられていた可
変速電動機の分野のみでなく大容量の発電電動機
の分野でも可変速度機が可能となつた。従来はポ
ンプ水車ランナの相手となる発電電動機の可変速
が不可能であつたため、ポンプ水車ランナは寸法
諸元f2とせざるを得なかつた実情がある。本発明
は発電電動機側の技術進歩に合せた高効率を得る
ランナを有するものとしている。 以下、本発明の一実施例を第4図〜第7図を参
照して説明する。第5図は本発明のランナ断面形
状を示す。これは、第2図に示すポンプ水車と、
第3図に示す水車専用の中間のランナ径D1とを
有するものである。第4図によつて本発明のラン
ナ径D1/D2比とnSの関係を示すと次のようであ
る。 f3=0.6+93/nS 0.95f3D1/D21.07f3 ここで、D1/D2に寸法上の幅を持たせたのは、
揚水発電所の運用上の制限より水車重点(0.95)、
ポンプ重点(1.07)が可能なようにするためであ
る。この値の安当性は、上述のf1、f2における従
来の幾多の経験値とほぼ一致していることから肯
定される。 可変速発電電動機を用いることにより、本発明
のランナの場合、容易にポンプ水車の運転特性の
向上が可能である。この場合、可変速の度合は、
定格の回転速度の±20%以内で充分な効果が得ら
れる。 このような構成によれば、ポンプ水車ランナ羽
根出入口径比D1/D2比を、f3=f3(nS)とするこ
とにより、効率向上が図れる。例えば第6図に示
すように、nS=120m−kw、水平出力300MW、
落差400mのポンプ水車の場合、 水車専用 D1/D2=1.18 ポンプ水車 D1/D2=1.68 本発明ポンプ水車 D1/D2=1.38 であり、効率は約1.5%向上する。 なお、本図D1/D2と効率との関係を示すN値
としては模型試験で確認されたもの(MR)を用
いた。 また、第7図はnSが80から200m・kwの一般的
なポンプ水車に本発明を適用した場合の効果を示
す。 以上のように、本発明によれば、可変速な発電
電動機の導入に対応して、最も効率特性のよいラ
ンナ諸元を有するポンプ水車を提供することがで
き、所期の目的が達成できる。
[Formula] N...(rpm), P...Hydraulic turbine output (kw) H...Head (m)・(Reference head for exclusive use of water turbines or maximum head for pump turbines) For exclusive use of water turbines, balance of efficiency characteristics, etc. For measurement purposes, the actual D 1 /D 2 is approximately 0.95f 1 to 1.05f 1
It is in. On the other hand, in the case of a pump-turbine, it has the characteristics of both a pump and a water-turbine, so it is approximately 0.95f 2 ~
Located at 1.10f 2 . In general, the runner diameter D1 for pump-turbine use is about 30% larger than for water-turbine use, and the two have completely different design specifications. In contrast, in recent years, advances in semiconductor and other technologies have made it possible to use variable-speed motors not only in the field of variable-speed motors used in small-capacity pumps, but also in the field of large-capacity generator motors. Summer. Conventionally, it was not possible to vary the speed of the generator motor that was the counterpart of the pump-turbine runner, so the pump-turbine runner had to have dimensions f2 . The present invention has a runner that achieves high efficiency in accordance with technological advances on the generator motor side. Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 4 to 7. FIG. 5 shows the cross-sectional shape of the runner of the present invention. This consists of the pump-turbine shown in Figure 2,
It has an intermediate runner diameter D 1 dedicated to water turbines as shown in FIG. The relationship between the runner diameter D 1 /D 2 ratio and n S of the present invention is shown in FIG. 4 as follows. f 3 = 0.6 + 93/n S 0.95f 3 D 1 /D 2 1.07f 3Here , the reason why D 1 /D 2 has a dimensional width is
Emphasis on water turbines over operational limitations of pumped storage power plants (0.95);
This is to enable pump emphasis (1.07). The validity of this value is affirmed since it almost coincides with many conventional empirical values for f 1 and f 2 mentioned above. By using a variable speed generator-motor, the runner of the present invention can easily improve the operating characteristics of the pump-turbine. In this case, the degree of variable speed is
Sufficient effects can be obtained within ±20% of the rated rotational speed. According to such a configuration, efficiency can be improved by setting the pump-turbine runner blade inlet/outlet diameter ratio D 1 /D 2 ratio to be f 3 =f 3 (n S ). For example, as shown in Figure 6, n S = 120 m-kw, horizontal output 300 MW,
In the case of a pump-turbine with a head of 400 m, the water turbine dedicated D 1 /D 2 = 1.18, the pump-turbine D 1 /D 2 = 1.68, the pump-turbine according to the invention D 1 /D 2 = 1.38, and the efficiency is improved by about 1.5%. In addition, as the N value showing the relationship between D 1 /D 2 and efficiency in this figure, the value confirmed in the model test (MR) was used. Moreover, FIG. 7 shows the effect when the present invention is applied to a general pump-turbine with n S of 80 to 200 m·kW. As described above, according to the present invention, it is possible to provide a pump-turbine having runner specifications with the best efficiency characteristics in response to the introduction of a variable speed generator motor, thereby achieving the intended purpose.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は従来例を示すもので、第1図
はポンプ水車の運転領域を示す特性図、第2図は
ポンプ水車用ランナを示す断面図、第3図は水車
専用ランナを示す断面図、第4図はポンプ水車の
比速度nSとランナ羽根入出口主比D1/D2の関係
を示す特性図、第5図は本発明に係るランナを示
す断面図、第6図はランナ羽根出入口寸法比
D1/D2と効率ηの関係を示す特性図、第7図は
nS80〜200における本発明の効果を示す特性図で
ある。 ηT……水車効率、ηP……ポンプ効率、HT……
水車落差、HP……ポンプ揚程、N……回転速度、
n……単位落差(揚程)当りの回転速度、D1
…ランナ羽根入口径、D2……ランナ羽根出口径、
f1……水車専用ランナのnS毎のD1/D2比、f2……
ポンプ水車ランナのnS毎のD1/D2比、f3……本発
明ランナのnS毎のD1/D2比、η……効率、H…
…落差(又は揚程)、nS……水車比速度。
Figures 1 to 3 show conventional examples. Figure 1 is a characteristic diagram showing the operating range of a pump-turbine, Figure 2 is a sectional view of a runner for a pump-turbine, and Figure 3 is a runner for a water turbine. 4 is a characteristic diagram showing the relationship between the specific speed n S of the pump-turbine and the main ratio D 1 /D 2 of the runner blades. FIG. 5 is a sectional view showing the runner according to the present invention. Figure 6 shows the runner blade inlet/outlet dimension ratio.
Figure 7 is a characteristic diagram showing the relationship between D 1 /D 2 and efficiency η.
It is a characteristic diagram which shows the effect of this invention in nS80-200 . η T ……Hydraulic turbine efficiency, η P ……Pump efficiency, H T ……
Turbine head, H P ... pump head, N ... rotation speed,
n...Rotational speed per unit head (head), D 1 ...
…Runner blade inlet diameter, D 2 …Runner blade outlet diameter,
f 1 ... D 1 / D 2 ratio for each n S of the water turbine runner, f 2 ...
D 1 /D 2 ratio for every n S of the pump-turbine runner, f 3 ...D 1 /D 2 ratio for every n S of the runner of the present invention, η... Efficiency, H...
…head (or head), n S … specific speed of the water turbine.

Claims (1)

【特許請求の範囲】 1 同一ランナを可逆的に使用するポンプ水車に
おいて、ランナ羽根入口径をD1、ランナ羽根出
口径をD2、回転速度をN(rpm)、水車出力をP
(kw)、水車専用とした場合の基準落差又はポン
プ水車とした場合の最高落差をH(m)、水車比速
度をnS(=N√/H1.25)としたとき、 f3=0.6+93/nS として、上記ランナ羽根の出入口寸法比(D1
D2)を 0.95f3D1/D21.07f3 の範囲に設定したことを特徴とするポンプ水車。
[Claims] 1. In a pump-turbine that reversibly uses the same runner, the runner blade inlet diameter is D 1 , the runner blade outlet diameter is D 2 , the rotation speed is N (rpm), and the water turbine output is P
(kw), the standard head when the water turbine is used exclusively or the maximum head when the pump water turbine is used is H (m), and the specific speed of the water turbine is n S (=N√/H 1.25 ), f 3 = 0.6 + 93 /n S is the inlet/outlet dimension ratio of the above runner blade (D 1 /
A pump water turbine characterized in that D 2 ) is set in the range of 0.95f 3 D 1 /D 2 1.07f 3 .
JP57146102A 1982-08-25 1982-08-25 Pump water wheel Granted JPS5937276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146102A JPS5937276A (en) 1982-08-25 1982-08-25 Pump water wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146102A JPS5937276A (en) 1982-08-25 1982-08-25 Pump water wheel

Publications (2)

Publication Number Publication Date
JPS5937276A JPS5937276A (en) 1984-02-29
JPH0128224B2 true JPH0128224B2 (en) 1989-06-01

Family

ID=15400186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146102A Granted JPS5937276A (en) 1982-08-25 1982-08-25 Pump water wheel

Country Status (1)

Country Link
JP (1) JPS5937276A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182363A (en) * 1984-02-28 1985-09-17 Toshiba Corp Francis type runner
JP4889308B2 (en) * 2005-02-17 2012-03-07 株式会社クボタ Water turbine, water turbine power generator, and method of operating water turbine power generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIBA PUMPED STORAGE=1975 *

Also Published As

Publication number Publication date
JPS5937276A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
CN107524557B (en) A kind of multistage tidal current energy water turbine based on real-time, tunable pod corner
CN109469511A (en) A kind of axial-flow type counter rotating birotor multi-state turbine
JPH0128224B2 (en)
JPS6146664B2 (en)
US20130216407A1 (en) Centrifugal pump
JPS5941024B2 (en) Francis type runner
US10316816B2 (en) Hydraulic water wheel for a directional water flow
CN208474137U (en) Impeller built-in bearing formula one high-speed permanent magnetic centrifugal pump of single stage type
JP2000136766A (en) Pump turbine runner
JPS59231177A (en) Lower part submerged waterwheel
CN2224942Y (en) Centrifugal impeller of fluid energy converting mechanism
Mathew et al. The wind-driven regenerative water-pump
RU2002101C1 (en) Axial front-mounted hydraulic turbine
JPS61101680A (en) Francis type runner
JPS6250663B2 (en)
CN206874491U (en) A kind of engine impact type waterturbine wheel water pump
CN207122329U (en) Axial flow turbine
Gerber Discussion:“Deriaz Type Reversible Pump-Turbine Installation at Sir Adam Beck-Niagara Forebay Pumped Storage Project”(Aeberli, AE, 1959, ASME J. Basic Eng., 81, pp. 505–515)
Sproule Discussion:“Deriaz Type Reversible Pump-Turbine Installation at Sir Adam Beck-Niagara Forebay Pumped Storage Project”(Aeberli, AE, 1959, ASME J. Basic Eng., 81, pp. 505–515)
Danel James clayton lecture: The hydraulic turbine in evolution
SU552418A1 (en) Twin stage turbines with fixed blades
Allner An analysis of hydro-regeneration
JP3869168B2 (en) Driving method of pump turbine
Bianchi et al. Optimal drive and machine sizing for a self starting, vertical axis, low power wind generator
JPS5634966A (en) Single speed reversible type multistage pump water turbine